
Strongly Unforgeable Signatures Based on
Computational Diffie-Hellman

Dan Boneh1!, Emily Shen1, and Brent Waters2

1 Computer Science Department, Stanford University, Stanford, CA
{dabo,emily}@cs.stanford.edu

2 SRI International, Palo Alto, CA
bwaters@csl.sri.com

Abstract. A signature system is said to be strongly unforgeable if the
signature is existentially unforgeable and, given signatures on some mes-
sage m, the adversary cannot produce a new signature on m. Strongly
unforgeable signatures are used for constructing chosen-ciphertext se-
cure systems and group signatures. Current efficient constructions in the
standard model (i.e. without random oracles) depend on relatively strong
assumptions such as Strong-RSA or Strong-Diffie-Hellman. We construct
an efficient strongly unforgeable signature system based on the standard
Computational Diffie-Hellman problem in bilinear groups.

1 Introduction

A digital signature system is said to be secure if it is existentially unforgeable
under a chosen-message attack [20]. Roughly speaking, this means that an ad-
versary who is given a signature for a few messages of his choice should not be
able to produce a signature for a new message. For a variety of applications,
however, a stronger security property called strong unforgeability is needed [1].
Strong unforgeability ensures the adversary cannot even produce a new signature
for a previously signed message. In other words, suppose an adversary obtains
a message-signature pair (m, σ) along with other message-signature pairs of his
choice. The signature system is strongly unforgeable if the adversary cannot pro-
duce a new signature σ̂ for m. We give a precise definition in the next section.

Strongly unforgeable signatures have a number of applications. They are
useful for building chosen-ciphertext secure encryption systems [14, 8] as well as
group signatures [2, 5]. To see the relation to chosen-ciphertext security recall
that chosen-ciphertext secure systems in the standard model often incorporate
a (one-time) signature in the ciphertext. This signature is generated by the en-
cryptor and is a signature on the ciphertext. Strong unforgeability is needed to
ensure that the adversary cannot somehow modify the signature in the chal-
lenge ciphertext and come up with an alternate valid signature on the same
ciphertext. This alternate signature would give the adversary a valid ciphertext
that is different from the challenge ciphertext. The adversary could then issue
! Supported by NSF and the Packard Foundation.



a decryption query for this new ciphertext and break the system. Consequently,
a signature system that is existentially unforgeable but not strongly unforge-
able would result in an insecure encryption system. A similar issue comes up in
several group signature constructions.

Several existing signature systems are strongly unforgeable. In the random
oracle model, constructions based on the full domain hash [3, 9, 6] and other
methods [3, 18, 26] are strongly unforgeable.

Without random oracles, several constructions can be shown to be strongly
unforgeable; however, they typically depend on relatively strong assumptions:

– Gennaro, Halevi, and Rabin [17] and Cramer and Shoup [11] construct
strongly unforgeable signatures based on the Strong-RSA assumption.

– Boneh and Boyen [4] construct a strongly unforgeable signature based on
the Strong-Diffie-Hellman assumption.

– A Verifiable Unpredictable Function (VUF) gives a signature system where
each message has a unique signature. Such signatures are clearly strongly
unforgeable. VUFs were defined by Micali, Rabin, and Vadhan [25] where
they give a proof-of-concept construction based on the (large exponent) RSA
assumption. A different VUF was proposed by Lysyanskaya [23] using the
Many-Diffie-Hellman assumption (a.k.a. the n-party Diffie-Hellman assump-
tion) in bilinear groups. This construction was extended by Dodis [13] to
obtain a Verifiable Random Function under a much stronger assumption.

– Tree-based signatures [20, 19, 27, 15, 10, 7] can be proven secure without ran-
dom oracles and based on standard assumptions. However, they generally
tend to be less efficient than signatures presented in this paper.

Our contribution. In this paper we construct a strongly unforgeable signature
system (without random oracles) based on the standard Computational Diffie-
Hellman (CDH) problem in bilinear groups. The system is simple, efficient, and
produces signatures that are only 2 group elements plus a short string.

Currently, the only (efficient) signature that is known to be existentially
unforgeable based on CDH (in the standard model) is due to Waters [28]. This
signature, however, is not strongly unforgeable — given a signature on some
message m it is easy to derive many other signatures on the same message.
Nevertheless, we use the Waters signature scheme as our starting point. We
show how to strengthen the signature to obtain a strongly unforgeable signature
based on the standard CDH. We actually do a little more — we provide a general
transformation that converts any unforgeable signature of a certain type into a
strongly unforgeable signature. We then apply this transformation to the Waters
signature to obtain a strongly unforgeable signature based on CDH.

2 Preliminaries

Before presenting our construction we briefly review the security definitions, a
few facts about bilinear maps, and our complexity assumptions.



2.1 Strong Existential Unforgeability

A signature system consists of three algorithms: KeyGen, Sign, and Verify.
Strong existential unforgeability under an adaptive chosen-message attack is
defined using the following game:

Setup. The challenger runs KeyGen. It gives the adversary the resulting public
key PK and keeps the private key SK to itself.

Signature Queries. The adversary issues signature queries m1, . . . , mq. To
each query mi the challenger responds by running Sign to generate a signa-
ture σi of mi and sending σi to the adversary. These queries may be asked
adaptively so that each query mi may depend on the replies to m1, . . . , mi−1.

Output. Finally the adversary outputs a pair (m, σ). The adversary wins if σ
is a valid signature of m according to Verify and (m, σ) is not among the
pairs (mi, σi) generated during the query phase.

We define the advantage of an adversary A in attacking the signature scheme as
the probability that A wins the above game, taken over the random bits of the
challenger and the adversary.

Definition 1. A signature scheme is (t, q, ε)-strongly existentially unforgeable
under an adaptive chosen-message attack if no t-time adversary A making at
most q signature queries has advantage at least ε in the above game.

2.2 Existential Unforgeability

We will also use the traditional security property of (weak) existential unforge-
ability under an adaptive chosen-message attack [20]. It is defined using the
following game.

Setup and Signature Queries. Same as in the strong unforgeability game.
Output. The adversary outputs a pair (m, σ). The adversary wins if σ is a

valid signature of m according to Verify and m is not among the messages
mi queried during the query phase.

We define the advantage of an adversary A in weakly attacking a signature
scheme as the probability that A wins the above game, taken over the random
bits of the challenger and the adversary.

Definition 2. A signature scheme is (t, q, ε)-existentially unforgeable under an
adaptive chosen-message attack if no t-time adversary A making at most q sig-
nature queries has advantage at least ε in the above game.

2.3 Bilinear Groups

We use the following notation:

1. G and G1 are two (multiplicative) cyclic groups of prime order p;
2. g is a generator of G;



3. e is a computable map e : G × G → G1 with the following properties:
– Bilinear: for all u, v ∈ G and a, b ∈ Z, e(ua, vb) = e(u, v)ab.
– Non-degenerate: e(g, g) $= 1.

We say that G is a bilinear group [21] if the group operation in G is efficiently
computable and there exists a group G1 and an efficiently computable bilinear
map e : G × G → G1 as above.

2.4 Computational Diffie-Hellman (CDH) Assumption

The computational Diffie-Hellman problem in a cyclic group G of order p is
defined as follows. Given g, ga, gb ∈ G, output gab ∈ G. We say that algorithm
A has advantage ε in solving CDH in G if

Pr[A(g, ga, gb) = gab] ≥ ε ,

where the probability is over the random choice of generator g ∈ G, the random
choice of a, b ∈ Zp, and the random bits of A.

Similarly, we say that algorithm A has advantage ε in solving discrete log in
G if

Pr[A(g, ga) = a] ≥ ε ,

where the probability is over the random choice of generator g ∈ G, the random
choice of a ∈ Zp, and the random bits of A.

Definition 3. The (t, ε)-CDH assumption holds in G if no t-time adversary has
advantage at least ε in solving CDH in G. Similarly, the (t, ε)-Dlog assumption
holds in G if no t-time adversary has advantage at least ε in solving discrete log.

2.5 Collision-Resistant Hashing

Let H = {Hk} be a keyed hash family of functions Hk : {0, 1}∗ → {0, 1}n

indexed by k ∈ K. We say that algorithm A has advantage ε in breaking the
collision-resistance of H if

Pr[A(k) = (m0, m1) : m0 $= m1, Hk(m0) = Hk(m1)] ≥ ε ,

where the probability is over the random choice of k ∈ K and the random bits
of A.

Definition 4. A hash family H is (t, ε)-collision-resistant if no t-time adversary
has advantage at least ε in breaking the collision-resistance of H.

Our construction makes use of collision-resistant hashing. We note, however,
that collision-resistant hashing can be easily built based on the CDH assump-
tion [12]. Therefore, in theory, assuming the existence of collision-resistant func-
tions does not strengthen the complexity assumption we are making. In practice,
of course, one would use a standard hash function such as SHA-256 and assume
that it is collision-resistant.



3 From Weak Unforgeability to Strong Unforgeability

Our goal is to construct a strongly unforgeable signature based on CDH. We
begin by presenting a general transformation that converts any partitioned un-
forgeable signature (defined below) into a strongly unforgeable signature. In the
next section we apply this transformation to the Waters signature.

Definition 5. We say that a signature system is partitioned if it satisfies two
properties:

– Property 1: The signing algorithm can be broken into two deterministic
algorithms F1 and F2 so that a signature on a message m using secret key
SK is computed as follows:
1. Select a random r in R.
2. Set σ1 ← F1(m, r,SK) and σ2 ← F2(r,SK).
3. Output the signature σ ← (σ1, σ2).

– Property 2: Given m and σ2 there is at most one σ1 so that (σ1, σ2) verifies
as a valid signature on m under PK.

In other words, a signature is partitioned if half the signature, namely σ2, does
not depend on m. Furthermore, given m and σ2 the signature is fully determined.
Many standard discrete-log-based signature systems in the literature can be
partitioned. For example, for DSS [24] using x to denote the secret key, the
functions F1, F2 are:

F1(m, r, x) = r−1
(
m + xF2(r, x)

)
mod q

F2(r, x) = (gr mod p) mod q

We note, however, that property 2 may not hold for DSS.
Next, we present our transformation. Let G be a group of prime order p and

let H = {Hk} be a collision-resistant hash family of functions Hk : {0, 1}∗ →
{0, 1}n indexed by k ∈ K. We assume p ≥ 2n so that hash outputs can be
viewed as elements of Zp. Furtheremore, we assume that each element of Zp has
a unique encoding, say as an integer in [0, p). In describing the system we use
the notation x‖y to denote the marked concatenation of the two strings x and y.

Let Σ = (KeyGen,Sign,Verify) be a partitioned signature where the signing
algorithm is partitioned using functions F1 and F2. Suppose the randomness for
signature generation is picked from some set R. We build a new strongly un-
forgeable signature system Σnew = (KeyGennew,Signnew,Verifynew) as follows:

KeyGennew: To generate the public key, select random generators g, h ∈ G
and a random hash key k ∈ K. Next, run KeyGen to obtain a secret key SK
and public key PK. The public and secret keys for the new system are:

PK′ = (PK, g, h, k) and SK′ = (SK)

Signnew(SK, M): A signature on a message M ∈ {0, 1}" is generated as follows.
1. Select a random exponent s ∈ Zp and a random r ∈ R.



2. Set σ2 ← F2(r, SK).
3. Compute t ← Hk(M‖σ2) ∈ {0, 1}n and view t as an element of Zp.
4. Compute m ← gths ∈ G.
5. Compute σ1 ← F1(m, r, SK) and output the signature σ ← (σ1, σ2, s).

Verifynew(PK, M, σ): A signature σ = (σ1, σ2, σ3) on a message M is verified
as follows:
1. Compute t̃ ← Hk(M‖σ2) and view t̃ as an element of Zp.
2. Compute m̃ ← gt̃hσ3 .
3. Output Verify

(
PK, m̃, (σ1, σ2)

)
.

The basic idea. To give some intuition for signature generation, note that in
Step 4 we derive a new message m that is then signed by the underlying signature
system in Step 5. This m is derived from the original message M and from σ2.
The σ2 is derived from the randomness r. Hence, in effect, the signer is signing
both the message M and the secret randomness r that is used to create the
signature. The adversary, as a result, cannot “re-randomize” a given signature
without invalidating the signature. This may suggest that the resulting signature
scheme is strongly unforgeable. Unfortunately, in creating this circularity —
making the message m being signed depend on the randomness r — we break
the proof of security for the underlying signature. Because of Steps 3 and 4 we
can no longer prove that the system is secure.

To repair the damage we introduce an additional hashing step (Step 4) where
we hash again using a chameleon hash [22]. The extra randomness s of the
chameleon hash lets us break the circularity in the proof of security. This lets
us repair the proof and prove strong unforgeability based strictly on the weak
unforgeability of the underlying system. In particular, the randomness of the
chameleon hash is crucial for responding to signature queries from a Type III
adversary in the proof of security below.

In summary, the high level structure of the signing algorithm is as follows: (1)
first, hash M‖σ2 using a chameleon hash to obtain a new message m, (2) then,
use the underlying signature to sign m with randomness r, (3) finally, output
the resulting signature along with the randomness s of the chameleon hash. The
proof of security in the next subsection shows that the resulting signature is
strongly unforgeable.

3.1 Security

Let Σ = (KeyGen,Sign,Verify) be a partitioned signature scheme and let Σnew =
(KeyGennew,Signnew,Verifynew) be the signature system resulting from the trans-
formation described above. The following theorem proves strong unforgeability
of Σnew.

Theorem 1. The signature scheme Σnew is (t, q, ε)-strongly existentially un-
forgeable assuming the underlying signature scheme Σ is (t, q, ε/3)-existentially
unforgeable, the (t, ε/3)-Dlog assumption holds in G, and H is (t, ε/3)-collision-
resistant.



Proof. Suppose A is a forger that (t, q, ε)-breaks strong unforgeability of Σnew.
Forger A is first given a public key (PK, g, h, k).

Forger A asks for signatures on messages M1, . . . , Mq and is given signatures
σi = (σi,1, σi,2, si) for i = 1, . . . , q on these messages. Let ti = Hk(Mi‖σi,2) and
mi = gtihsi for i = 1, . . . , q. Let

(
M̂, σ̂ = (σ̂1, σ̂2, ŝ)

)
be the forgery produced by

A, let t̂ = Hk(M̂‖σ̂2), and let m̂ = gt̂hŝ. We distinguish among three types of
forgeries:

Type I A forgery where m̂ = mi and t̂ = ti for some i ∈ {1, . . . , q}.
Type II A forgery where m̂ = mi and t̂ $= ti for some i ∈ {1, . . . , q}.
Type III Any other forgery (m̂ $= mi for all i ∈ {1, . . . , q}).

A successful forger must output a forgery of Type I, Type II, or Type III.
We show that a Type I forgery can be used to break the collision-resistance
of H, a Type II forgery can be used to solve discrete log in G, and a Type III
forgery can be used to break existential unforgeability of the underlying signature
scheme Σ. Our simulator can flip a coin at the beginning of the simulation to
guess which type of forgery the adversary will produce and set up the simulation
appropriately. In all three cases the simulation is perfect. We start by describing
how to use a Type III forgery which is the more interesting case.

Type III forger: Suppose algorithm A is a Type III forger that (t, q, ε)-breaks
strong unforgeability of Σnew. We construct a simulator B that (t, q, ε)-breaks
existential unforgeability of Σ. B is given a public key PK. B’s goal is to produce
a pair (m, σ) where σ is a valid signature on m and m is not among B’s chosen
message queries. B runs A as follows.

Setup. Algorithm B generates the public key PK′ as follows.
1. Select a random generator g ∈ G.
2. Select a random exponent a ∈ Zp

∗ and set h ← ga.
3. Select a random hash key k ∈ K.
4. Provide the public key PK′ ← (PK, g, h, k) to A.

Signature Queries. Algorithm A issues up to q signature queries. Algorithm
B responds to a query on a message M as follows.
1. Select a random exponent w ∈ Zp and set m ← gw.
2. Ask B’s challenger for a signature on message m. Obtain a signature

(σ1, σ2) on m.
3. Compute t ← Hk(M‖σ2).
4. Set s ← (w − t)/a.
5. Return σ ← (σ1, σ2, s) to A.

Indeed, m = gw = gas+t = gths and s is uniform in Zp as required. Hence,
σ is a valid signature on M .

Output. Finally, algorithm A outputs a forgery
(
M̂, (σ̂1, σ̂2, ŝ)

)
. Algorithm B

produces a weak forgery on the underlying scheme as follows.
1. Compute t̂ ← Hk(M̂‖σ̂2).
2. Compute m̂ ← gt̂hŝ.



3. Output
(
m̂, (σ̂1, σ̂2)

)
.

Note that m̂ /∈ {m1, . . . , mq} because if m̂ = mi for some i ∈ {1, . . . , q}
then, either t̂ = ti (a Type I forgery) or t̂ $= ti (a Type II forgery). Therefore B
produces a forgery on some new message m̂ for the underlying scheme whenever
A produces a Type III forgery, as required.

Type I forger: Next we show how to use a Type I forger. Suppose A is a Type I
forger that (t, q, ε)-breaks strong unforgeability of Σnew. We construct an algo-
rithm B that (t, ε)-breaks the collision-resistance of H. Algorithm B is given a
random key k′ ∈ K. B’s goal is to output a pair of messages (m1, m2) such that
m1 $= m2 and Hk′(m1) = Hk′(m2). B runs A as follows.

Setup. Algorithm B sets k ← k′ and generates the remaining elements of the
public key and the private key according to KeyGennew. B gives A the re-
sulting public key PK′ = (PK, g, h, k) and keeps the secret key SK′.

Signature Queries. A issues up to q signature queries. B responds to a query
on a message Mi by running Signnew(SK′, Mi) and returning the signature
σi to A.

Output. A outputs a forgery
(
M̂, σ̂ = (σ̂1, σ̂2, ŝ)

)
such that

(M̂, σ̂) /∈
{
(M1, σ1), . . . , (Mq, σq)

}
and m̂ = mi and t̂ = ti

for some i ∈ {1, . . . , q}. More precisely, t̂ = ti means that Hk(M̂‖σ̂2) =
Hk(Mi‖σi,2). Similarly, m̂ = mi means that gt̂hŝ = gtihsi .
Then B outputs the pair (M̂‖σ̂2, Mi‖σi,2) as a collision on Hk.

We show that algorithm B succeeds in producing an Hk-collision whenever A
produces a Type I forgery. Since Hk(M̂‖σ̂2) = Hk(Mi‖σi,2) we only need to
show that M̂‖σ̂2 $= Mi‖σi,2.

Suppose towards a contradiction that M̂ = Mi and σ̂2 = σi,2. Since t̂ = ti
and m̂ = mi we know that ŝ = si. (We require that any exponent s ∈ Zp

has a unique encoding.) Furthermore, since σ̂2 = σi,2 and m̂ = mi, the second
property of partitioned signatures implies that σ̂1 = σi,1. Hence, we have just
shown that M̂ = Mi and σ̂ = σi which contradicts the fact that (M̂, σ̂) is a
strong existential forgery. Therefore, M̂‖σ̂2 $= Mi‖σi,2, implying that whenever
A produces a Type I forgery, B produces an Hk-collision.

Type II forger: Finally, we show how to use a Type II forger. Suppose A is a
Type II forger that (t, q, ε)-breaks strong unforgeability of Σnew. We construct
an algorithm B that (t, ε)-solves discrete log in G. Algorithm B is given a random
pair (g′, h′) and its goal is to output a such that h′ = (g′)a. B runs A as follows.

Setup. Algorithm B sets g ← g′, h ← h′, and generates the remaining elements
of the public key and the private key according to KeyGennew. B gives A
the resulting public key PK′ = (PK, g, h, k) and keeps the private key SK′.



Signature Queries. A issues up to q signature queries. B responds to a query
on a message Mi by running Signnew(SK′, Mi) and returning the signature
σi to A.

Forgery. A outputs a forgery
(
M̂, σ̂ = (σ̂1, σ̂2, ŝ)

)
such that m̂ = mi and t̂ $= ti

for some i ∈ {1, . . . , q}. Then we have gt̂hŝ = gtihsi , which can be written as
gt̂(ga)ŝ = gti(ga)si . Then B computes a = (ti − t̂)/(ŝ− si) ∈ Zp and outputs
a in response to its discrete log challenge. Note that ŝ − si $= 0 since ŝ = si

and gt̂hŝ = gtihsi imply t̂ = ti.

Algorithm B succeeds in solving its discrete log challenge whenever A pro-
duces a Type II forgery, as required.

In summary, we showed how to use all three forgery types to break existential
unforgeability of the underlying signature scheme, collision-resistance of H, or
discrete log. This completes the proof of Theorem 1. )*

4 A Concrete Construction:
Strong Unforgeability from CDH

We now apply Theorem 1 to the Waters signature which is based on CDH
without random oracles. It is straightforward to verify that the Waters signature
is partitioned. The functions F1 and F2 are:

F1(m, r, SK) = SK ·
(
u′

n∏

i=1

umi
i

)r ∈ G

F2(r, SK) = gr ∈ G

where u′, u1, . . . , un ∈ G are part of the public key and m = m1 . . . mn ∈ {0, 1}n.
The second property of partitioned signatures holds since given m and σ2 =
F2(r, SK) there is only one σ1 for which the verification equation will hold. Note
that we are assuming that each element g ∈ G has a unique encoding (otherwise
an attacker can invalidate property 2 by simply changing the encoding of a group
element).

Thus, applying Theorem 1 to the Waters signature system we obtain a
strongly unforgeable scheme based on CDH without random oracles. The re-
sulting system is as follows. Let G be a bilinear group of prime order p and let
e : G × G → G1 denote the bilinear map and g be the corresponding generator.
Let H = {Hk} be a collision-resistant hash family of functions Hk : {0, 1}∗ →
{0, 1}n indexed by k ∈ K. We assume p ≥ 2n so that hash outputs can be viewed
as elements of Zp.

KeyGen. To generate the public key, select a random generator g ∈ G and
a random α ∈ Zp and set g1 = gα. Next, select random g2, h ∈ G. Select
random u′, u1, . . . , un ∈ G and let U = (u1, . . . , un). Finally, select a random
hash key k ∈ K. The public and secret keys are:

PK = (g, g1, g2, h, u′, U, k) and SK = (gα
2 )



Note that the secret key is a single group element, but the public key contains
n + 5 group elements where n is the hash output size.

Sign. A signature on a message M ∈ {0, 1}" is generated as follows.
1. Select random exponents r, s ∈ Zp.
2. Set σ2 ← gr ∈ G.
3. Compute t ← Hk(m‖σ2) ∈ {0, 1}n and view t as an element of Zp.
4. Compute m ← Hk(gths) and write m as m1 . . .mn ∈ {0, 1}n.
5. Compute σ1 ← gα

2 · (u′ ∏n
i=1 umi

i )r and output the signature (σ1, σ2, s).
Verify. A signature σ = (σ1, σ2, σ3) on a message M is verified as follows:

1. Compute t̃ ← Hk(M‖σ2) and view t̃ as an element of Zp.
2. Compute m̃ ← Hk(gt̃hσ3) and write m̃ as m̃1 . . . m̃n ∈ {0, 1}n.
3. Check that

e(σ1, g) ?= e(σ2, u
′

n∏

i=1

um̃i
i ) · e(g1, g2) .

Accept if this holds and reject otherwise.

Corollary 1. The signature system above is (t, q, ε)-strongly existentially un-
forgeable assuming the (t, ε/24(n + 1)q)-CDH assumption holds in G, and H is
(t, ε/3)-collision-resistant.

Proof. The Waters system is known to be (t, q, ε)-existentially unforgeable as-
suming (t, ε/8(n + 1)q)-CDH holds in G. It follows that the system is (t, q, ε/3)-
existentially unforgeable assuming (t, ε/24(n + 1)q)-CDH holds in G. When
(t, ε/3)-CDH holds in G then (t, ε/3)-Dlog must also hold in G. Hence, since
the system is partitioned, all the requirements of Theorem 1 are satisfied. Con-
sequently, the signature system above is strongly unforgeable.

Efficiency. Our signature system is only slightly worse than the Waters signature
system in terms of performance. The signing operation in our scheme takes four
exponentiations and n/2 + 2 group operations in G on average. The verification
algorithm consists of two pairings, two exponentiations, n/2+1 group operations
in G and one group operation in G1 on average. Like the Waters signature scheme
public keys are approximately n group elements. However, we note that the
values u′, U = (u1, . . . , un) can actually come from a common reference string
and be shared by all users in a system. If this is the case each user’s public key
can be short.

5 Conclusions

We constructed a strongly unforgeable signature system based on the standard
Computational Diffie-Hellman problem in bilinear groups. The signature is effi-
cient and contains only two group elements (plus a short random string). The
public key size is proportional to the output size of the hash function used. We
presented the construction in two steps. First, we showed a general mechanism



for transforming any partitioned (weakly) unforgeable system into a strongly
unforgeable system. We then applied this transformation to a specific system.

Surprisingly, our signature system does not seem to naturally extend to give
an efficient threshold signature [16]. In fact, the only known efficient strongly
unforgeable threshold signatures (in the standard model) appear to be the unique
signatures of Lysyanskaya [23] and Dodis [13]. Thresholdizing these signatures,
however, requires multiple rounds of interaction with the signing servers and
the resulting signatures are somewhat long. We leave as an open problem the
question of constructing a threshold unforgeable signature based on a standard
assumption.

References

1. J. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption.
In L. R. Knudsen, editor, Proceedings of Eurocrypt 2002, volume 2332 of LNCS,
pages 83–107. Springer-Verlag, 2002.

2. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably secure
coalition-resistant group signature scheme. In M. Bellare, editor, Proceedings of
Crypto 2000, volume 1880 of LNCS, pages 255–70. Springer-Verlag, Aug. 2000.

3. M. Bellare and P. Rogaway. The exact security of digital signatures: How to sign
with RSA and Rabin. In U. Maurer, editor, Proceedings of Eurocrypt ’96, volume
1070 of LNCS, pages 399–416. Springer-Verlag, 1996.

4. D. Boneh and X. Boyen. Short signatures without random oracles. In C. Cachin and
J. Camenisch, editors, Proceedings of Eurocrypt 2004, volume 3027 of LNCS, pages
56–73. Springer-Verlag, 2004. Full version at: http://eprint.iacr.org/2004/171.

5. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin,
editor, Proceedings of Crypto 2004, volume 3152 of LNCS, pages 41–55. Springer-
Verlag, 2004.

6. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. J.
of Cryptology, 17(4):297–319, 2004. Early version in Asiacrypt ’01.

7. D. Boneh, I. Mironov, and V. Shoup. A secure signature scheme from bilinear
maps. In M. Joye, editor, Proceedings of RSA-CT ’03, volume 2612 of LNCS,
pages 98–110. Springer-Verlag, 2003.

8. R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based
encryption. In C. Cachin and J. Camenisch, editors, Proceedings of Eurocrypt 2004,
LNCS, pages 207–222. Springer-Verlag, 2004. http://eprint.iacr.org/2003/182/.

9. J.-S. Coron. On the Exact Security of Full Domain Hash. In M. Bellare, editor,
Proceedings of Crypto 2000, volume 1880 of Lecture Notes in Computer Science,
pages 229–235. Springer-Verlag, 2000.

10. R. Cramer and I. Damg̊ard. New generation of secure and practical rsa-based
signatures. In N. Koblitz, editor, Proceedings of Crypto ’96, volume 1109 of LNCS,
pages 173–185. Springer-Verlag, 1996.

11. R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption.
ACM TISSEC, 3(3):161–185, 2000. Extended abstract in Proc. 6th ACM CCS,
1999.

12. I. Damg̊ard. Collision free hash functions and public key signature schemes. In
D. Chaum and W. L. Price, editors, Proceedings of Eurocrypt ’87, volume 304 of
LNCS, pages 203–216. Springer-Verlag, 1987.



13. Y. Dodis. Efficient construction of (distributed) verifiable random functions. In
Y. Desmedt, editor, Workshop on Public Key Cryptography (PKC), volume 2567
of LNCS, pages 1–17. Springer-Verlag, 2003.

14. D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. SIAM J. of
Computing, 30(2):391–437, 2000.

15. C. Dwork and M. Naor. An efficient existentially unforgeable signature scheme and
its applications. J. of Cryptology, 11(2):187–208, 1998. Early version in Crypto
’94.

16. P. Gemmel. An introduction to threshold cryptography. RSA CryptoBytes, 2(3):7–
12, 1997.

17. R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signatures without the
random oracle. In J. Stern, editor, Proceedings of Eurocrypt 1999, volume 1592 of
LNCS, pages 123–139. Springer-Verlag, 1999.

18. E.-J. Goh and S. Jarecki. A signature scheme as secure as the Diffie-Hellman
problem. In E. Biham, editor, Proceedings of Eurocrypt 2003, volume 2656 of
LNCS, pages 401–415. Springer-Verlag, 2003.

19. O. Goldreich. Two remarks concerning the goldwasser-micali-rivest signature
scheme. In A. M. Odlyzko, editor, Proceedings of Crypto’86, volume 263 of LNCS,
pages 104–110. Springer-Verlag, 1987.

20. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Computing, 17(2):281–308, 1988.

21. A. Joux. A one round protocol for tripartite Diffie-Hellman. In W. Bosma, editor,
Proceedings of ANTS IV, volume 1838 of LNCS, pages 385–94. Springer-Verlag,
2000.

22. H. Krawczyk and T. Rabin. Chameleon signatures. In Proceedings of NDSS 2000.
Internet Society, 2000. http://eprint.iacr.org/1998/010/.

23. A. Lysyanskaya. Unique signatures and verifiable random functions from the DH-
DDH separation. In M. Yung, editor, Proceedings of Crypto 2002, volume 2442 of
LNCS, pages 597–612. Springer-Verlag, 2002.

24. A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

25. S. Micali, M. Rabin, and S. Vadhan. Verifiable random functions. In Proceedings
of the 40th Annual Symposium on the Foundations of Computer Science, pages
120–130, New York, NY, October 1999. IEEE.

26. S. Micali and L. Reyzin. Improving the exact security of digital signature schemes.
J. of Cryptology, 15(1):1–18, 2002.

27. M. Naor and M. Yung. Universal one-way hash functions and their cryptographic
applications. In Proceedings of STOC’89, pages 33–43, 1989.

28. B. Waters. Efficient identity-based encryption without random oracles. In
R. Cramer, editor, Proceedings of Eurocrypt 2005, volume 3494 of LNCS, pages
114–127. Springer-Verlag, 2005.


