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Abstract. The goal of steganography is to pass secret messages by dis-
guising them as innocent-looking covertexts. Real world stegosystems
are often broken because they make invalid assumptions about the sys-
tem’s ability to sample covertexts. We examine whether it is possible
to weaken this assumption. By modeling the covertext distribution as a
stateful Markov process, we create a sliding scale between real world and
provably secure stegosystems. We also show that insufficient knowledge
of past states can have catastrophic results.
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1 Introduction

The goal of steganography is to pass secret messages by sending innocuous data.
The sender may give the receiver covertexts that are distributed according to a
covertext distribution. A covertext is made up of multiple documents. For exam-
ple, a digital camera can define a covertext distribution of photographs, in which
pixels, tiles, or even entire pictures can be considered documents. A stegosystem
transforms a secret message, called a hiddentext, into a stegotext that looks like
a covertext.

Real-world stegosystems are broken because they make invalid assumptions
about the covertext distribution. Often, this is an assumption about an adver-
sary’s lack of knowledge about the distribution. For example, for a long time,
modifying the least significant bits of pixels values in bitmaps was considered
a good idea because these bits looked random. Then Moskowitz, Longdon and
Chang [MLC01] showed that there is a strong correlation between the least sig-
nificant bit and the most significant bit (see Figures 7-10 in their paper for an
instructive example).

Provably secure steganography attacks the problem by quantifying the stegosys-
tem’s need for knowledge. Anderson and Petitcolas [AP98] observe that every
covertext can be compressed to generate a hiddentext. Therefore, to hide a mes-
sage, we can “decompress” it into a stegotext. Le [Le03] and Le and Kuro-
sawa [LK03] construct a provably secure compression-based stegosystem that



assumes both the sender and receiver know the covertext distribution exactly.
Independently, Sallee [Sal03] implemented a compression-based stegosystem for
JPEG images that lets the sender and receiver estimate the covertext distribu-
tion. Compression-based schemes need to know the exact probability of every
possible covertext.

Cachin [Cac98] proposed using rejection-sampling to generate stegotexts that
look like covertexts. A publicly known hash function assigns a bit value to docu-
ments. To send one bit, the stegosystem samples from the covertext distribution
until it selects a document that evaluates to the message XOR K, where K is
a session key both parties derive from their shared secret key. Sending multiple
bits requires stringing several documents together. Cachin’s scheme is secure if
the hash function is unbiased. Because the stegosystem only needs to be able to
sample from the covertext distribution, it is known as a black-box stegosystem.
This paper examines the nature of the black-box required for steganography.

Hopper, Langford and von Ahn [HLvA02] improve on Cachin’s results. They
give the first rigorous definition of steganographic security by putting it in terms
of computational indistinguishability from the covertext distribution. Their stegosys-
tem uses Cachin’s rejection-sampling technique, but generalizes it to be appli-
cable to any distribution, assuming it (1) has sufficient entropy and (2) can be
sampled perfectly based on prior history. Reyzin and Russell [RR03] improve
the robustness and efficiency of the Hopper et al. scheme. Von Ahn and Hop-
per [vAH04] create a public-key provably secure stegosystem and Backes and
Cachin [BC05] and Hopper [Hop05] consider chosen covertext attacks. Despite
these improvements, the two assumptions necessary for provably secure steganog-
raphy remain in the literature. The entropy assumption appears inherent to the
problem. We address the possibility of weakening the sampling assumption.

Some prior work focuses on the performance measures of black-box stegosys-
tems. In particular, there is the rate of a stegosystem, which measures how
many bits of the message you can pack per document transmitted. There is also
the query complexity per document which measures how many times you need
to query the sampler in order to create a document of the stegotext. Notably,
Dedic et al. [DIRR05] showed that if the rate is w, then the query complexity per
document is 2w. We do not worry about query complexity, but rather about the
very nature of the sampler at the disposal of a stegosystem, so the underlying
question is very different.

Black-box stegosystems [Cac98,HLvA02,RR03,vAH04,BC05,Hop05] assume
that they have access to an adaptive sampler. The sampler must be able to take
an arbitrary history of documents as input and output a document distributed
according to the covertext distribution conditioned on the prior history. For
example, if our covertext distribution consists of images of teddy-bears, and
each document is an 8 × 8 pixel tile, then the sampler’s input is the first k − 1
tiles of the image (say, the ears of the teddy bear), and the output is the kth

tile of the image (say, the nose). The stegosystem needs to be able to query the
sampler multiple times on the same input: it continues to sample until it gets a



document that corresponds to the message it wants to hide. The sampler must
output many noses that correspond to the same set of ears.

Sampling teddy-bear noses based on teddy-bear ears is an absurd example.
We use it because in the real world there are no known naturally occuring dis-
tributions that can be sampled based on history.1 Our work examines whether
accurate adaptive sampling is really neccessary. We come to the somewhat un-
surprising conclusion that a stegosystem must assume that the sampler it uses
is accurate. Our chief contribution is to examine what it really means to have a
bad sampler.

There are many ways to characterize the abilities of a sampler. It can be
contextual: given documents di, . . . , dj−1, dj+1, . . . , dk, it produces possible val-
ues for dj . A special case of a context sampler is a history-based sampler: given
di, . . . , dj−1, it produces possible values for dj . Since history-based samplers are
sufficient for secure steganography, we limit our examination to those. Past ex-
perience has shown that stegosystems are broken when there is a statistical
correlation between documents of the covertext distribution. For example, the
least-significant and most-significant bits in a bitmap are correlated, which leads
to Moskowitz et al’s [MLC01] attack. Therefore, a history-based sampler might
make a mistake when it does not consider some of the history (usually, due to
either ignorance or memory and computational limitations). This means we can
characterize a history-based sampler by the length of history it considers. We
call a sampler that considers only some of the history a semi-adaptive sampler,
while one that ignores the history entirely is called non-adaptive.

Some samplers may be limited by the number of times they can be queried
on the same input. For example, Hopper et al [HLvA02] point out that hu-
man beings have difficulty generating multiple independent samples of e-mails
on the same topic. The distribution of the output of the sampler and the cover-
text distribution may gradually (or even sharply) diverge after several draws.
This problem can be analyzed in terms of query complexity, which is discussed
in [DIRR05]. We do not consider it further.

Semi-adaptive samplers lead us naturally to consider Markov processes. Sup-
pose the actual covertext distribution is D. The distribution D′ from which a
semi-adaptive sampler draws is a Markov process. Since a stegosystem approxi-
mates the distribution it samples, security requires that D and D′ are sufficiently
close. We introduce the concept of an α-memoryless distribution, a distribution
that is computationally indistinguishable from some Markov process of order α.
We design the definition of α-memorylessness so that it is necessary and sufficient
for secure black-box steganography with semi-adaptive sampling.

We have three results:

1. We analyze what happens to the von Ahn and Hopper public key stegosys-
tem [vAH04] when the sampler only considers the last α documents of the
history. We calculate how inaccuracy in the sampler translates into insecurity

1 Artificial distributions, such as the output of randomized algorithms and encryption
functions, can be sampled perfectly. However, they tend to arouse suspicion, thus
making them unsuitable for steganography.



in the stegosystem. Our results show that assuming the covertext distribu-
tion is α-memoryless is neccessary and sufficient for maintaining security.

2. We analyze the security of non-adaptive black-box stegosystems. Indepen-
dently,2 Petrowski et al. [PKSM] implemented a non-adaptive stegosystem
for JPEG images, giving empirical evidence that memoryless distributions
exist and can be used for secure steganography.

3. We construct a pathologicalα-memoryless high-entropy distribution for which
black-box steganography is infeasible if the stegosystem’s sampler considers
only the last α − 1 documents of the history (under the discrete logarithm
assumption). An efficient adversary can detect any attempt at covert com-
munication with overwhelming probability.

Organization: Section 2 presents notation and definitions. Section 3 analyzes
the von Ahn and Hopper stegosystem [vAH04] in the context of semi-adaptive
sampling. Section 4 examines non-adaptive stegosystems. Section 5 constructs a
pathological covertext distribution for which black-box steganography is infeasi-
ble. Section 6 concludes. We have omitted some of the proofs; they can be found
in the full paper [LM05].

2 Notation

We call a function ν : N → (0, 1) negligible if for all c > 0 and for all sufficiently
large k, ν(k) < 1/kc.

The hiddentext will always be in {0, 1}∗. A covertext is composed of a se-
quence of documents. Each document comes from the alphabet A; |A| may be
exponential. We denote concatenation with the ◦ operator; a string s can be
parsed to s = s1 ◦ s2 ◦ ... ◦ sn, where |s| = n. The symbol λ denotes the empty
string.

Our main results measure the security of stegosystems; we calculate the prob-
ability of a stegosystem being broken in terms of the probability of an adversary
breaking other cryptographic primitives. The term Advgame

P (A, k) refers to the
probability of adversary A breaking the security of primitive P in the context
of a scenario defined by game when the security parameter is k. For example,
Advsig

DSA(A, 160) is the probability that A forges a 160-bit DSA signature. What
we really care about is attacks by an a large class of adversaries, where each
class defines the maximum amount of time and other resources an adversary can
use. InSecgame

P (class) is the maximum probability that any adversary in class
can break the security of primitive P while in the scenario defined by game. For
example, InSecowf

F (t, k) is the maximum probability of any adversary inverting
the one-way function F if it runs in t(k) time, where k is the security parameter.
Therefore, if we say 3InSecsig

Σ (t, q, k) ≤ InSecowf
F (t, k), this means that signature

scheme Σ is three times as hard to break as one-way function F .
To define the probability of an attacker winning in a scenario, we need to

consider the outcome of several events. The expression Pf [e1, e2, . . . , en : c] is the
2 We presented preliminary results of this work in August 2004 [LM04].



probability that condition c holds given that events e1, e2, . . . , en occured (and in
that order). For example, let A be some algorithm that takes as input an integer
and outputs a single bit. The expression Pr[x ← Z; b ← A(x) : b = x mod 2] is
the probability that b = x mod 2, given that first x was randomly chosen from Z
and then b was generated by executing A(x). In other words, it is the probability
that A correctly calculates x mod 2 on a randomly chosen integer x.

We say that a function f : A → {0, 1} is ε-biased with respect to distribu-
tion D if |Pr[d ← D : f(d) = 0] − 1/2| < ε. A ε(k)-biased function is called an
unbiased function if ε is a negligible function.3 A covertext distribution that has
sufficient minimum entropy for steganography is called always informative (see
Hopper et al [HLvA02] for details).

We write x ← D〈h, n〉 to denote sampling n documents from D conditioned
on the prior history h; D〈h, n〉 defines a distribution over An. A semi-adaptive
sampler samples one document from the distribution D conditioned only on the
last α documents of h. Dα〈h, n〉 generates an n-document string by calling a
semi-adaptive samper n times, each time appending the result to h. When we
give a player sampling access to a distribution, we use · to denote the parameters
that the player can pick. For example, the oracle D〈·, 2〉 samples two documents
from D based on a history supplied by the player.

An α-memoryless distribution is indistinguishable from a Markov process of
order α. (A sequence of random variables X1, . . . , Xn such that for α < i ≤ n, the
conditional distribution {Xi | Xi−α, . . . , Xi−1} is identical to the conditional dis-
tribution {Xi | X1, . . . , Xi−1}.) Since we require computational indistinguisha-
bility, we parameterize everything by k (e.g. Dk, a family of distributions).

Definition 1 (α-Memoryless). Let Dk be a family of distributions indexed
by a public parameter k and let Dα

k be the best Markov model of order α that
approximates Dk. We define the advantage of an adversary A against the Markov
model as:

Advmem
D,α (A, k) = |Pr[h ← Dk〈λ, n(k) − 1〉; x ← Dα

k 〈h, 1〉 : A(h ◦ x) = 1]

−Pr[x ← Dk〈λ, n(k)〉 : A(x) = 1]|

We let InSecmem
D,α (t, n, k) = maxA∈A(t,n,k) Advmem

D,α (A, k), where A(t, n, k) is the
set of all adversaries that run in time t(k) and get a sample n(k) documents long.
We say that Dk is α-memoryless if InSecmem

D,α (t, n, k) ≤ ν(k) for some negligible
function ν. Dk is strictly α-memoryless if InSecmem

D,β (t, n, k) is non-negligible for
all β < α.

Remark 1. This property is necessary and sufficient for steganography with semi-
adaptive sampling.

The following definitions are either standard or come from von Ahn and Hopper
[vAH04]. We assume that all adversaries are probabilistic polynomial-time Tur-
ing machines. However, the distributions we work with are arbitrary and may act
3 The function f is typically chosen after we fix the distribution (and the security

parameter). A universal hash function is often used in practice.



as arbitrarily powerful adversaries. For example, someone who can adaptively
sample a distribution might be able to use it to calculate discrete logarithms.

We define InSecdist
X,Y (t, n, k) as the maximum probability that an adversary

can distinguish distribution Xk from Yk if it runs in time t(k) and gets a n(k) doc-
ument long sample. Steganography requires an IND$-CPA cryptosystem whose
ciphertext is indistinguishable from random. InSeccpa

E (t, q, n, k) is the insecurity
of cryptosystem E against a chosen plaintext attack by an adversary that runs in
t(k) time, makes q(k) queries and gets responses totaling n(k) bits (see Hopper
et al. [HLvA02] or full paper for details).

The standard specification [vAH04] of a public-key stegosystem is:
Definition 2 (Public Key Stegosystem). A public key stegosystem is the
triple S = (SG, SE, SD). SG(1k) generates a key-pair (SK, PK). SE(PK, m)
takes the public key PK and a message m ∈ {0, 1}∗, and returns some stegotext
s. SD(SK, s) takes the secret key SK and stegotext s and returns a hiddentext
m. For all m ∈ {0, 1}∗, the probability that SD(SK, SE(PK, m)) fails to recover
m should be negligible.

Von Ahn and Hopper [vAH04] define the security of a public-key stegosys-
tem against a chosen hiddentext attack. An adversary A queries an oracle with
hiddentexts. The oracle responds either with stegotexts generated by SE(PK, ·)
or with covertexts of the appropriate length, generated by D∗(·). A should not
be able to distinguish the two cases.
Definition 3 (SS-CHA). The advantage of an adversary A against a public-
key stegosystem S = (SG, SE, SD) in a chosen hiddentext attack (CHA) is:

Advcha
S,D(A, k) =

∣∣∣Pr[PK ← SG(1k) : ASE(PK,·),D
k = 1] − Pr[AD∗(·),D

k = 1]
∣∣∣

We let InSeccha
S,D(t, q, n, k) = maxA∈A(t,q,n,k) Advcha

S,D(A, k) where A(t, q, n, k)
is the set of all adversaries that run in t(k) time, make q(k) queries and get
responses totaling n(k) bits. A stegosystem is considered secure against a chosen
hiddentext attack (SS-CHA) if InSeccha

S,D(t, q, n, k) ≤ ν(k) for some negligible
function ν.

Remark 2. We restrict the usual definition of security. Typically, the adversary
is allowed to query the stegosystem with any history and message. In our model,
we assume that an adaptive sampler does not exist. A stegosystem that is secure
against such an attack is an adaptive sampler (see Hopper [Hop04] Section 3.3.2).
We force the adversary to always query the stegosystem with history λ (the
empty string).

3 Semi-adaptive stegosystem

In this section we examine what happens to the von Ahn and Hopper [vAH04]
public-key stegosystem when we replace the adaptive sampling oracle with a
semi-adaptive one. We show that if the oracle samples based on the last α docu-
ments of the history, then an α-memoryless distribution is necessary and sufficent
for maintaining security.



3.1 The vAH04 Stegosystem with Semi-adaptive Sampling

The von Ahn and Hopper stegosystem [vAH04] (Construction 2 in their paper)
is a public-key provably secure stegosystem; See Algorithm 3.1. and 3.2 for the
encoding and decoding algorithms (we have modified them slightly to fit our
notation). Their stegosystem uses an IND$-CPA public-key cryptosystem E =
(G, EPK , DSK) and a publicly known function f : Σ → {0, 1} that is ε-biased
with respect to the covertext distribution Dk. The encoder first encrypts the
message using EPK . Next, for each bit b of ciphertext, the encoder samples
the covertext distribution until it gets a document d such that f(d) = b. The
encoder appends all of the resulting documents together to form the stegotext.
The decoder extracts the ciphertext by evaluating f on every document of the
stegotext and then decrypts the ciphertext.

Algorithm 3.1: Encode

Input: Public key PK, message m, number of times to sample T
step 1: Encrypt message

c ← EPK(m) ;

step 2: Stegocode ciphertext
parse c as c1 ◦ c2 ◦ ... ◦ cn ;
h ← λ ;
for j ← 1 to n do

i ← 1 ;
repeat

sj ← Dk〈h, 1〉, increment i ;
until f(sj) = cj or i > T ;
h ← h ◦ sj ;

end
s ← s1 ◦ s2 ◦ ... ◦ sn ;

return s ;

Algorithm 3.2: Decode

Input: Secret key SK, stegotext s
step 1: Extract ciphertext

c ← f(s1) ◦ f(s2) ◦ ... ◦ f(sn) ;

step 2: Decrypt message
m ← DSK(c) ;

return m

For the remainder of Section 3, we will refer to the von Ahn and Hopper
stegosystem as S = (SG, SE, SD) and assume that Dk is the covertext distri-
bution. We define a length function L : Z → Z that calculates the length of a



ciphertext for a message m: L(|m|) = |EPK(m)|. Von Ahn and Hopper [vAH04]
prove that their stegosystem is secure:

Theorem 1 ([vAH04]). If Dk is an always informative distribution and f is
ε-biased on Dk, then S is a SS-CHA secure stegosystem:

InSeccha
S,D(t, q, n, k) ≤ InSeccpa

E (t + O(kn), q, n, k) + L(n)ε

Remark 3. What Theorem 1 really states is that the output of S is indistin-
guishable from the distribution it samples.

S uses a perfect sampler. We now consider the stegosystem T = (TG, TE, TD)4
that functions identically to S, except that its only access to Dk is via Dα

k , an
oracle that only considers the last α documents of the history. The main result
of this section is the proof that T is correct and that T is secure if and only if
Dk is α-memoryless.

3.2 Analysis of T
Lemma 1. Assume that Dk is an always informative α-memoryless distribu-
tion and f is an ε-biased function on Dk. For all hiddentexts m ∈ {0, 1}∗, the
probability that T fails to encode m is negligible:

Pr[(PK, SK) ← TG(1k); s ← TE(PK, m); m′ ← TD(SK, s) : m′ *= m]

≤ L(|m|)(1/2 + ε + InSecmem
D,α (O(1),L(|m|), k))k

Proof. The probability of error is at most the length of the ciphertext multiplied
by the probability that any individual bit of ciphertext is encoded incorrectly.
See full paper for details.

Theorem 2. If Dk is an always informative α-memoryless distribution and f
is ε-biased on Dk, then T is a SS-CHA secure stegosystem:

InSeccha
T ,D(t, q, n, k) ≤ InSeccpa

E (t + O(kn), q, n, k)

+ nInSecmem
D,α (t + O(n), n, k) + L(n)ε

Proof. The probability that T can be broken is the probability that an adversary
distinguishes the IND$-CPA cryptosystem E from random plus the probability
that an adversary can distinguish Dk from Dα

k ; both these values are negligible.
See full paper for details.

Theorem 3. Let Dk be an always informative distribution and f an ε-biased
function on Dk. If Dk is not α-memoryless then T is not a SS-CHA secure
stegosystem:

InSeccha
T ,D(t + O(1), 1, n, k) ≥ InSecmem

D,α (t, n, k)

− InSeccpa
E (t + O(kn), 1, n, k) − nε

4 As a mnemonic device, think of S as the stegosystem with a Standard sampler and
T as having a sampler that considers only the Tail of the history.



Remark 4. Note that InSecmem
D,α (t, n, k) is not negligible because Dk is not α-

memoryless. Any adversary that can distinguish Dk from Dα
k can be used to

attack T .

Proof. Assume Dk is not α-memoryless. By definition, there exists an adversary
A such that Advmem

D,α (A, k) is non-negligible. Let A run in time t and require a
challenge sample of length n. We use A to create an adversary B that can tell
whether it is querying an oracle representing T or Dk. B will ask its oracle for a
single covertext of length n and pass the output to A. B will output whatever A
outputs. B’s advantage in distinguishing T from Dk is at least as much as A’s
advantage in distinguishing Dα

k from Dk minus the probability of distinguishing
T from Dα

k :

Advcha
T ,D(B, k) ≥ Advmem

D,α (A, k) − InSeccha
T ,Dα(t, 1, n, k)

Using Theorem 1, we get:

Advcha
T ,D(B, k) ≥ Advmem

D,α (A, k) − InSeccpa
E (t + O(kn), 1, n, k) − nε

B runs in time t + O(1) and gets 1 challenge string of length n, therefore:

InSeccha
S,D(t + O(1), 1, n, k) ≥ InSecmem

D,α (t, n, k)

− InSeccpa
E (t + O(kn), 1, n, k) − nε

This means that if Dk is not α-memoryless, then there exists an adversary that
can launch a successful SS-CHA attack on T with non-negligible probability.

Remark 5. The above proof would probably work for any black-box stegosystem.
However, because it is unclear how to deal with a stegosystem that somehow uses
outside information (or how to rule out this possibility), we limit our analysis
to the stegosystem T .

4 Non-Adaptive Stegosystems

In this section, we show how to apply public-key black-box steganography as
proposed by von Ahn and Hopper [vAH04] to real world covertext distribu-
tions. (Independently, Petrowski et. al. [PKSM] implemented a similar system
for JPEG images, but their work has no security analysis.) The key insight is
that multiple digital photographs of a still scene are almost but not completely
identical. We can break up each image into 8 × 8 pixel tiles.5 A cryptographic
hash function assigns a value to each tile. The stegosystem choses the appro-
priate tiles to create a composite photo that encodes the secret message. The
scheme assumes each 8 × 8 pixel tile is independent of its neighbors.

This stegosystem is equivalent to using D0
k to sample Dk and assuming

that the covertext distribution is 0-memoryless, as shown in Algorithm 4.1.Non-
adaptive steganography can be applied to any digital image format, TCP time-
stamp intervals, etc.
5 The dimensions of the tile are an artifact of the JPEG compression algorithm.



Algorithm 4.1: Non-adaptive stegosystem

Input: Public key PK, message m, T covertexts x(1), . . . , x(T ) (each covertext
x(i) is of length |EPK(m)|

step 1: Encrypt message
c ← EPK(m) ;

step 2: Stegocode ciphertext
parse c as c1 ◦ c2 ◦ ... ◦ cn ;
for j ← 1 to n do

i ← 1 ;
repeat

sj ← x(i)
j , increment i ;

until f(sj) = cj or i > T ;
end
s ← s1 ◦ s2 ◦ ... ◦ sn ;

return s ;

The analysis of Algorithm 4.1follows directly from Section 3. Correctness:
The probability that the stegosystem fails to encode a hiddentext m is: L(|m|)(1/2+
ε + InSecmem

D,0 (O(1),L(|m|), k))k. Security: Algorithm 4.1is secure if and only if
D is 0-memoryless: an independent, but not necessarily identically distributed,
sequence of random variables.

5 Pathological Covertext Distribution

In this section, we construct a pathological strictly α-memoryless distribution
and prove that no computationally bounded algorithm can use it to hide mes-
sages without access to Dα

k . The distribution will publish a verification key that
can be used by anyone to check if a covertext is legitimate. The probability that
steganography will be detected is 1 − ν(k), where ν is a negligible function.

We give a stegosystem a list of covertexts generated by D〈λ, ·〉 and access
to Dα−1〈·, 1〉, a semi-adaptive oracle with insufficient memory. For example, a
stegosystem might store a database of photographs (this corresponds to D〈λ, ·〉)
and maintain an internal Markov model about pixel color distributions based
on the 8 adjacent pixels (this corresponds to Dα−1〈·, 1〉, where α − 1 = 8). We
show that any stegotext produced by a stegosystem is really just a quote of a
covertext in its database.

5.1 The Distribution

Our goal is to devise a covertext distribution where (1) each document depends
on only the α documents that came before it (so it is α-memoryless); (2) a
stegosystem cannot by itself compute the ith document di in a legitimate cover-
text; finally (3) it is very unlikely that the output of Dα−1〈h, 1〉 is a valid con-
tinuation of the last α documents of h.



The first construction that comes to mind is to make each document be a
concatenation of a random number ri and a signature on the previous α random
numbers: σi = σ(ri−α, . . . , ri). This will meet requirements (1) and (2). There
is a subtle problem with this as far as requirement (3) is concerned. Suppose
we are given α − 1 documents rn−α+1σn−α+1, . . . , rn−1σn−1. The signatures
σn−α+1, . . . ,σn−1 can leak partial information about the value rn−α. As a result,
Dα−1〈·, 1〉, even though not explicitly given dn−α, may nevertheless calculate
rn−α and compute the correct signature σn = σ(rn−α, . . . , rn).

In order to fix this problem, we need to construct a signature function σ
for which the following property holds: We fix a sequence of 2α − 1 integers
r1, . . . , r2α−1. Then the sequence of α− 1 documents rα+1σα+1, . . . , r2α−1σ2α−1

should be information theoretically independent of rα. This property ensures
that Dα−1 cannot learn rα and so will be unable to compute the correct signature
σ2α based on the previous α documents of h, as required by (3) above.

Consider the following hash function h : Zαp → G, where p is a k-bit prime
and G is a group of order p. The hash function hp,G,g1,...,gα+1 is parameterized
by p, G and α + 1 generators of G: g1, . . . , gα+1. (We will omit the subscript of
h in the future). On input (r1, . . . , rα+1) ∈ Zα+1

p the hash function returns:

h(r1, r2, . . . , rα+1)
.= gr1

1 · gr2
2 · · · · · grα+1

α+1

The hash function h has the information hiding property that we need because
it reveals only a linear combination of its inputs (see the proof of Lemma 4 in
the full paper).

We now formalize the above discussion. We define a secure stateless signature
scheme, show how to combine it with h and prove the result is secure under the
discrete logarithm assumption. Then we construct our pathological distribution.

Definition 4 (Stateless Signature Scheme). A stateless signature scheme
Σ = (G,σ, V ) is a triple of polynomial time algorithms where: G(1k) is the key
generation algorithm, σ : {0, 1}k ×Mk → {0, 1}poly(k) is a probabilitic algorithm
that on input (SK, m) outputs a poly(k) bit signature, and V : {0, 1}k ×Mk ×
{0, 1}poly(k) → {0, 1} is the signature verification function that accepts valid
signatures.

We define InSecsig
Σ (t, q, k) as the insecurity of signature scheme Σ against an

adaptive chosen message attack by an adversary that runs in time t(k) and
makes q(k) queries to the signing oracle (see Goldreich [Gol04] for details).

Goldreich [Gol04] shows that stateless signature schemes exist if one-way
functions exist. It is also known that the discrete logarithm assumption implies
one-way functions. Therefore, the discrete logarithm assumption also implies the
existence of stateless signature schemes. We let DL(t, k) be the maximum prob-
ability that any algorithm running in time t(k) can solve the discrete logarithm
problem.

We construct a signature scheme using the hash function h:

Construction 4 Let Σ′ = (G′,σ′, V ′) be a secure stateless signature scheme
that takes messages in {0, 1}2k and outputs signatures in {0, 1}poly(k). We use



(G′,σ′, V ′) and the hash function h to construct a new stateless signature scheme
Σ = (G,σ, V ). We let G = G′.

The signature function σ : {0, 1}k × (Z∗
p)α+1 → {0, 1}poly(k):

σ(SK, r1 ◦ · · · ◦ rα+1) = σ′(SK, h(r1, . . . , rα+1))

The verification function V : {0, 1}k × (Z∗
p)α+1 × {0, 1}poly(k) → {0, 1}:

V (V K, s, r1 ◦ · · · ◦ rα+1) = V ′(V K, s, h(r1, . . . , rα+1))

We further define σ on input from (Z∗
p)β, where β < α+1 as follows: σ(r1, . . . , rβ) =

σ′(h(0, . . . , 0, r1, . . . , rβ)). V extends in the obvious way.

Lemma 2. Σ = (G,σ, V ) from Construction 4 is a secure stateless signature
scheme under the discrete logarithm assumption:

InSecsig
Σ (t, q, k) ≤ InSecsig

Σ′(t + O(q), q, k) + DL(t + O(q), k)

Proof. The intuition behind the proof is that any adversary that can attack Σ
can be used to either attack the underlying signature scheme or calculate discrete
logarithms. See full paper for details.

We use the signature scheme from Construction 4 to construct a distribution
DV K over the alphabet {Z∗

p × {0, 1}poly(k)}∗, where p is a k bit prime and
poly(k) is the length of a signature in Σ. Each document consists of an element
in Z∗

p and a signature on the previous α + 1 elements.

Construction 5 (Pathological Distribution DV K) Let Σ = (G,σ, V ) be a
secure stateless signature scheme from Construction 4. We use G to generate
the keys (SK, V K) and index distribution DV K via the public verification key.
If di is the ith document, then di = riσ(SK, ri−α ◦ · · · ◦ ri), where ri is chosen
randomly from Zp. The output of DV K〈λ, n〉 looks like:

DV K〈λ, n〉 →r1σ(SK, r1)
◦ r2σ(SK, r1 ◦ r2) ◦ · · ·
· · · ◦ rα+1σ(SK, r1 ◦ r2 ◦ · · · ◦ rα+1) ◦ · · ·
· · · ◦ rnσ(SK, rn−α ◦ · · · ◦ rn)

We define σi = σ(SK, ri−α, . . . , ri).

Definition 5 (Γ ). Suppose we query DV K〈λ, n〉 q times and record the result
on tape Q. We define the probability that any one sequence r1, . . . , rd appears
two or more times in Q as Γ (d, n, q, k).

Lemma 3. Γ (d, n, q, k) is a negligible function in k.

Proof. The proof relies on the fact that |Zp| = Θ(2k). See full paper for details.



5.2 Pathology of the Distribution

We now show that any computationally bounded stegosystem for DV K is guar-
anteed to be caught with overwhelming probability.

Theorem 6. Let S be an arbitrary probabilistic polynomial time stegosystem for
distribution DV K that has a database of q1 covertexts of length n generated by
DV K〈λ, ·〉 and is allowed to make q2 queries to Dα−1

V K 〈·, 1〉. Suppose it takes S
time t to generate a stegotext of length N > α. Then there exists an adversary
that can distinguish S from DV K with probability 1− ν(k), for a negligible func-
tion ν. The adversary uses only the verification key V K and q1 +1 samples from
the oracle of length N each; it runs in time O((t + N)(q1 + 1)).

Remark 6. The stegosystem needs to forge signatures if it wants to generate
more than q1 distinct stegotexts. All the adversary does is ask for q1 +1 samples
and checks them for duplicates and/or invalid signatures.

We will prove Theorem 6 in three steps. First we will construct an oracle D∗α−1
V K

that is information theoretically indistinguishable from Dα−1
V K 〈·, 1〉. Then we will

show that a stegosystem whose only resource is D∗α−1
V K cannot create stegotexts

longer than α with more than negligible probability. Finally, we will augment the
stegosystem by giving it access to DV K〈λ, ·〉 and prove Theorem 6 by showing
that it still cannot generate new stegotexts.

Algorithm 5.1: D ∗α−1
V K 〈·, 1〉 with oracle access to σ(SK, ·)

Input: history: h = r1σ1, . . . , ◦rn−1σn−1

If the history is more than α − 1 documents long, D∗α−1
V K randomly

chooses r̂n and r̂n−α and signs the result.
if n ≤ α − 1 then return DV K〈h, 1〉 ;
else

r̂n ← Random ;
r̂n−α ← Random ;
û ← h(r̂n−α, rn−α+1, . . . , rn−1, r̂n) ;
σ̂n ← σ(û) ;

end
return r̂nσ̂n ;
We use x̂ to signify that the value of x was assigned by D ∗α−1

V K 〈·, 1〉

Lemma 4. Consider D ∗α−1
V K 〈·, 1〉 (Algorithm 5.1). D ∗α−1

V K 〈·, 1〉 = Dα−1
V K 〈·, 1〉.

Proof. Lemma 4 follows from the information-theoretic hiding property of h, see
full paper for proof.

Lemma 5. DV K is strictly α-memoryless.

Proof. Lemma 5 follows from Lemma 4, see full paper for proof.



Lemma 6. Let S be any stegosystem that has oracle access to Dα−1
V K 〈·, 1〉, but

with no direct access to DV K - i.e. S does not know SK and has no oracle access
to σ(SK, ·). Suppose it takes S t time and q queries to Dα−1

V K 〈·, 1〉 to output a
stegotext s = r1σ1 ◦ · · · ◦ rnσn of length n > α. Then there exists an efficient
adversary that can distinguish S from DV K with overwhelming probability using
only one sample of length α and running in time O(t):

InSeccha
S,D(t, 1,α + 1, k) ≥ 1 − InSecsig

Σ (t + O(1), q, k) − DL(t + O(q), k)

Furthermore, ∀i > α, the probability that an arbitrary signature σi is valid is at
most:

InSecsig
Σ (t + O(1), q, k) + DL(t + O(q), k)

Proof. Assume we have a secure stegosystem S with no direct access to DV K . We
construct an adversary A that uses S to forge signatures or calculate discrete
logs. A tells S to generate a single stegotext of any length n > α. While S
is working, A intercepts all of S’s queries to Dα−1

V K 〈·, 1〉 and redirects them to
D ∗α−1

V K 〈·, 1〉. Finally, S outputs a stegotext s = r1σ1 ◦ r2σ2 ◦ · · · ◦ rnσn.
Choose any i > α. We have three cases to consider:

1. If σi is not a valid signature on ri−α ◦ · · ·◦ri then the stegosystem is insecure.
The probability that this happens is InSeccha

S,D(t + O(1), 1, n, k).
2. If σi is a valid signature on ri−α ◦ · · · ◦ ri and it was not generated by

D ∗α−1
V K 〈·, 1〉 then S violated the security of Σ. The probability that this

happens is InSecsig
Σ (t + O(1), q, k).

3. If σi is a valid signature that was generated by D ∗α−1
V K 〈·, 1〉 then we use

S and D ∗α−1
V K 〈·, 1〉 to calculate discrete logarithms. We set up a reduc-

Algorithm 5.2: D ∗ ∗α−1
V K 〈·, 1〉 with oracle access to σ(SK, ·)

Input: history: r1σ1, . . . , ◦rn−1σn−1

if n < α then return DV K〈h, 1〉 ;
else

r̂n ← Random ;

r̂ ← Random ;

û ← y · gr̂ · h(1, rn−α+1, . . . , rn−1, r̂n) ;

σ̂n ← σ(û) ;
end
return r̂nσ̂n ;
D ∗ ∗α−1

V K 〈h, 1〉 is almost identical to D ∗α−1
V K 〈h, 1〉. We highlighted the

differences.

tion algorithm that uses the stegosystem as a black box and controls the
actions of Dα−1

V K 〈·, 1〉. The reduction would get a challenge string y = gx,
where g is a generator of the group G and x is unknown. Next, the re-
duction would ask the stegosystem to generate a stegotext. Whenever the



stegosystem queries Dα−1
V K 〈·, 1〉, the reduction would redirect the call to

D ∗ ∗α−1
V K 〈·, 1〉. Algorithm 5.2 shows how D ∗ ∗α−1

V K 〈·, 1〉 inserts y into ev-
ery signature. D ∗ ∗α−1

V K 〈·, 1〉 ensures that the returned signature σ̂n is valid
only if rn−α = logg (y · gr̂) = logg (gx+r̂) = x + r̂, where r̂ is chosen by
D ∗ ∗α−1

V K 〈·, 1〉. Since the signature σi is generated by D ∗ ∗α−1
V K 〈·, 1〉, we know

that si−α = x + r̂. The reduction outputs si−α − r̂, thereby calculating
the discrete logarithm. As a result, the probability that this case occurs is
DL(t + O(q), q, k).

Based on our case analysis, we see that InSeccha
S,D(t, 1, n, k) ≥ 1 − InSecsig

Σ (t +
O(1), q, k) − DL(t + O(q), k). Substituting n = α + 1 proves the first part of
Lemma 6. Furthermore, we’ve shown that ∀i ≥ 1, the probability that an arbi-
trary signature σi is valid is at most InSecsig

Σ (t + O(1), q, k) + DL(t + O(q), k).

Proof (Theorem 6). Assume a stegosystem S has a database of q1 covertexts
generated by DV K〈λ, n〉 and the ability to query Dα−1

V K 〈·, 1〉 q2 times. We can
create an adversary A that distinguishes the output of DV K from S. A gets V K
as input and permission to query a mystery oracle that is either DV K or S. A
will ask its oracle to generate q1 + 1 covertexts of length N . A outputs 1 if the
oracle returns any duplicate or invalid covertexts. If the oracle is DV K〈λ, ·〉, then
A outputs 1 with probability Γ (N, N, q1 + 1, k) (the probability that duplicate
covertexts occur). We examine what happens when the oracle is S.

S can use its covertext database to generate stegotexts. Each covertext of
length n can generate at most 1 valid stegotext of length N (the stegosystem can
take an N document prefix). The stegosystem cannot take an arbitrary substring
of a covertext because it would have to forge a signature on the new first integer
and the α dummy arguments.

S gives A a list of q1 + 1 stegotexts: s(1), . . . , s(q1+1). Each stegotext s(i) can
be parsed as r(i)

1 σ(i)
1 ◦ · · ·◦ r(i)

N σ(i)
N . S can easily create q1 distinct stegotexts from

its covertext dictionary. We examine how S generates the q1 + 1st stegotext.
There are 3 cases:

1. S has generated a new message signature pair that is not in the covertext
database and that did not come from Dα−1

V K 〈·, 1〉. Then S has broken the
security of the signature scheme Σ. S ran in (q1 +1)t time and made nq1+q2

queries to σ(SK, ·) (via its queries to DV K〈λ, ·〉 and Dα−1
V K 〈·, 1〉). Therefore,

this case occurs with probability at most InSecsig
Σ ((q1 + 1)t, nq1 + q2, k).

2. S used a signature generated by Dα−1
V K 〈·, 1〉. By Lemma 6, we know that

∀i, j > α, S can use Dα−1
V K 〈·, 1〉 to generate a valid σ(i)

j with probability at
most InSecsig

Σ (t + O(1), q2, k)+DL(t + O(q2), k). Therefore, the probability
that this case occurs is the total number of such signatures (N − α)(q1 + 1)
times the probability that any particular one was generated by Dα−1

V K 〈·, 1〉.
This gives a total probability of: (N − α)(q1 + 1)(InSecsig

Σ (t + O(1), q2, k) +
DL(t + O(q2), k))

3. The covertext database contains two identical sequences of α integers, thus
letting S cut and paste two covertexts. This occurs with probability Γ (α, n, q2, k).



Adding up the probabilities from the case analysis above, we get that

Advcha
S,D(A, k) ≥ 1 − Γ (N, N, q1 + 1, k) − InSecsig

Σ ((q1 + 1)t, nq1 + q2, k)

− (N − α)(q1 + 1)(InSecsig
Σ (t + O(1), q2, k) + DL(t + O(q2), k))

− Γ (α, n, q2, k)

A runs in O((t+N)(q1+1)) time and makes q1+1 queries of total length N(q1+1).
Therefore, InSeccha

S,D(O((t + N)(q1 + 1)), q1 + 1, N(q1 + 1)) ≥ Advcha
S,D(A, k) ≥

1−ν(k) for the negligible function ν defined above. This gives us the lower bound
of 1 − ν(k) on the insecurity of S.

6 Conclusion

Our results link current theoretical research to real world stegosystems. We show
that a stegosystem must assume that its approximation of the covertext distribu-
tion is correct. A slight error, or a missed correlation, can lead to almost certain
detection. It is impossible to leverage incomplete or incorrect information to
somehow create properly distributed covertexts.
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