
An Algorithm to Solve the Discrete Logarithm
Problem with the Number Field Sieve

An Commeine1 and Igor Semaev2

1 Katholieke Universiteit Leuven, Departement Wiskunde, Afdeling Algebra,
Celestijnenlaan 200B, B-3001 Leuven, Belgium

2 Universitetet i Bergen,Institutt for informatikk, HIB - Thormhlensgt. 55, N-5020
Bergen, Norway

Abstract. Recently, Shirokauer’s algorithm to solve the discrete log-
arithm problem modulo a prime p has been modified by Matyukhin,
yielding an algorithm with running time Lp[13 , 1.9018 . . .], which is, at
the present time, the best known estimate of the complexity of finding
discrete logarithms over prime finite fields and which coincides with the
best known theoretical running time for factoring integers, obtained by
Coppersmith. In this paper, another algorithm to solve the discrete loga-
rithm problem in F∗

p for p prime is presented. The global running time is
again Lp[13 , 1.9018 . . .], but in contrast with Matyukhins method, this al-
gorithm enables us to calculate individual logarithms in a separate stage
in time Lp[13 , 31/3], once a Lp[13 , 1.9018 . . .] time costing pre-computation
stage has been executed. We describe the algorithm as derived from [6]
and estimate its running time to be Lp[13 , (64

9)1/3], after which individual

logarithms can be calculated in time Lp[13 , 31/3].

Keywords: Discrete Logarithms, Number Field Sieve

1 Introduction

Given a prime p and integers a and b, the discrete logarithm of b to the base
a in the multiplicative group of the finite field Fp is defined as the smallest
nonnegative integer x such that ax ≡ b (mod p), if it exists.

The security of many, widely used public key cryptosystems, as the well-
known Diffie-Hellman key exchange algorithm and the ElGamal Digital signature
algorithm, depends on the assumption that for suitably chosen primes, discrete
logs are hard to compute. As such, one of the most stimulating factors in re-
search on the complexity of discrete logs is the fact that fast discrete logarithm
algorithms could easily undermine these cryptosystems ([12],[13] for a survey).

General methods that can also be applied in other groups than F∗
p, are Shanks

deterministic “baby steps, giant steps” attack ([14]) and two other randomized
algorithms due to Pollard ([16]), such as the Pollard ρ-method. For both meth-
ods, the number of operations to compute a discrete logarithm roughly equals
q1/2, where q is the largest prime factor of p − 1, but Pollards methods use al-
most no space in contrast with Shanks method, which has space requirement

q1/2. Moreover, the Pollard ρ-method was parallelized in 1993 by van Oorschot
and Wiener ([23]) in such a way that the expected number of steps that each
processor performs to obtain a discrete logarithm is about q1/2/t, where t is the
number of processors. These attacks have an exponential worst case complexity,
since the largest prime factor of p − 1 can be almost as large as p.

Making use of additional knowledge of the underlying group, index calculus
methods, based on an idea of Kraitchik ([11]), provide subexponential algo-
rithms. These methods typically consist of three phases: generating relations,
solving equations and computing individual logarithms using the results of the
first two steps. The first two steps, called the pre-computation stage, determine
the running time of the algorithm. Once the pre-computation stage is finished
for a prime p, individual logarithms modulo that prime can be computed more
efficiently. Running time bounds of the earliest index calculus algorithms are of
the form Lp[12 , c] for some constant c > 0. Large c however yield impractical
algorithms, so many researchers tried to lower this value c during 1970s and
1980s ([11],[14] for references). Both the Linear Sieve Method and the Gaussian
Integer Method ([4]), where the use of an imaginary quadratic number field was
introduced, achieved the value c = 1. In 1998, work on the latter allowed Joux
and Lercier to compute discrete logs modulo a 90-digit prime number in [6]. The
asymptotic running time bound with c = 1 was a record value for a long time.

Speeding up the pre-computation stage was possible due to advances in linear
algebra, namely solving sparse systems with n unknowns in not much more than
n2 steps ([15]). This is achieved by the Wiedemann algorithm ([24]), based on the
Berlekamp-Massey algorithm and the Cayley-Hamilton theorem and, by adap-
tations of the finite field version of Lanczos and conjugate gradient algorithms
([4],[14]), that can be combined with structured Gauss Elimination ([14]).

In 1988, Pollard found a new approach for factoring integers. This technique
was developed into the special number field sieve by Hendrik Lenstra. It factors
integers of special forms in time LN [13 , c] with c = (32

9)1/3 = 1.5262 . . ., where N
is the number to be factored. Later the method was extended to factor arbitrary
integers in time LN [13 , c] with c = (64

9)1/3 = 1.9229 . . . in the general number field
sieve, that arose through a collaboration of several researchers ([8] for details).
The value of c was improved to c = 1.9018 . . . by Coppersmith in [3].

The general number field sieve was adapted to the computation of dis-
crete logs modulo a prime by Gordon in [5] in 1992. He obtained running time
Lp[13 , c] with c = 2.0800 The value of c was lowered by Shirokauer in [19]
to c = (64

9)1/3 = 1.9229 . . . in 1993. Adapting this algorithm following the ideas
of Coppersmith, Matyukhin in [10] achieved the same constant as Coppersmith
in [3], thus c = 1.9018 With the latter two algorithms however, it’s im-
possible to efficiently compute individual logarithms, since the linear algebra
must be redone for every new logarithm. For special prime numbers, this de-
ficiency was overcome by Semaev in [21], moreover yielding a running time of
Lp[13 , (32

9)1/3] and Lp[13 , 1+2
√

2
181/3] = Lp[13 , 1.4608 . . .] for an individual logarithm.

Joux and Lercier were able to separate the pre-computation stage and the com-
putation of individual logarithms for primes lacking any special structure in [6],

which formed the base of their computation of discrete logs modulo a 130-digits
prime, the current record for general primes ([7]). Since their objective was to
describe the main ideas behind their C-implementation, they didn’t write down
the actual algorithm they used to compute individual logarithms nor performed
an asymptotic time analysis however.

To achieve a separate individual logarithm stage, we adapt the method in
[6] for the pre-computation part and modify the individual logarithm algorithm
of [21]. Instead of working with real numbers, we choose to work with a ‘loga-
rithmic map’ as in [19], though an approach developed in [21] apparently gives
the same asymptotic results. The improvements of Coppersmith in [3] are taken
into account, to achieve a global running time of Lp[13 , 1.9018 . . .]. In contrast
with Matyukhin however, individual logarithms can be calculated separately in
time Lp[13 , 31/3] = Lp[13 , 1.44225 . . .] after a Lp[13 , 1.9018 . . .]-time costing pre-
computation stage. In order to compare the method in [6] with ours, we give a
precise theoretical description of the algorithm as we’ve understood and built
it out of the ideas given in [6]. A running time analysis of this algorithm is
performed, using the theoretical settings developed in the analysis of our algo-
rithm. We show that the optimal cost for this algorithm is Lp[13 , (64

9)1/3], with
the possibility to calculate individual logarithms separately in time Lp[13 , 31/3].

The core idea, which allows us to achieve this running time for the individual
logarithm stage, is expressing logarithms of medium-sized prime numbers into
logarithms of smaller numbers and the reduction of first degree prime ideals into
first degree prime ideals with smaller norm. Inspiration for this was found in
[2]. This idea of reducing unknown into known information is also applicable in
the one-polynomial variant of the Number Field Sieve, yielding a very similar
separate individual logarithm algorithm, again with running time Lp[13 , 31/3],
not changing the pre-computation time of Lp[13 , (64

9)1/3]. (The most expensive
reduction will take more time in this setting however; see Remark, Section 4.2.)

We want to remark that running times of all recent algorithms of the form
Lp[13 , c], as the one presented in this paper, are based on heuristic assumptions.
There’s no proof that they’ll run fast. It’s possible to obtain rigorous probabilistic
algorithms, with running time bounded by Lp[12 , c] with high probability ([18]).

2 Preliminaries

Definition 1. An integer n is B-smooth if and only if q ≤ B for all (natural)
prime numbers q that divide n.

When assessing a running time analysis of the algorithm, we make use of the
complexity-function

Lp[t, s] = es(1+o(1))(ln p)t(ln ln p)1−t

,

where o(1) denotes a function tending to 0 as p → ∞. The expression o(1) in
the exponent hides a lot: this notation is meant as a first order approximation
to the real computational complexity.

The following theorem gives an estimation of the probability that a number
smaller or equal to x is y-smooth in terms of the above complexity function.

Theorem 1. Let 0 < y1 < x1 ≤ 1 and y2, x2 > 0. Let x = Lp[x1, x2] and
y = Lp[y1, y2], then

ψ(x, y)
x

= Lp[x1 − y1,−
x2

y2
(x1 − y1)] ,

where ψ(x, y) =the number of natural numbers smaller or equal to x which are
y-smooth.

This follows from a more general theorem of Canfield, Erdös and Pomerance:

Theorem 2. ([1]) If x ≥ 10 and y > ln x, then it holds that

ψ(x, y) = xu−u(1+o(1)) with u =
log x

log y
,

where the limit implicit in the o(1) is for x → ∞.

We recall some useful results from algebraic number theory. Let f = Xd +
f1Xd−1+ · · ·+fd be a monic, irreducible polynomial of degree d with root α. We
denote the field Q(α) = K and ϑK the ring of algebraic integers of K. Following
propositions are useful:

Proposition 1. ([21]) If q does not divide [ϑK : Z[α]] and

f(X) =
∏

i

hei
i (X) in Fq[X] ,

where hi(X) are distinct irreducible polynomials in Fq[X], then

qϑK =
∏

i

Uei
i ,

for distinct prime ideals Ui = hi(α)ϑK + qϑK in ϑKand Norm(Ui) = qdeg hi(X).

This proposition suggests making a distinction between prime ideals in ϑK .

Definition 2. A prime ideal P of ϑK of degree 1 is bad if its norm divides the
index [ϑK : Z[α]]. All other prime ideals of degree 1 are called good.

Good prime ideals appear in factorizations as mentioned below.

Proposition 2. ([21]) If a, b '= 0 are coprime integers such that

bdf
(a

b

)
= ad + f1ba

d−1 + · · · + fdb
d

is coprime to [ϑK : Z[α]], then

(a − bα)ϑK = U l1
1 U l2

2 . . .U ls
s ,

where Ui are distinct good prime ideals of ϑK for i = 1, . . . , s and Norm(Ui) = qi

for distinct qi. Moreover,

|bdf
(a

b

)
| =

s∏

i=1

qli
i .

For ease of exposition, suppose p − 1 = 2q with q a large prime that doesn’t
ramify in K. Let ΓK = {γ ∈ ϑK | gcd(Norm(γ), q) = 1}. We use a map l as in
[19]: set εK = lcm

{∣∣(ϑK/Q)∗
∣∣ | Q prime ideal in ϑK lying above q

}
, then

l : ΓK −→ qϑK/q2ϑK

γ)−→ (γεK − 1) + q2ϑK .

Consider qϑK/q2ϑK as a Z/qZ-vectorspace. We generate a sequence of length a
little more than the unity rank of ϑK of random units u ∈ ϑ∗K and calculate the
images l(u). The linear independent vectors amongst these images l(u) span the
subspace l(ϑ∗K) ⊆ qϑK/q2ϑK with high probability. Assume they form a basis
{qbj + q2ϑK | j = 1, . . . , tK} of l(ϑ∗K). Expand this basis to a basis {qbj + q2ϑK |
j = 1, . . . , d} of the whole Z/qZ-vectorspace qϑK/q2ϑK . Denote

λK,j : ΓK −→ Z/qZ
γ)−→ λK,j(γ)

such that l(γ) =
∑d

j=1 λK,j(γ)(qbj + q2ϑK). Remark that l(γγ′) = l(γ) + l(γ′),
such that λK,j(γγ′) = λK,j(γ) + λK,j(γ′) for j = 1, . . . , d.

The largest contribution to the time needed for the practical determination
of all λK,j(γ) for γ ∈ ΓK , comes from the exponentiation to the power εK < qd

in the ring Z[X]/(f, q2), costing O(d3 ln3 p) bit operations.

3 The Algorithm

3.1 Needs and Assumptions

Choose two natural numbers d = δ(1+o(1)) (ln p/ ln ln p)1/3 and m = p(1+o(1))/d,
both depending on p, where the limit implicit in the o(1) is for p → ∞. The
parameter δ will be defined later. Suppose f is an irreducible polynomial of
degree d with coefficients bounded by m, such that f(m) ≡ 0 mod p, obtained
as in the Number Field Sieve setting (NFS). Remark that use of polynomials
as in [6], namely a degree d + 1-polynomial with small coefficients and having
a root µ modulo p and a degree d-polynomial with the same root µ modulo p,
having coefficients of the order p1/(d+1), is thought of giving the best practical
results.

For simplicity, we assume f = f0 to be monic. We work with polynomials

fi(X) = f0(X) + i(X − m) for i = 1, . . . , V

that are irreducible and such that neither p nor q divide their discriminants.
These conditions are easily checked ([5]). For simplicity, we assume all values of
i determine valid polynomials. Remark that the coefficients of these polynomials
get somewhat larger, becoming ≤ (V + 1)m = V Lp[23 , 1

δ] in first order estimate.
Let αi be a root of fi, Ki = Q(αi) an algebraic number field of degree d over

Q and ϑKi the ring of algebraic integers of Ki. Remark that αi is an algebraic
integer in Ki by the assumption that fi is monic. The number p doesn’t divide
the discriminant of the polynomial fi, hence it doesn’t divide [ϑKi : Z[αi]].
According to Proposition 1, Pi = (αi − m)ϑKi + pϑKi then is a first degree
prime ideal, and we denote πi(ε) = ε for πi the projection-map

πi : ϑKi −→
ϑKi

Pi
(∼= Fp) , αi = m . (1)

For every field Ki, we denote the maps λKi,j and the set ΓKi , defined as
above, as λi,j and Γi respectively. Let ri be the torsion free rank of ϑ∗Ki

. Since
q doesn’t divide the discriminant of fi, ϑ∗Ki

contains no primitive q’th roots
of unity. This implies that the dimension tKi of the Z/qZ-subspace l(ϑ∗Ki

) ⊆
qϑKi/q2ϑKi is less then or equal to ri. We assume that gcd(hKi , q) = 1 and
{u ∈ ϑ∗Ki

| u ≡ 1 mod q2} ⊆ (ϑ∗Ki
)q for every i. One can check that, under these

conditions, the well-defined homomorphisms

λi : ϑ∗Ki
/(ϑ∗Ki

)q −→ (Z/qZ)ri

γ(ϑ∗Ki
)q)−→ (λi,1(γ), . . . ,λi,ri(γ))

are isomorphisms (thus tKi = ri).

3.2 The Algorithm

Choose bounds E = Lp[13 , ε], B1 = Lp[13 ,β] and B2 = Lp[13 , γ], where ε,β, γ are
parameters with β ≥ γ.

Finding Relations

1. Let Si be the set of good prime ideals in ϑKi with norm ≤ B2 and coprime
to q. As in the modified number field sieve due to Coppersmith, we set
V = π(B1)/(π(B2) + d) = Lp[13 ,β − γ] and determine triples (a, b, i) with
|a| ≤ E, 1 ≤ b ≤ E, called good, such that, for qj ranging over prime
numbers ≤ B1 and Ui ranging over prime ideals in Si, it holds that

a − bm = ±
∏

qj≤B1

q
eabj

j (2)

(a − bαi)ϑKi =
∏

Ui∈Si

UnabUi
i . (3)

To achieve about 2(|Si| + ri) triples per field Ki, we take ε = (3γ2δβ + γ +
β)/((6γ − δ)δβ) and 6γ − δ > 0. It is shown in [3] that finding appropriate

triples takes time

Lp[
1
3
, max{β, 2ε}] + Lp[

1
3
, 2ε− 1

3δβ
+ β − γ] . (4)

2. Since λi are isomorphisms for i = 0, . . . , V , it follows from [20] that there
exist unique elements XUi , Xi,j ∈ Z/qZ, not depending on the set Si of ideals,
such that for all triples (a, b, i) collected, it holds that

logg πi(a − bαi) ≡
∑

Ui∈Si

XUinabUi +
ri∑

j=1

Xi,jλi,j(a − bαi) (mod q) ,

using (3). Together with (2) and taking into account that logg ±1 ≡ 0 (mod
q), this equivalence leads to the equation

−
∑

qj≤B1

eabj logg qj +
∑

Ui∈Si

XUinabUi +
ri∑

j=1

Xi,jλi,j(a − bαi) ≡ 0 (mod q) .

To establish these equations, we only need to evaluate λi,j(a − bαi) for j =
1, . . . , ri for all good triples (a, b, i). This takes asymptotic time
O(d3 ln3 p)

(∑V
i=0 2(|Si| + ri)

)
≈ O(d3 ln3 p)2(V + 1)(π(B2) + d) = π(B1).

Solving the System Through finding relations as above, we get a homo-
geneous system of about

∑V
i=0 2(|Si| + ri) ≈ 2(V + 1)(π(B2) + d) ≈ 2π(B1)

equations, which has to be solved for π(B1) +
∑V

i=0 (|Si| + ri) ≈ π(B1) +
(π(B2) + d)(V + 1) ≈ 2π(B1) unknowns logg qj and XUi ,Xi,j . In order to
get a unique non-zero solution to the system, take g a B1-smooth number
g =

∏
qj≤B1

q
egj

j , generating F∗
p, what can be done under the assumption of

the Extended Riemann Hypothesis ([22]), and expand the system with the
equation ∑

qj≤B1

egj logg qj ≡ logg g ≡ 1 (mod q).

Let U be the matrix with blocks Ui = (eabij)(a,b,i),j on its rows, where eabij =
eabj in (2) for a good triple (a, b, i) and let P , respectively L, be matrices
with blocks Pi = (nabUi)(a,b,i),Ui

, respectively Li = (λi,j(a − bαi))(a,b,i),j, on
the diagonal for i from 0 to V . The rows of these matrices run over good
triples (a, b, i). Let Ug be the rowvector (egj)j , then the matrix of the system
has layout:

(
1 , −Ug , 0 , 0
0 , −U , P , L

)
=

1 −Ug 0 0 . . . 0 0 0 . . . 0
0 −U0 P0 0 . . . 0 L0 0 . . . 0
0 −U1 0 P1 . . . 0 0 L1 . . . 0
...

...
.

0 −UV 0 0 . . . PV 0 0 . . . LV

.

This sparse system can be solved combining structured Gaussian elimina-
tion with a sparse matrix technique, such as Wiedemann’s algorithm ([24])
or Lanczos and conjugate gradient methods ([4],[14]). According to [15],
asymptotical time cost to solve the system is

O(π(B1)2) = Lp[
1
3
, 2β] . (5)

As stated in [20], we can choose whatever ‘logarithmic’ maps µi,j instead of
the mappings λi,j used here (as in [19], see above). In this way we can make
the system more sparse, so sparse matrix techniques to solve the system
work faster. We’ve for example found maps µi,j such that each Li contained
at most ri(|Si| + 1) non-zero entries. However, one has to make sure that
the advantage of having a sparser system doesn’t get lost by the cost of
evaluating the mappings µi,j . This still has to be examined.

3.3 Running Time Analysis Pre-Computation

With running time considerations (4),(5), and taking γ ≤ β, ε as above and
6γ − δ > 0, total pre-computation time becomes

Lp[
1
3
, max {2ε, 2ε− 1

3δβ
+ β − γ, 2β}] ,

which has optimal value Lp[13 , 2β] = Lp[13 , 1.9018 . . .] as in [3], by taking

β =

(
46 + 13

√
13

108

) 1
3

, γ = β

(√
13 − 1

3

)
, δ = β

(
4
√

13 − 10
3

)
.

4 The Individual Logarithm

4.1 The Algorithm

In this section we determine loga b (mod p − 1) for a generator a of F∗
p by making

use of the logg qk, XUi and Xi,j calculated in the former section.
Use the procedure below to calculate logg z (mod p − 1) for z = a and

z = b. Once these logarithms are calculated, the asked for loga b is found as
loga b ≡ logg b/ logg a (mod p − 1).

1. Let Q ≤ B1 be the largest prime number in the factorbase for which the
logarithm is known. Factor Qhz using the Elliptic Curve Method (ECM)
([9]) for random integers h ∈ {1, . . . , p − 1}, until you find one for which
Qhz mod p is Lp[23 , (1

3)1/3]-smooth. Thus

Qhz ≡ qn1
1 . . . qnr

r (mod p) , qi prime numbers ≤ Lp[23 , (1
3) 1

3] . (6)

To check for factors ≤ Lp[23 , (1
3)1/3], each application of ECM takes asymp-

totic time Lp[13 , 2(1
3)2/3] ([10]), such that the total time to find a good h

is

Lp[
1
3
,

(
1
3

) 2
3

]Lp[
1
3
, 2

(
1
3

) 2
3

] = Lp[
1
3
, 3

1
3] = Lp[

1
3
, 1.44225 . . .] ,

where we estimate the probability for a number < p to be Lp[23 , (1
3)1/3]-

smooth as Lp[13 ,−(1
3)2/3], using Theorem 1.

2. For all qi(> B1) in (6), we need to find logg qi. This is done by expressing
these logarithms in terms of known logarithms by means of reductions, which
are described in the next subsection.

3. Calculate logg z ≡ −h logg Q +
∑r

i=1 ni logg qi (mod q) as a sum of known
logarithms. Then, compute logg z (mod p−1) as (logg z mod q)+φq, testing
whether φ = 0 or φ = 1 using modular exponentiation.
The computation loga b ≡ logg b/ logg a (mod p− 1) after applying the pro-
cedure to z = a, b, together with the above calculations,take time O(ln3 p).

4.2 Reductions

We explain how to reduce a number and a prime ideal. Time for whatever re-
duction is of the form Lp[13 , c], with c ≤ 31/3 for a good choice of parameters.

Reduction of a Number l′ We need to reduce numbers l′ with B1 < l′ ≤
Lp[23 ,

(
1
3

)1/3]. Depending on the largeness of the number that needs to be re-
duced, we use different parameters. Let M = Lp[12 , cM] for some constant cM .
If l′ ∈ [B1, M], we use a parameter ν1 with δ/(6β) = 0.2456 . . . < ν1 < 1 and
set e1 = (3ν1β

6ν1β−δ)(
2

3ν1δβ
+ δ

6ν1
− β + γ); for larger l′ we use a parameter ν2 with

0 < ν2 < 1 and set e2 = (γ − β)/2 + δ/(12ν2).
Choose a pair of coprime integers (a, b) with |a|, |b| ≤ Lp[13 , ei]l′1/2 in the

lattice generated by (m, 1) and (l′, 0), which implies that l′ divides a − bm. We
expect about Lp[13 , 2ei] such couples. If |a− bm/l′| is l′νi-smooth, check whether
|Norm(a − bαj)| = |bdfj(a/b)| is l′νi-smooth, for j such that Norm(a − bαj) is
simultaneously coprime with q and [ϑKj : Z[αj]]. If so, Proposition 2 implies
that we have a couple (a, b) and j such that at the same time

a − bm = l′
∏

l

lel′,l l ≤ l′νi , prime (7)

(a − bαj)ϑKj =
∏

Uj

U
ml′,Uj

j Norm(Uj) ≤ l′νi , Uj good prime ideal . (8)

This allows us to express logg l′ in terms of logg l with l ≤ l′νi and XUj for good
prime ideals Uj with Norm(Uj) ≤ l′νi as follows. Equality (8) implies that

logg πj(a − bαj) ≡
∑

Uj

XUj ml′,Uj +
rj∑

k=1

Xj,kλj,k(a − bαj) (mod q) ,

where Uj runs over ideals as in (8). Combining this equivalence with (7) yields

logg l′ ≡
∑

Uj

XUj ml′,Uj +
rj∑

k=1

Xj,kλj,k(a − bαj) −
∑

l≤l′νi

el′,l logg l (mod q) , (9)

where l runs over prime numbers as in (7) and Uj are prime ideals as in (8).
Using Theorem 2, one can check that the probability for the number |(a −

bm)/l′|, respectively |bdfj(a/b)|, to be l′νi -smooth can be estimated to be at
least P11 = Lp[13 ,− 1

3δν1β
], respectively P21 = Lp[13 ,−(1

3ν1δβ
+ e1δ

3ν1β
+ δ

6ν1
)] for

l′ ∈ [B1, M] and at least P12 = Lp[16 ,− 1
6δν2cM

], respectively P22 = Lp[13 , −δ
6ν2

] for
larger l′. Remark that Lp[13 , 2ei]P1iV ≥ 1/P2i for i = 1, 2, so enough pairs (a, b)
are considered to finish the procedure with a successful triple (a, b, j).

To find a good triple (a, b, j), we have to test Lp[13 , 2ei] values |(a − bm)/l′|
and 1/P2i values |bdfj(a/b)| for l′νi-smoothness, using ECM. According to [10],
this takes time at most Lp[14 ,

√
ν1cM] for a number l′ ∈ [B1, M], while for larger

l′ it costs time Lp[13 , 2
√
ν2(1

3)2/3]. Using the fact that 1/(3ν1δβ) − β + γ > 0
since 1/(3δβ(β − γ)) = 2, reducing a number l′ ∈ [B1, M] takes time at most

Lp[
1
3
, 2e1] + Lp[

1
3
,

1
3ν1δβ

+
e1δ

3ν1β
+
δ

6ν1
] = Lp[

1
3
, 2e1] .

For a choice 0.6942 . . . = 4+δ2β+31/3δ2

6δβ(β−γ+31/3)
≤ ν1 < 1, this won’t exceed Lp[13 , 31/3] .

For larger numbers l′ time cost will be at most

Lp[
1
3
, 2e2+2

√
ν2

(
1
3

) 2
3

]+Lp[
1
3
,
δ

6ν2
+2

√
ν2

(
1
3

) 2
3

] = Lp[
1
3
,
δ

6ν2
+2

√
ν2

(
1
3

) 2
3

] ,

which has minimal value Lp[13 , 1.1338 . . .] for a choice ν2 =
(
δ2/(3 2

3 4)
)1/3

< 1.

Remark that for a choice (1 >)ν1 ≥ 4+δ2β+xδ2

6δβ(β−γ+x) = 0.7406 . . . with x =
1.1338 . . ., reducing a number l′ ∈ [B1, M] takes time ≤ Lp[13 , 1.1338 . . .].

Reduction of a Prime Ideal in the Ring ϑKj In expression (9), there can
appear XU ′

j
with B2 <Norm(U ′

j) = k′ ≤ Lp[23 , ν2/31/3]. To determine such an
unknown number, we reduce the ideal U ′

j , which is, according to Proposition 1,
generated by αj − αj,k′ and k′, for 0 ≤ αj,k′ < k′ a root of fj(X) ≡ 0 (mod k′).

As with reducing numbers, we distinguish between k′ ∈ [B2, M] and larger
k′, with M as in the reduction of numbers. Likewise we introduce parameters ν̃1
with 0.28287 . . . = δ/(6γ) < ν̃1 < 1 and set ẽ1 =

(
3γν̃1

6γν̃1−δ

) (
2

3γν̃1δ
+ δ

6ν̃1

)
, and

ν̃2 with 0 < ν̃2 < 1 and set ẽ2 = δ/(6ν̃2).
Choose a pair of coprime integers (a, b) with |a|, |b| ≤ Lp[13 , ẽi]k′1/2, subject

to the usual restriction that |bdfj(a/b)| is simultaneously coprime with q and
[ϑKj : Z[αj]] and the new restriction that U ′

j divides (a − bαj)ϑKj , by taking
couples in the lattice spanned by (αj,k′ , 1) and (k′, 0). When both |bdfj(a/b)|/k′

and |a−bm| are k′ν̃i-smooth, which can be checked using ECM, we have a couple
(a, b) such that simultaneously

a − bm =
∏

l

l
eU′

j ,l l ≤ k′ν̃i prime numbers, (10)

(a − bαj)ϑKj = U ′
j

∏

Uj

U
mU′

j ,Uj

j Norm(Uj) ≤ k′ν̃i , Uj good prime ideals .(11)

Similarly as before, equality (11) implies that

logg πj(a − bαj) ≡ XU ′
j
+

∑

Uj

XUj mU ′
j,Uj +

rj∑

k=1

Xj,kλj,k(a − bαj) (mod q) ,

where Uj runs over ideals as in (11). Combining this with (10) yields

XU ′
j
≡

∑

l

eU ′
j ,l logg l −

∑

Uj

XUj mU ′
j ,Uj −

rj∑

k=1

Xj,kλj,k(a − bαj) (mod q) ,

with l prime numbers as in (10) and Uj prime ideals as in (11).
Deduced as with the reduction of numbers, time-cost of a reduction for ide-

als with norm k′ ∈ [B2, M] is Lp[13 , 2
3γν̃1δ

+ ẽ1δ
3γν̃1

+ δ
6ν̃1

], which doesn’t exceed

Lp[13 , 31/3] for a choice 0.9308 . . . = 4+δ2γ+31/3δ2

6δγ31/3 ≤ ν̃1 < 1. For ideals with larger

norm the reduction takes time Lp[13 , δ
6ν̃2

+ 2
√
ν2ν̃2

(
1
3

)2/3], which is minimal for

ν̃2 =
(
δ2/(12ν2b2)

)1/3
< 1, and time-cost is then equal to Lp[13 , 0.9658 . . .].

Remark that for a choice (1 >)ν̃1 ≥ 4+δ2γ+xδ2

6δγx = 0.9967 . . . with x =
1.1338 . . ., time for the reduction of an ideal with norm k′ ∈ [B2, M] will be
≤ Lp[13 , 1.1338 . . .].

Remark This strategy of ‘reducing’ can also be used with the classical Number
Field Sieve setting, where only one polynomial is used at the algebraic side. In
a similar way as above, one can show that the reduction of a number l or a
prime ideal U with Norm(U) = l takes time Lp[13 , (3

2)1/3] = Lp[13 , 1.1447 . . .] if
Lp[12 , cm] ≤ l < Lp[23 , (1

3)1/3] by taking ν = (1/2)2/3. Since for smaller medium-
sized l time needed for a reduction can be made less than Lp[13 , (3

2)1/3] by taking
(1 >)ν ≥ (21/36+61/38+241/33)/36, this is the most time consuming reduction.
We’ve shown above that the most time-consuming reduction in our many poly-
nomial case has time cost Lp[13 , 1.1338 . . .]. Hence, the most expensive reduction
in the one polynomial variant takes more time than the most expensive reduc-
tion in our case. The algorithm to separately compute individual logarithms
after the pre-computation is done with the original Number Field Sieve setting,
using the idea of reductions, is the same as the one above and has the same
running time, namely Lp[13 , 31/3]. Thus, asymptotically there is no difference in
time-usage between the one or more polynomial setting to calculate individual
logarithms once the pre-computation has been executed (recall however that the
pre-computation is more expensive with the one polynomial setting!).

Reductions: an example Suppose we want to find discrete logarithms in F∗
83

to the base g = 2. Take d = 2 and m = 30. Set f(X) = X2 + 13, since for this
irreducible polynomial, we have f(30) ≡ 0 (mod 83) and neither p = 83 nor
q = 41 divide the discriminant −52 of f . Hence, we work in the extension field
Q(

√
−13), for which it is known that ϑ = ϑQ(

√
−13) = Z +

√
−13Z, such that

[ϑ, Z[
√
−13]] = 1. The unity rank of ϑ is 0, such that no maps λj are needed. Note

that in fact ϑ∗ = {−1, 1}, such that it holds that {u ∈ ϑ∗ | u ≡ 1 mod 412} ⊆
(ϑ∗)41. Further on, we have hQ(

√
−13) = 2, thus hQ(

√
−13) is co-prime with 41.

Let t̄ = t + pZ ∈ Fp for every t ∈ Z. Denote with Ul,r the degree one prime
ideal generated by the prime number l and −r +

√
−13 for r ∈ N. We take

smoothness-bound B1 = 19 at the rational side, and smoothness-bound B2 = 17
at the algebraic side. Let S be the set of all good degree one prime ideals with
norm ≤ 17. Suppose the pre-computation stage is executed.

Suppose we have to calculate logg 71. We use a reduction of the number 71.
Take ν = 0.91. For the coprime integers a = 1, b = −26, we have that

(1 + 26× 30)/71 = 11 and Norm(1 + 26
√
−13) = 1 + 13 × 262 = 11 × 17× 47

are simultaneously 710.91-smooth. The conditions for Norm(1 + 26
√
−13) to be

coprime with 41 and [ϑ, Z[
√
−13]] are fulfilled, so Proposition 2 implies that

1 + 26 × 30 = 71 × 11,

(1 + 26
√
−13)ϑ = U11,8U17,15U47,9,

simultaneously. This leads to the result that

logg 71 ≡ XU11,8 + XU17,15 + XU47,9 − logg 11 (mod 41) . (12)

In this expression for logg 71, XU47,9 is (the only) unknown.
Let ν′ = 0.8. Applying the Gaussian Algorithm, we find a short vector (2,−5)

in the lattice spanned by (9, 1) and (47, 0), for which we know U47,9 divides
(a − b

√
−13)ϑ for elements (a, b). Since Norm(2 + 5

√
−13) is coprime with 41

and [ϑ, Z[
√
−13]] and since Norm(2 + 5

√
−13)/47 = (22 + 13 × 52)/47 = 7 and

2 + 5 × 30 = 23 × 19 are both 470.8-smooth, we use (2,−5) to reduce U47,9.
Proposition 2 implies that simultaneously

2 + 5 × 30 = 23 × 19 ,

(2 + 5
√
−13)ϑQ(

√
13) = U7,1U47,9, ,

what results in the expression

XU47,9 ≡ 3 logg 2 + logg 19 − XU7,1

≡ 3 + 6 − 32 ≡ 18 (mod 41) ,

where XU7,1 ≡ 32 (mod 41) and logg 19 ≡ 6 (mod 41) were pre-computed.
Getting back to computation (12) of logg 71, we see that

logg 71 ≡ 34 + 5 + 18 − 24 ≡ 33 (mod 41) ,

where XU11,8 ≡ 34, XU17,15 ≡ 5, logg 11 ≡ 24 (mod 41) were pre-computed. One
can check that indeed 233 ≡ 71 (mod 83). Remark that the above expression for
logg 71 is exactly expression (9) for this particular case.

4.3 Running Time Analysis Individual Logarithm

We analyze the time needed to perform step 2 of the algorithm. Set ν =
max{ν1, ν2, ν̃1, ν̃2}. When a number or a prime ideal is reduced, (7) or re-
spectively (10) introduces O((ln p/ ln ln p)1/3) new medium-sized prime num-
bers B1 ≤ l < Lp[23 ,

(
1
3

)1/3] with unknown logarithms. Via (8) or (11), any
reduction will also invoke O((ln p/ ln ln p)2/3) new medium-sized prime ideals Uj

(ideals for which B2 ≤Norm(Uj) < Lp[23 ,
(

1
3

)1/3]) for which XUj is unknown.
Let Z be the maximal number of the total of new unknowns induced by one
reduction, thus Z = O((ln p/ ln ln p)2/3). To calculate logg qi for qi as in (6),
1+Z +Z2 + . . .+Zw̃−1 ≤ Zw̃ reduction-steps will be needed to get all logg l and
XUj in the original factorbase, where w̃ is a natural number such that qν

w̃

i ≤ B2.
Since qi ≤ Lp[23 ,

(
1
3

)1/3], it suffices to find w̃ such that Lp[23 ,
(

1
3

)1/3]ν
w̃ ≤ B2

or, in other words, such that νw̃ ln Lp[23 ,
(

1
3

)1/3] ≤ ln B2. Since this holds for
w̃ ≥ 1

ln ν ln ln B2

ln Lp[23 ,(1
3)

1/3
]

= O(ln ln p), we can take w̃ = O(ln ln p). Hence, the

number of reductions won’t exceed

O((ln p/ ln ln p)2/3)O(ln ln p) = eO((ln ln p)2) .

Combining all results of the reductions into the value logg qi (mod q) uses
time O((ln p)3)eO((ln ln p)2) ≈ eO((ln ln p)2).

Let c be the constant such that time cost for the most expensive reduction
is Lp[13 , c]. It takes time at most

Lp[
1
3
, c]eO((ln ln p)2) + eO((ln ln p)2) = Lp[

1
3
, c]

to compute logg qi for a medium-sized number qi, so all desired unknown loga-
rithms in (6) can be determined in time O((ln p/ ln ln p) 2

3)Lp[13 , c] = Lp[13 , c].
We conclude that the total running time for the individual logarithm algo-

rithm is Lp[13 , max{31/3, c}]. By choosing parameters as described above, c can be
taken not to exceed 31/3. Hence, given the results of the pre-computation stage, a
calculation of an individual logarithm takes time Lp[13 , 31/3] = Lp[13 , 1.44225 . . .].

5 The Algorithm of Joux and Lercier

To make a running time analysis of the method in [6], we describe the algorithm
as we understood it, using the theoretical background we developed before, in-
troducing constants sd, sα, sβ, sl, sk, cd, cα, cβ , cl, ck ∈ R, which we determine

to get a minimal running time. Assume that the optimal degree d behaves as
d = cd(1 + o(1))(ln p/ ln ln p)sd .

Choose d such that d + 1 is a prime number. Let fβ be an irreducible poly-
nomial of degree d + 1 with root µ in Fp and coefficients of order O(1), such
that its Galois group has order d + 1. Take fα an irreducible polynomial of de-
gree d such that fα(µ) ≡ 0 (mod p). By construction, the coefficients of this
polynomial are of order p1/(d+1) = Lp[1 − sd, 1/cd]. In general, fα isn’t monic.
For ease of exposition however, we assume fα and fβ to be monic. Let α and β
be roots of fα, fβ respectively. The ring of algebraic integers in Q(α), respec-
tively Q(β), is denoted as ϑα, respectively ϑβ . Let rα, respectively rβ , be the
torsion-free rank of ϑ∗α, respectively ϑ∗β . At the side of fα, respectively fβ, we
work with smoothness-bound Bα = Lp[sα, cα], respectively Bβ = Lp[sβ , cβ]. Let
Sα, respectively Sβ , denote the set of degree one prime ideals in ϑα, respectively
ϑβ , with norm less then Bα, respectively Bβ . Denote λQ(α),j = λj . Let g denote
a generator of F∗

p.
Let L = Lp[sl, cl]. Sieving coprime pairs (a, b) with |a| ≤ L, 1 ≤ b ≤ L,

appropriate for the algorithm in [6], takes asymptotic time ([10],[19])

Lp[sα, cα] + Lp[sβ, cβ] + Lp[sl, 2cl] ,

and results in pairs (a, b) such that simultaneously

(a + bα)ϑα =
∏

P∈Sα

P e(a,b),P , (13)

(a + bβ)ϑβ =
∏

Q∈Sβ

Qe(a,b),Q . (14)

Since, using Theorem 1, the probability for |Norm(a − bβ)| to be Bβ-smooth,
for |Norm(a − bα)| to be Bα-smooth respectively, is estimated as Lp[sl + sd −
sβ ,−(sl +sd−sβ)cdcl/cβ] and as Lp[s1−sα,−(s1−sα)c1/cα] respectively, where
s1 = max{1−sd, sl +sd} and c1 = 1/cd, cdcl +1/cd or cdcl if respectively sl <, =
or > 1− 2sd, the condition to have |Sα|+ |Sβ |+ rα + rβ + O(1) surviving pairs,
becomes the following on the parameters s:

sl ≥ sα , sl ≥ sβ , sl ≥ sl + sd − sβ , sl ≥ 1− sd − sα , sl ≥ sl + sd − sα . (15)

Once these parameters are determined, we get conditions on the constants c.
Assume conditions as in [20] are fulfilled. Let XP , Xj be the so called vir-

tual logarithms. According to [20] and using (13), every couple (a, b) invokes an
immediate congruence

logg(a + bµ) ≡
∑

P∈Sα

e(a,b),PXP +
rα∑

j=1

λj(a + bα)Xj (mod q) . (16)

Since the polynomial fβ has very small coefficients, it is assumed that the
resulting number field has a simple structure, namely that the class field number
is 1, and that all fundamental units of ϑβ can be computed. A similar approach

as in [17] can then be used. (Note however that if this approach would run too
slowly, one can continue as on the fα-side, as shown in [20].) For every Q in
Sβ , let Q = γQϑβ with γQ ∈ ϑβ and U the set of fundamental units in ϑβ .
Expression (14) leads to

logg(a + bµ) ≡
∑

u∈U

e(a,b),u logg u +
∑

Q∈Sβ

e(a,b),Q logg γQ (mod q) . (17)

Combining (16) and (17) now yields |Sα| + |Sβ | + rα + rβ + O(1) equations
∑

P∈Sα
e(a,b),PXP +

∑rα

j=1 λj(a − bα)Xj ≡
∑

u∈U e(a,b),u logg u +
∑

Q∈Sβ
e(a,b),Q logg γQ (mod q)

in unknowns XP , Xj , logg γQ and logg u. This sparse system is solved for its
unknowns in time Lp[sα, 2cα] + Lp[sβ, 2cβ], using a sparse matrix technique. In
order to get a unique non-zero solution of the system, we set logg γQ = 1 for a
Q ∈ Sβ such that γQ is a generator in F∗

p. This ends the pre-computation stage.
The running time for this stage is optimal for parameters sα = sβ = sd = sl = 1

3 ,
cα = cβ = cl =

(
8
9

)1/3, cd =
(

3
8

)1/3 and then equals Lp[13 ,
(

64
9

)1/3].
Set K = Lp[sk, ck]. To find an individual logarithm loga b (mod p − 1) for

a, b ∈ F∗
p and a a generator of F∗

p, the following procedure for y = a and y = b
is executed. Let s be the largest small prime whose logarithm can be computed
from the factor bases. Set z = siy mod p for i = 1. (Increase i if no good
representation can be found.) Use lattice basis reduction to find quotients

z ≡ a0 + a1µ + · · · + adµd

b0 + b1µ + · · · + bdµd
(mod p), (18)

where a0, a1, . . . , ad, b0, b1, . . . , bd are integers of size O(p1/(2d+2)) such that
gcd(a0, a1, . . . , ad) = gcd(b0, b1, . . . , bd) = 1. Check whether both |Norm(a0 +
a1β + · · · + adβd) | and |Norm(b0 + b1β + · · · + bdβd) | are coprime with the
index [ϑβ , Z[β]] and K-smooth, using a Lp[sk

2 ,
√

2skck]-costing ECM-test. From
Proposition 2 of [21], applied for h1(X) = a0 + a1X + · · · + adXd and h2(X) =
b0 + b1X + · · ·+ bdXd , it follows that both norms are ≤ Lp[sd,

3sdcd
2]Lp[1, 1

2] =
Lp[1, 1

2]. Using Theorem 1, we see that the probability for these numbers to be
simultaneously K-smooth is Lp[1 − sk,− 1−sk

ck
]. Since the lattice-reduction only

costs time Lp[0, 3], we conclude that finding a good representation of z takes time
Lp[1−sk,

1−sk
ck

]Lp[sk
2 ,

√
2skck], which is minimal for sk = 2/3, ck = (1/3)1/3 and

then equals Lp[13 , 31/3]. We show that the time needed to execute the rest of the
individual logarithm algorithm is less.

One can easily show that the ideals (a0 +a1β+ · · ·+adβd)ϑβ and (b0 +b1β+
· · · + bdβd)ϑβ split completely into first degree prime ideals. Thus,

(a0 + a1β + · · · + adβd)ϑβ =
∏

Q∈S̃β
QvQ ,

(b0 + b1β + · · · + bdβd)ϑβ =
∏

Q∈S̃β
QwQ ,

for S̃β a set of degree one prime ideals in ϑβ with norm less then K. These
equalities imply the equations

logg(a0 + a1µ + · · · + adµd) ≡
∑

u∈U ev,u logg u +
∑

Q∈S̃β
vQ logg γQ(mod q) ,

logg(b0 + b1µ + · · · + bdµd) ≡
∑

u∈U ew,u logg u +
∑

Q∈S̃β
wQ logg γQ(mod q) .

Remark that logg γQ is unknown for all Q ∈ S̃β \ Sβ . To find these unknown
logarithms, we reduce the ideal Q in a similar way as described above, searching
numbers a, b in an appropriate lattice such that | bd+1fβ(a/b) | /Norm(Q)(∈ Z)
and | bdfα(a/b) | are simultaneously Norm(Q)ν - smooth for a ν < 1. Medium-
sized prime ideals at the fα-side are reduced similarly. One can check that the
asymptotical running time for the reduction of prime ideals Q (at any side) with
Lp[12 , cm] < Norm(Q) ≤ Lp[23 , (1

3)1/3] is minimal for ν = (1/2)2/3 and then
equals Lp[13 , (3

2)1/3]. By taking ν ≥ (4 + 41/3)/2561/3, time for the reduction of
an ideal Q (at any side) with Bα = Bβ < Norm(Q) ≤ Lp[12 , cm] is less then
Lp[13 , (3

2)1/3], where cm is a constant. Following an analogous reasoning as in
Section 4.3, one can then see that all unknown logg γQ in the above equalities
can be determined in time Lp[13 , (3

2)1/3].
Finally, compute logg y as

logg y ≡ −i logg s+logg(a0+a1µ+· · ·+adµ
d)−logg(b0+b1µ+· · ·+bdµ

d) (mod q) ,

(see (18)) and then determine the asked for loga b (mod p− 1) in the same way
as in the former individual logarithm algorithm, thus costing time O(ln3 p).

We conclude that a seperate individual logarithm stage takes asymptotic
time Lp[13 , 31/3], after a Lp[13 , (64

9)1/3]-costing pre-computation stage .

Acknowledgement

The paper was partially written when Professor I.Semaev was staying at the
Department of Mathematics, Section Algebra, Catholic University of Leuven
under the project Flanders FWO G.0186.02.
We want to thank the anonymous referees for their very detailed and valuable
comments.

References

1. Canfield, E., Erdös, P., Pomerance, C.: On a problem of Oppenheim concerning
“factorisatio numerorum”. J.Number Theory 17 (1983) 1–28

2. Coppersmith, D.: Fast Evaluation of Logarithms in Fields of Characteristic Two.
IEEE Transactions on Information Theory IT-30 (1984) 587–594

3. Coppersmith, D.: Modifications to the Number Field Sieve. J. Cryptology 6 (1993)
169–180

4. Coppersmith, D., Odlyzko, A., Schroeppel, R.: Discrete logarithms in GF (p). Algo-
rithmica 1 (1986) 1–15

5. Gordon, D.: Discrete logarithms in GF (p) using the number field sieve. SIAM Jour-
nal of Discrete Mathematics 6 (1993) 124–138

6. Joux, A., Lercier, R.: Improvements to the general Number Field Sieve for discrete
logarithms in prime fields. Mathematics of Computation 72 (2003) 953–967

7. Joux, A., Lercier, R.: Calcul de logarithmes discrets dans GF (p) — 130 chiffres.
CRYPTO Mailing List (6/2005)

8. Lenstra, A., Lenstra, H. (eds): The Development of the Number Field Sieve. Lecture
Notes in Mathematics 1554 , Springer-Verlag, 1993

9. Lenstra, H.: Factoring integers with elliptic curves. Annals of Mathematics 126
(1987) 649–673

10. Matyukhin, D.: On asymptotic complexity of computing discrete logarithms over
GF (p). Discrete Mathematics and Applications 13 (2003) 27–50

11. McCurley, K.: The discrete logarithm problem, in: Pomerance,C. (ed): Cryptogra-
phy and Computational Number Theory. Proc. Symp.Appl.Math. 42, Amer. Math.
Soc.,1990, 49–74

12. Odlyzko, A.: Discrete logarithms: The past and the future. Designs, Codes and
Cryptography 19 (2000), 129–145.

13. Odlyzko, A.: Discrete Logarithms and Smooth Polynomials, in: Mullen, G., Shiue,
P. (eds): Finite Fields: Theory, Applications and Algorithms. Contemporary Math
168, Amer. Math. Soc.,1994, 269–278

14. Odlyzko, A.: Discrete logarithms in finite fields and their cryptographic sig-
nificance, in: Beth, T.,Cot, N., Ingemarsson, I. (eds): Advances in Cryptology:
Proceedings of Eurocrypt ’84. Lecture Notes in Computer Science 208, Springer-
Verlag,1985,224–314

15. Odlyzko, A.: On the complexity of Computing Discrete Logarithms and Factoring
Integers, in: Cover,T. and Gopinath,B. (eds.): Open Problems in Communication and
Computation. Springer, 1987, 113-116

16. Pollard, J.: Monte Carlo methods for index computations mod p. Mathematics of
Computation 32 (1978) 918–924

17. Pollard, J.: Factoring with cubic integers, in:[8].Springer-Verlag, 1993, 4–10
18. Pomerance, C.: Fast, rigorous factorization and discrete logarithm algorithms, in:

Nozaki, N., Johnson, D., Nishizaki, T.,Wilf, H.(eds): Discrete Algorithms and Com-
plexity. Academic Press, 1987, 119–143

19. Schirokauer, O.: Discrete logarithms and local units. Philosophical Transactions of
the Royal Society of London (A) 345 (1993) 409–423

20. Schirokauer, O.: Virtual Logarithms. Journal of Algorithms 57 (2005) 140–147
21. Semaev, I.: Special prime numbers and discrete logs in prime finite fields. Mathe-

matics of Computation 71 (2002) 363–377
22. Shoup, V.: Searching for primitive roots in finite fields. Mathematics of Computa-

tion 58 (1992) 918–924
23. van Oorschot, P., Wiener, M.: Parallel collision search with cryptanalytic applica-

tions. J. Cryptology 12 (1999) 1–28
24. Wiedemann, D.: Solving sparse linear equations over finite fields. IEEE

Trans.Inform. Theory 32 (1986) 54–62

