Linear Integer Secret Sharing and Distributed
Exponentiation

Ivan Damgard* and Rune Thorbek

BRICS**, Dept. of Computer Science, University of Aarhus

Abstract. We introduce the notion of Linear Integer Secret-Sharing
(LISS) schemes, and show constructions of such schemes for any access
structure. We show that any LISS scheme can be used to build a secure
distributed protocol for exponentiation in any group. This implies, for
instance, distributed RSA protocols for arbitrary access structures and
with arbitrary public exponents.

1 Introduction

In a secret sharing scheme, a dealer distributes shares of a secret to a number
of shareholders, such that only certain designated subsets of them - the qualified
sets can reconstruct the secret, while other subsets have no information about
it. The collection of qualified sets is called the access structure. In particular,
the access structure consisting of all sets of cardinality greater than t is called a
threshold-t structure.

Secret Sharing was first introduced[20] as a way to store critical information
such that we get at the same time protection of privacy and security against
loosing the information. Later, secret sharing has proved extremely useful, not
just as a passive storage mechanism, but also as a tool in interactive protocols,
for instance in threshold cryptography. Here, the private key in a public key
scheme is secret shared among a set of servers, and the idea is that a qualified
subset of the servers can use their shares to help a client to decrypt or sign
an input message, but without having to reconstruct the private key in a single
location. As long as an adversary cannot corrupt too large a subset of the servers,
he cannot prevent the system from working, nor can he learn any information
on the private key.

The central operation we need to perform securely in these applications is
typically an exponentiation, that is, we are given some finite group G and an
input @ € G, and we want to compute a®, where s is a secret exponent which
has been secret-shared among the servers. In some cases the group order is a
public prime ¢g. The problem is then straightforward to solve since we can use
any standard linear secret sharing scheme over the field Z,. The observation is

* FICS, Foundations in Cryptography and Security, center supported by the Danish
research Council

** Basic Research in Computer Science, Center of the Danish National research Foun-
dation

simply that for any linear scheme (such as Shamir’s) over Z,, the secret can be
written as a linear combination s = Zie ; s mod g, where I is any qualified
set of servers holding shares {s;| i € I'}, and where the a;’s can be computed
from the index set I. Now, if the servers provide a; = a* (and prove they did so
correctly), we can compute a® = [[;c; aj’. However, there are other cases where
the group order is not prime and is not public (or even unknown to everyone),
such as when G is Z3; for an RSA modulus N or when G is a class group. This
leads to various problems: it would be natural to try to build a secret sharing
scheme over Z; where t is the order of GG, but the standard constructions do not
immediately work if ¢ is not a prime. Matters are of course even worse if ¢ is
unknown to everyone.

The literature contains many techniques for getting around these problems.
The techniques work in various particular scenarios, but they all have shortcom-
ings in general. We give a short overview here:

— The black-box secret sharing schemes of [8,13,21] can be used to share a
secret chosen from any Abelian group, including Z;. This requires, of course,
that the dealer knows t so he can do computations in Z;. This is never
the case if G is a class group, and if G = Z};, the dealer must know the
factorization of N. Note that in proactive threshold RSA schemes, each
player typically has to reshare his share of the private key from time to
time, however, we can of course not afford to reveal the factorization of N
to every shareholder.

— In Shoup’s threshold RSA protocol[22], the idea is to restrict the modulus
N to be a safe prime product, which allows us to work in a subgroup of Zy,
whose order is the product of two large primes. This is “close enough” to a
prime so that standard Shamir sharing of s will work. This requires that the
dealer knows the factorization. Moreover, for technical reasons, the protocol
can only compute a®*™ where n is the number of servers. This is solved
by exploiting that we have the public exponent e available. Assuming e is
relatively prime to n!, we can compute a° efficiently. The problem in general
is of course that we may not always be able to choose the group order as
we like, and the inverse of s modulo the group order may not always be
available or it may not be prime to n!. For instance, we cannot use small
public exponents such as 3.1

— The secret sharing scheme of [15] which was also used in [12,10] is a variant
of Shamir’s scheme, where we use polynomials over the integers. Using this
to share s does not require any knowledge of the order of G. However, the
scheme does not allow reconstruction of s by a linear combination of shares,
instead one obtains the secret times some constant, typically s-n!. This causes
the protocol to produce a®™ as output, and we have the same problem as
with Shoup’s protocol.

! Shoup suggests an alternative solution where any public exponent can be used, but
this requires that one additionally assumes that the DDH assumption holds in the
RSA group.

— Finally, the method of Rabin [18] uses secret sharing in “two levels”, i.e., the
secret exponent s is shared additively, such that s = s1 +...+ s, where server
i knows s;, and then s; is itself secret shared among the servers. Schemes of
this type require no knowledge of the group order to do the sharing since in
principle, any secret-sharing scheme can be used to share the s;’s. On the
other hand, shares become larger than with other schemes and extra rounds
of interaction is needed (to reconstruct s;) as soon as even one server i fails
to participate correctly. Hence (in contrast to the other types of protocols)
this approach cannot be made non-interactive, not even in the random oracle
model.

A final issue with current state of the art of distributed exponentiation is that
known solutions (except the two-level method) do not generalize to non-threshold
access structures. The point of general structures is that when we secret share the
private key according to a threshold structure, we are implicitly assuming that all
servers are equally easy to break into, and so the only important parameter is the
number of corrupted servers. In reality, some servers may well be more reliable
than others, and so we may need to specify which sets should be qualified in a
more flexible way, that is, we need a more general access structure.

1.1 Our Results

In this paper, we introduce a type of secret sharing scheme called Linear Integer
Secret-Sharing (LISS). In a LISS scheme, the secret is an integer chosen from
a (publically known) interval, and each share is computed as an integer linear
combination of the secret and some random numbers chosen by the dealer. Re-
construction of the secret is also by computing a linear combination with integer
coefficients of the shares in a qualified set.

LISS schemes are closely related to - but not the same as - the black-box secret
sharing schemes (BBSS) mentioned earlier of Desmedt-Frankl[13] and Cramer-
Fehr[8]. Whereas BBSS schemes are designed to secret share elements from any
finite abelian group and use computations in this group to do it, our computa-
tions are done over the (infinite) ring of integers. This difference has a number of
consequences that we return to below. LISS schemes are also different from the
method in [15] based on integer polynomials, since they require a final division
to get the secret while for LISS schemes we insist that linear combinations be
sufficient.

Note that it was shown in [5, 6] that perfect secret sharing and private com-
putation over countably infinite domains (like the integers) is not possible. How-
ever, this does not rule out schemes of our type since we restrict our secrets to
be chosen from a publically known interval and only aim for statistical rather
than perfect privacy.

Cramer and Fehr introduce the concept of an integer span program (ISP)
and use it to construct BBSS schemes. We show that any ISP can also be used
to build a secure LISS scheme. Roughly speaking, an ISP is specified by a matrix

with integer entries, and these entries are used as coefficients in the linear com-
binations that produce the shares from secret and randomness. In particular, the
construction from [8] of an ISP for threshold-¢ access structures implies a LISS
scheme for the same structure. Moreover, we revisit the well known construc-
tion of Benaloh and Leichter [1] based on monotone formulas that was originally
conceived for a finite Abelian group, and we show that a LISS scheme can be
built from any monotone formula. This implies that a LISS schemes exists for
any access structure, though not necessarily an efficient one.

The ISP construction of Cramer and Fehr was shown to imply optimal thresh-
old BBSS schemes. We show that this is not always the case for LISS schemes:
if we base the Benaloh-Leichter construction on a monotone formula for the
threshold function, we obtain threshold LISS schemes. It now turns out that, de-
pending on how small a formula we can produce, this construction may produce
a threshold LISS scheme with smaller shares or smaller randomness complexity
than those coming from the Cramer-Fehr construction. With current of state of
the art, this does not happen in general, but we find that for a fixed threshold
and a large number of players, there are monotone formula constructions that
produce smaller shares than Cramer-Fehr?.

It is interesting to note that if the known lower bound on the montone formula
size for the threshold function [3] turn out to be tight, this would make the
Benaloh-Leichter construction more efficient in general than the Cramer-Fehr
construction. While this may not seem likely with our current knowledge, it
does mean that determining the efficiency of an optimal threshold LISS scheme
remains an open question. The reason why BBSS schemes are different from LISS
schemes in this respect is that when we use an ISP for building a BBSS scheme,
the size of shares we get is independent of the size of the integers occurring in the
description of the ISP, but this is no longer true when we build a LISS scheme.

Finally, we show that any LISS scheme can be used to build a distributed
exponentiation protocol. The protocol does not use multilevel secret sharing.
Thus, it can be made non-interactive using any of the known techniques for this
purpose, such as the Fiat-Shamir heuristic (the random oracle model) or (7,11,
16]. Furthermore, no player, including the dealer, needs to know the order of the
group involved. This implies that we obtain the first non-interactive distributed
exponentiation protocol that works for any group and any access structure.

We also look at the particular case of distributed RSA. We generalize the re-
sults of Damgard and Dupont[10] to arbitrary access structures, and thus obtain
a distributed RSA signature scheme for any access structure, any public expo-
nent and any modulus, efficiently and in constant-round without using random
oracles or any assumptions other than the RSA assumption.

We emphasize that our result that all LISS schemes can be used for dis-
tributed exponentiation does not hold for BBSS schemes, not even if we assume

2 Note that in a later paper[9], Cramer, Fehr and Stam propose a construction that
they conjecture to be more efficient than[8], but so far, the asymptotic efficiency of
the scheme remains unproved.

that the dealer knows the group order3. The reason for this is that in order to
do the proof of security for an exponentiation protocol using known simulation
techniques, the secret sharing scheme needs to have the so called share comple-
tion property: given an unqualified set of shares and the secret, we can compute
by linear combinations a complete set of shares consistent with what we were
given. It is not known whether BBSS or LISS schemes have this property in
general, in fact the answer is probably no. Here, we get around this problem by
coming up with a different simulation technique where share completion is not
needed. This technique always works with a LISS scheme, but fails with BBSS
when the group order is not public.

2 Linear Integer Secret Sharing

First we formally define the required access structures.

Definition 1. A monotone access structure on {1,...,n} is a non-empty col-
lection I' of sets A C {1,...,n} such that 0 ¢ I' and such that for all A € T
and for all sets B with A C B C {1,...,n} it holds that B € I.

Definition 2. Let t and n be integers with 0 < t < n. The threshold-t access
structure T ,, is the collection of sets A C {1,...,n} with |A| > t.

Let P ={1,...,n} denote the n shareholders (or players) and D the dealer. Let
I' be a monotone access structure on P. The dealer D wants to share a secret
s from the publically known interval [0..2!] to the shareholders P over I, such
that every set of shareholders A € I' can reconstruct s, but such that a set of
shareholders A ¢ I get no or little information on s. We call the sets which are
allowed to reconstruct the secret qualified and the sets which should not be able
to obtain any information about the secret forbidden.

For this purpose we use a distribution matriz M € Z4*¢ and a distribution
vector p = (s,pa,...,pe)’, where s is the secret, and the p;’s are uniformly
random chosen integers in [0..2!0F*] for 2 < i < e, where k is the security
parameter and [y is a constant that is part of the description of the scheme. The
dealer D calculates shares by

M-p=(s1,...,54)7, (1)

where we denote each s; as a share unitfor 1 <i <d. Let ¢ : {1,...,d} — P be
a surjective function. The 4’th share unit is then given to the () th shareholder,
we say that ¢ (i) owns the ¢’th row in M. If A C P is a set of shareholders, then
M, denotes the restriction of M to rows jointly owned by A. We denote d4
for the number of rows in M 4. Similarly, for s € Z d et s4 € Z% denote the
restriction of s to the coordinates jointly owned by A. The share of shareholder j

% We note that the BBSS constructions of [13,8] are in fact applicable to distributed
exponentiation, but this is due to special properties of those constructions.

is then defined to be s;-1(;), which denotes all the entries in s which shareholder
j owns, i.e., the share of shareholder j is the share units owned by j.

More formally, we let [0..2'] be the set of secrets, then each shareholder j is
associated a positive integer d; = [¢p~(j)| for 1 < j < n, such that the set of
possible shares for shareholder j, is a subset S; C Z 4i of the Z-module Z% . Each
possible share for shareholder j is in the subset S;. The size of shareholder j share
is defined to be the number of bits used to uniquely represent the share from S;.
Note, that d = 2?21 d;, where d is the number of share units. Then let S = S; x
... %X 8, C Z%, which defines the subset of possible shares for the shareholders.
Define the expansion rate to be p = d/n, where d is the number of share units and
n is the number of shareholders. Note, that for a given distribution of a secret,
the shares of the shareholdes can be considered as an element in the subset S. If
we use m bits to uniquely represent the shares in S, then we define the average
share size to be m/u, which is the number of share bits each shareholder will
get on average.

Definition 3. A LISS scheme is correct, if the secret is reconstructed from
shares {s; | i € A} where A is a qualified set of shareholders, by taking an
integer linear combination of the shares, with coefficient that depend only on the
index set A.

Definition 4. A LISS scheme is private, if for any two secrets s, s', independent
random coins r,7’ and any forbidden set A of shareholders, the distribution of
{si(s,m, k) | i € A} and {s;(s',r',k) | i € A} are statistically indisinguishable.
More precisely, the statistical distance between the two distributions is negligible
n k.

In the following we define the notion of an Integer Span Program (ISP, intro-
duced in [8]) and show how any ISP can be used to build a correct and private
LISS scheme.

Definition 5. M = (M, 4, €) is called an Integer Span Program (ISP), if M €
Z%%¢ and the d rows of M are labelled by a surjective function ¢ : {1,...,d} —
{1,...,n}. Finally, e = (1,0,...,0)T € Z¢ is called the target vector. We define
size(M) = d, where d is the number of rows of M.

Definition 6. Let I' be a monotone access structure and let M = (M 1, €) be
a integer span program. Then M is an ISP for I, if for all A C {1,...,n} the
following holds.

- If A€ T, then there is a vector A € Z¢ such that M\ = €.
- If A¢ I, then there exists k = (k1,...,ke)T € Z¢ such that Mak =0 € Z4
with k1 = 1, which is called the sweeping vector for A.

In other words, the rows owned by a qualified set must include the target vector
in their span, while for a forbidden set, there must exist a sweeping vector which
is orthogonal to all rows of the set, but has inner product 1 with the target vector.
We also say that M computes I.

We define kmax = max{|a| | a is an entry in some sweeping vector}

Note 1. In the case of a span program, which works over a field, the explicit
requirement of a sweeping vector is not necessary. This is because the following
holds for fiels, € € im(M7) if and only if there exists a sweeping vector. When
working with the integers then only the “only if” implication is guaranteed.

If we have an ISP M = (M,4,e) which computes I', we build a LISS
scheme for I' as follows: we use M as the distribution matrix, and set [=
I+ [logy(Kmax(e — 1))] + 1, where as before [is the length of the secret.

Now, the first requirement in Definition 6 obviously makes the scheme correct,
in that a qualified set A can compute the secret by taking a linear combination
of their values, since there exsists Ay € Z94 such that MY - A4 = & which gives

sh-Aa=Ma-p)" - Aa=p" - (MI-Ay)=p" e=5

The Lemma below shows that the second requirement is sufficient to make
the scheme private.

Lemma 1. Ifs € [0..2!] and the p; s are chosen uniformly at random in [0..2001F]
for all 2 < i < e, then the LISS scheme derived from M is private.

Proof. We have chosen p = (s,p2,...,p.)T, with p; € [0..2007F] as uniformly
random numbers for 2 < i < e, and the secret s € [0..2!].

Let s’ € [0..2!] be arbitrary. We first observe, that s4 = M4p are shares that
a subset A can see. If A ¢ I', then we by definition know that there exists a
sweeping vector k such that Mak =0 € Zda,

Define s’ = M(p + (s’ — s)k). We note that s’y = sa, i.e., the sharcholders
in A see the same shares, but the secret s’ was shared instead of s. Define p to
be good if p" = p + (s’ — s)k has entries in the specified range. Then the above
implies that if we restrict the distribution of A’s shares of s to the cases where
p is good, the resulting distribution equals the one generated from s’ and p’.

It follows that the statistical distance between the distributions of A’s shares
of s and s’ is at most twice the probability that p is not good, which we can
estimate by the union bound as e — 1 times the probability that a single entry
is out of range. So since |s’ — s| < 2!, the distance is at most

2 kmax(e — 1) &
T

3 Constructions

3.1 Benaloh-Leichter

In this section we show how to construct an ISP based on Benaloh and Leichter
Generalized Secret Sharing scheme [1]. This scheme was already shown to work
for secret sharing in any finite group, but to use it over the integers, we need
to revisit the scheme to make sure that the required sweeping vectors exist and
check the size of their coordinates.

As pointed out in [1], there is a one-to-one correspondence between monotone
access structures and monotone formulas. Every monotone access structure can
be described by a monotone formula, and every monotone formula describes a
monotone access structure, where each variable in the formula is associated with
a shareholder in P. A subset of the shareholders corresponds to an input to the
formula by setting an input variable to 1 iff the corresponding shareholder is in
the the subset. A subset is in the access structure represented by the formula if
the formula accepts the corresponding setting of the variables. So it is enough
to show how to construct an ISP from an arbitrary monotone formula f.

The details of this follow from Benaloh and Leichter’s original construction
and can be found in the full version of this paper [14]. Here, we only summarize
the conclusions:

One can efficiently construct a distribution matrix M € Z¢*¢ for the access
structure representing monotone formula f, where d, e are at most the size of f.
Moreover, each row has only 0 or 1 entries and there are at most depth(f) 1’s in
every row. Finally, sweeping vectors have only 0,1, —1 as entries.

So when sharing a secret using M we need at most d - depth(f) additions to
calculate all the d share units from (1). Each share unit is the result of adding
at most of depth(f) integers of (lyp + k)-bit, i.e., each share unit is at most
lo + k + log depth(f) bits long.

From [23] we have the existence of a monotone formula for the majority
function of size O (n°3) and of depth O (logn). A threshold-t function T}, can
be constructed from the majority function, by fixing some of the inputs of the
majority function. This construction implies that we need a majority function
of size at most 2n to construct the threshold-t function T ., i.e. [23] gives the
existence of a monotone formula for the threshold-¢ function T} ,, of size O (n53)
and of depth O (logn).

It follows from the above that each share unit is of size O (lp + k + loglogn)
and the time to compute all share units is O (n5'3 logn(lp + k + loglog n)), where
we assume it takes O (b) time to add two b-bit numbers and O (b) time to
generate a b-bit random integer. This implies that the average share size is
O (n*3(lp + k + loglogn)) bits.

Boppana, generalizing Valiant’s result in [2], showed that every threshold ¢
function T3, can be represented by a monotone formula of size O (t4'3nlog n)
Each share unit size is still the same, hence the average share size becomes
@ (t4'3logn(l0 + kJrloglogn)) bits. The total computation time of alle the

shares is O (t4'3n log? n(lp + k + loglog n))

3.2 Cramer-Fehr

In this section we consider the ISP’s constructed by Cramer and Fehr in [8].

As described, if we have an ISP M = (M,1,e) we use M € Z9%¢ as the
distribution matrix and we calculate the shares from (1). If we define my.x to be
the maximal entry in the distribution matrix M. We need d - e multiplications of
O (lp + k + Mumax)-bit numbers and d- (e—1) additions of O (o + k + Mumax + €)-
bit numbers to calculate the shares.

From the proof of Corollary 1 in [8] we have that for a threshold-t access
structure T} ,, that

d=n(|logn| +2)
e=t(llogn]+2)+1

We also know, that mpyax = O (nQ) If we assume that we use O (b) time to choose

a b-bit random number, O (b) time to add two b-bit numbers, and O (b log? b)
time to multiply two b-bit numbers. Then we need

O (tn log? n(lo + k +n?)log?(lp + k 4+ n?) + tnlog® n(ly + k 4+ n% + tlog n))
=0 (tn10g2 n(lo + k +n?)log®(lo + k + n?))

time to compute the shares. Furthermore, we have that each share unit is of size
o (ZO + k +n? + log(t log n)) =0 (lo +k+ n2)—bit, hence the average share size
is O (logn(lp + k + n?)).

3.3 Comparison

In this section we compare the average share size, the number of random bits
required to do the computations, and the computation complexity of the LISS
scheme based on Benaloh-Leichter construction (BLc) with the scheme based on
the Cramer-Fehr construction (CFc) in the threshold-t case.

First we make some observations. Recall that lg = I+ [logy(kmax(e—1))]+1.
For BLc we get that lg = [+ [logy(n®3 —1)] +1, which asymptotically reduces to
lo € O (I +1logn). In the CFc we have that Kpmax = ¢2™ and e = t(|logn] +2)+1,
ie., lo = l[logy(c2™t(|logn] + 2))] + 1, which asymptotically reduces to Iy €
O(+n).

First we will compare the results of the CFc with the BLc based on the
threshold-¢ function build from Valiant [23] majority function. The results are
compared in the table below, where we use [instead of the more scheme de-
pendent ly. Let ss denote the share size of each shareholder, rb the number of
random bits used in the computation of the shares, and ct the computation time
of the shares.

CFc BLc (Valiant)
ss O ((L+ k +n?)logn) O ((L + k + loglog n)n*?)
) O((l+k+n)tlogn) O ((L + k + loglog n)n®?)
ct|O (tn log” n(l + k +n?)log®(l + k + n?))|O (n®?logn(l + k 4 loglogn))

These results show a great advantage of the CFc if n is a dominating factor of
the parameters, if this is not the case, the asymptotic bounds are of the same
magnitute.

We may also base the BLc on the result from Boppana [2], which states that
the size of the formula for the threshold function T}, is O (t4'3n log n) We now
compare it against the CFc and let ¢ be fixed while n grows. This implies that the

formula size is O (nlogn) for a fixed value of ¢. This can be a reasonable model
in some cases: we may have a large number of share holders, while we believe
that the adversary can only corrupt a small number of them. In the table below
we compare the results to the CFc for a constant value of ¢,

CFc BLc (Boppana)
ss O ((+k+n*)logn) O ((I + k +loglogn)logn)
rb O((l+k+n)logn) O ((I + k + loglogn)nlogn)
ct|O (n log” n(l + k +n?)log®(l + k + n*))|0 (n log” n(l + k + loglog n))

Note that in this case, the BLc actually has a better share size and computation
time complexity than the CFc. This indicates that the BLc with the current
state of the art can compete with the CFc in special cases.

Results of Radhakrishnan [3] show that the lower bound for a monotone
formula that computes the threshold-¢ function T3, for 2 < t < 7, has size
at least | £|nlog(:21). As he notes, that in the monotone formulas model, the
complexities of computing T} , and T,,_¢4+1,, are the same. Hence, the lower
bound of |£|nlog(:25) holds for the function Tp_¢y1m, 2 < t < %, as well.
This result is far below Valiants [23] and Boppana [2], so in particular BLc is in
general better than CFc if the bound turns out to be tight.

To summarize the results of this section, we find that CFc seems better in
the general case of the threshold-t function, but if n is small compared to the
other factors, then the BLc can be just as good. Furthermore, for fixed ¢ and
large n, the BLc has an advantage over the CFc. The result of Radhakrishnan
gives a big gab for improvements from the current state of the art of threshold
functions, which would favor BLc. Finally, it must be stressed, of course, that the
BLc has the advantage that it can be used over any monotone access structure.
However, the BLc is only efficient if there is a polynomial-size monotone formula
describing the access structure.

4 Distributed Exponentiation

In this section we will consider solutions to the the distributed exponentiation
problem based on LISS. The set-up is as follows: we have n servers Py, ..., P,, an
access structure I" with an ISP M = (M, ¢, €), and an adversary Adv who may
corrupt any subset of servers not in I'. The family of subsets not in I is called
the adversary structure I'. Finally, we have a special player C called the client
who may also be corrupted, independently of which servers are corrupt

In this first solution we give, we consider non-adaptive corruption in the
semihonest model, i.e., the adversary must choose which players to corrupt be-
fore the protocol starts, he sees all internal data and communication of corrupt
players, he may cause them to stop playing at any time, but all players follow
the protocol as long as they participate. In order to solve the problem in this
model, we must assume that the adversary structure is Q2, i.e., any set of form
AUB, A, B € I is strictly smaller than {Py, ..., P,,}. This ensures that the set
of honest servers is in I'.

We will use Canetti’s Universal Composability (UC) framework to state and

prove our protocols. For details on this framework, refer to [4]. In order to focus
on the actual protocol for exponentiation, we will assume a trusted dealer who
chooses the group to use and secret-shares the exponent. In the UC framework,
this means we assume a functionality representing the dealer is given, as detailed
below. We assume for simplicity synchronous communication and also that the
client C' can broadcast information to all servers. But we do not assume any
private channels so all communication between players is seen by the adversary.

Functionality Fpeq

1.

Upon receiving “start” from all honest players, choose the group G to use
and an exponent s (in principle any efficient algorithm for this could be used
here).

. Generate the distribution vector p = (s, pa, ..., pe)’ and calculate the shares

from
Mp: (517"'78d)T

Y

finally distributes the shares, such that s; is sent privately to Py for 1 <
i < d. Finally, send a description of G to all players and the adversary
(information allowing to represent group elements and computing the group
operation).

Such a functionality together with the protocol we give below will implement

the following functionality

Functionality Fpeai—and—Ezp

1.

Upon receiving “start” from all honest players, choose the group G to use
and an exponent s (same algorithm as used in Fpeq). Send a description
of G (information allowing to represent group elements and computing the
group operation) to all players and the adversary.

. At any later time, upon receiving “Exponentiate a” for a € G from the

client, send “Exponentiate a”, to all players and the adversary. In the next
round, send “Result a¢®” to the client and the adversary.

The protocol proceeds as follows:

Protocol Exponentiate

1.

@

Initially, each player sends “start” to Fpeq:, and stores the description of G
and shares of s received from Fpeg;.
On input a € G, C broadcasts a to the servers.
Each P; sends to C a; = a® for each component s; of the share held by P;.
Since I' is Q2, C is guaranteed to receive valid contributions from a qualified
set of players A € I'. C uses the entries in the reconstruction vector for A
A = (A1,...,Aa,)7 together with the contributions (a; = a®,... a4, =
a’*4) to construct

a® = I a)

Theorem 1. The Exponentiate protocol when given access to Fpeqr and a broad-
cast channel from C' to the servers, securely implements Fpeai—and—EBzp- The

adversary is assumed to mon-adaptively corrupt any set in Q2 structure I' in a
semi-honest fashion.

Proof. Security is proved by constructing an ideal model adversary which works
in a setting where it may communicate with ideal functionality Fpeai—and—Ezp
and must simulate everything the real life adversary Adv would see in a real
attack. This works by running internally a copy of Adv and proceeds as follows:

1. Let B be the set of servers corrupted by Adv. Having received the description
of G from Fpegi—and—Ezp, compute a sharing of 0 to simulate the action of
Fpeal, i-e., the distribution vector is p = (0, p2, ..., pe)! and the shares are

S:(Sla"'asd)T:M'p (2)

Give to the Adv the shares from (2) belonging to the servers in B.

2. Upon receiving “Exponentiate a” and “Result a®” from Fpeqi—and—Ezp, We

must simulate the contributions that honest players send to C. To this end,
note that if we had used p’ = p + skp as distribution vector in (2), then
the corrupted servers in B would get the same shares, but the secret value
would be s instead of 0.
Now, let R be a row in the distribution matrix M belonging to honest server
P;, say the i'th row, and let s; be the share unit we computed from this
row in (2). Had we used p’ instead of p, then the share unit coming from R
would have been s; = (p+ skp) - R = s; + skp - R instead. The observation
is now that because we know a® and s;, we can compute ai even though we
do not know s. Concretely, we simulate the contribution from P; by

asi (as)n3~R _ asi+sn3~R

’
= asl

Give all simulated contributions to Adwv.

We now need to prove that no environment can distinguish between the real
protocol and the simulated game. The is straightforward: First, the shares com-
puted in step 1 of the simulation are statistically indistinguishable from the
shares computed by Fpeq by privacy of the LISS scheme and since B in un-
qualified. Second, in both the simulated game and real protocol, honest players
output always the correct value a®, by definition of Fpeai—and—Ezp, Tespectively
correctness of the LISS scheme. Finally, given a, a®, the simulated and real con-
tributions from honest players are statistically indistinguishable, since the vector
we use for the simulated sharing is p’ = p + skp which is statistically close to
a uniformly chosen sharing vector for s. a

4.1 Active Adversaries and Distributed RSA

If we are not guaranteed that corrupted players follow the protocol, we can
expand the Exponentiate protocol in a natural way by having players prove

in zero-knowledge that their contributions are correct. Given any appropriate
scheme for proving correctness of contributions, a corrupt player must either give
correct information or be disqualified. Since this is equivalent to the semihonest
model, security essentially follows from security of the zero-knowledge proofs
and the proof we already gave above.

Depending on the structure of the group and the assumptions we are willing
to make, there are many different ways to do the zero-knowledge proofs, see for
instance [21,19,22,7,11,10,12,16]. Most of the techniques can be made non-
interactive in the random oracle model, or are already non-interactive given
some set-up assumption. If all else fails, generic zero-knowledge techniques can
be used[17].

However, a detailed account of all possibilities is out of scope of this paper. We
concentrate instead on distributed RSA as a particularly interesting special case.
The functionality for initial set-up and the functionality we want to implement
are modified from the general case as follows:

Functionality Frsa— peal

1. Upon receiving “start” from all honest players, choose the modulus n to use,
secret and public exponents s, e and a random square v in G = Z};.
2. Generate the distribution vector p = (s, pa, ..., p.)T and calculate the shares
from
Mp: (517"'78d)T

Y

finally distributes the shares, such that s; is sent privately to Py ;) for 1 <
i < d. Finally, send N, e,v and v; = v% mod N for every share unit s; to all
players and the adversary .

Functionality Frsa

1. Upon receiving “start” from all honest players, choose the modulus N to use,
secret and public exponents s, e. Send N, e to all players and the adversary
2. At any later time, upon receiving “Exponentiate a” for a € Z} from the
client, send “Exponentiate a”, to all players and “Exponentiate a,a® mod N”
to the adversary. Two rounds later, send “Result a® mod N” to all players.

The protocol we will use is the Exponentiate protocol from the previous
section, with the extension that C' will check each contribution a; = a® mod N
from server P;. We want to show that a sufficient check can be done in constant-
round without using random oracles to ensure soundness and zero-knowledge,
and regardless of which modulus and public exponent is used. To do this, we
generalize the results from [10]. Concretely, we use the following well known
protocol, which we will repeat in parallel [2 4+ 21log, 1] times:

1. P; chooses a random k + max- bit number 7 and sends to C' u; = a” mod
N,us = v" mod N. Here, maxz is the maximal bitlength of any s; that can
occur.

2. C sends a random bit b to P;.

3. Pj sends z = r+bs;, and C checks that a* = ulai-’ mod N, v* = ugvf mod N
The following Lemma is an easy consequence of corresponding results in [10]:

Lemma 2. The above protocol is statistical zero-knowledge. Furthermore, if a; #
a® mod N then a polynomial time prover who can make C' accept with probability
more than 1/(4n?) can compute efficiently a multiple of the order of v.

Note that the last result in the lemma implies that if an adversary can cheat
the protocol on input a random v, he can factor IV by a standard reduction and
hence also break RSA.

Even though the soundness error for this protocol is not negligible, we can
show that checking the contributions in this way is sufficient to allow C to
reconstruct the correct result efficiently. This is done by a generalization of the
results from [10]. There it was observed that as long as the expected number of
accepted incorrect contributions is small enough, C' can reconstruct efficiently
by searching exhaustively for a set of correct contribution. In [10], this was done
for the case of a threshold access structure. Here we have to be more careful
with the search algorithm and the analysis because we have no lower bound on
the number of honest players for a general access structure.

Algorithm Reconstruct

1. On input public key N, e, a € Z5; and a set of contributions to finding a® mod
N, execute the protocol above with each server to check the correctness of
each contribution.

2. Let the set of accepted contributions be Acc. Do the following for j =
0,..., |Acc:

3. For each subset B C Acc of size |Acc| — j, run the reconstruction algorithm
from the Exponentiate protocol on the contributions in B, attempting to
compute a® mod N. Let z be the result. If 2¢ = a mod N, output z and
stop.

Lemma 3. The expected number of subsets considered by Reconstruct is at most
2.

Proof. Let m be the number of incorrect contributions submitted by corrupt
players. Clearly, the worst case is if all corrupt players submit bad contributions,
so we may assume that the number of honest players is n — m. Let p be the
probability that an incorrect contribution is accepted. Then

p; = Pr(i incorrect shares accepted) = p*(1 — p)* <m) < p'm®
i

Given that ¢ incorrect shares are accepted, we have n —m + ¢ contributions, and
we finish at the latest when we have searched all subsets of size n — m. This

means checking a total of

n—m-+1 n—m-+1 n—m-+1 . n—m-+1
(o) Gt e () = e ()
n—m-+1 n—m-+1—1 n—m n—m

subsets. It follows that the expected number of subsets we check is at most

m m m m
Zpimi i+ 1)(n—mid) < Zpimi?ni < Z(Qan)i < Z 271 <2
pard i=0 =0 =0

using the above and the fact that p < 1/(4n?). O

A final observation is that by choosing z at random in Zy, and setting
v = 22° mod N, a simulator can easily create a random square v for which v* mod
N is known (namely 22 mod N). It is then easy to simulate the information
Frsa_pear sends to corrupt players. Using this, the proof of Theorem 1, Lemma

3 and Lemma 2, it is straightforward to show:

Theorem 2. Under the RSA assumption, the Exponentiate protocol expanded
with the above Reconstruction algorithm and given access to the Frsa_dear func-
tionality implements the Frsa functionality. The adversary may non-adaptively
and actively corrupt any set in Q2 structure I

We believe that the interest of this result is that it buys us full generality
in access structure and choice of keys and no dependency on extra set-up or
complexity assumptions. Since the number of servers n can be expected to be
quite small in practice, the overhead compared to more standard solutions is
moderate: a factor of logn in complexity and potentially 2 extra moves. However,
in practice, faults are usually rare, so if the the client attempts to get the result
from all contributions first and only asks to have the proofs completed if this
fails, then the scheme will be non-interactive “almost always”.

Acknowledgements

Thomas Mglhave, Peter Bro Miltersen, Gudmund Skovbjerg Frandsen, and the
anonymous reviewers from the committee for helpful comments.

References

1. Josh Cohen Benaloh, Jerry Leichter: Generalized Secret Sharing and Monotone
Functions. Proc. of CRYPTO 1988: 27-35

2. R. B. Boppana: Amplification of Probabilistic Boolean Formulas. Advances in Com-
puting Research 5: 27-45 (1989)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

Jaikumar Radhakrishnan: Better Lower Bounds for Monotone Threshold Formulas.
J. Comput. Syst. Sci. 54(2): 221-226 (1997)

Ran Canetti: Universally Composable Security: A New Paradigm for Cryptographic
Protocols, FOCS 2001: 136-145.

Benny Chor and Eyal Kushilevitz: Secret Sharing Over Infinite Domains., J. Cryp-
tology 6(2): 87-95 (1993)

Benny Chor, Mihaly Geréb-Graus and Eyal Kushilevitz Private Computations over
the Integers., SIAM J. Comput. 24(2): 376-386 (1995)

Cramer and Damgard: Secret-Key Zero-Knowlegde and Non-interactive Verifiable
Ezponentiation, Proc. of TCC 04, Springer Verlag LNCS.

Ronald Cramer, Serge Fehr: Optimal Black-Box Secret Sharing over Arbitrary
Abelian Groups. Proc. of CRYPTO 2002: 272-287

Cramer, Fehr and Stam: Black-Box Secret Sharing from Primitve Sets in Algebraic
Number Fields, Proc. of Crypto 05, Springer Verlag LNCS.

Ivan Damgard, Kasper Dupont: Efficient Threshold RSA Signatures with General
Moduli and No Extra Assumptions. Proc. of Public Key Cryptography 2005: 346-
361

Damgard, Fazio and Nicolosi: Non-Interactive Zero-Knowledge Proofs from Homo-
morphic Encryption Proc. of TCC 06, Springer Verlag LNCS.

Ivan Damgard, Maciej Koprowski: Practical Threshold RSA Signatures without a
Trusted Dealer. Proc. of EUROCRYPT 2001: 152-165

Yvo Desmedt, Yair Frankel: Perfect Homomorphic Zero-Knowledge Threshold
Schemes over any Finite Abelian Group. SIAM J. Discrete Math. 7(4): 667-679
(1994)

Ivan Damgard and Rune Thorbek: Linear Integer Secret Sharing and Distributed
Ezxponentiation (full version), the Eprint archive, www.iacr.org

Yair Frankel, Peter Gemmell, Philip D. MacKenzie, Moti Yung: Optimal Resilience
Proactive Public-Key Cryptosystems. FOCS 1997: 384-393

Rosario Gennaro, Tal Rabin, Stanislaw Jarecki, and Hugo Krawczyk: Robust and
Efficient Sharing of RSA Functions. J. Cryptology 2000 13(2): 273-300

Oded Goldreich, Silvio Micali, Avi Wigderson: Proofs that Yield Nothing But Their
Validity or All Languages in NP Have Zero-Knowledge Proof Systems J. ACM
38(3): 691-729 (1991).

Tal Rabin: A Simplified Approach to Threshold and Proactive RSA. Proc. of
CRYPTO 1998: 89-104

Claus-Peter Schnorr: Efficient Signature Generation by Smart Cards. J. Cryptology
4(3): 161-174 (1991)

Adi Shamir: How to Share a Secret. Commun. ACM 22(11): 612-613 (1979)
Alfredo De Santis, Yvo Desmedt, Yair Frankel, Moti Yung: How to share a function
securely. STOC 1994: 522-533

Victor Shoup: Practical Threshold Signatures. Proc. of EUROCRYPT 2000: 207-
220

Leslie G. Valiant: Short Monotone Formulae for the Majority Function. J. Algo-
rithms 5(3): 363-366 (1984)

