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Abstract. In this paper, we propose new signature schemes provably
secure under the strong RSA assumption in the standard model. Our
proposals utilize Shamir-Tauman’s generic construction for building EF-
CMA secure online/offline signature schemes from trapdoor commit-
ments and less secure basic signature schemes. We introduce a new natu-
ral intractability assumption for hash functions, which can be interpreted
as a generalization of second pre-image collision resistance. Assuming
the validity of this assumption, we are able to construct new signature
schemes provably secure under the strong RSA assumption without ran-
dom oracles. In contrast to Cramer-Shoup’s signature scheme based on
strong RSA in the standard model, no costly generation of prime num-
bers is required for the signer in our proposed schemes. Moreover, the
security of our schemes relies on weaker assumptions placed on the hash
function than Gennaro, Halevi and Rabin’s solution.
Keywords: Online/offline signatures, trapdoor hash, strong RSA as-
sumption, division intractability

1 Introduction

Digital signatures are intended to replace handwritten signatures in the elec-
tronic world. The security goal here is authenticity, e.g., the proof of authorship
of messages. Besides obvious applications in electronic commerce, digital signa-
tures are important building blocks for various kinds of cryptographic protocols,
and traditional public key infrastructures rely on digital signatures for certifying
public keys.

Until 1999, all provably secure solutions for efficient digital signature schemes
relied on the random oracle methodology [BR93]. In the random oracle model
(ROM), all parties (the legitimate ones as well as the adversary) have black-
box access to functions which behave like truly random functions. Under this
idealized assumption it became possible to develop cryptosystems that are both
efficient and provably secure. In concrete implementations, however, truly ran-
dom functions are out of reach and the random oracles are replaced by concrete
objects like cryptographic hash functions. Thus it is obvious that even a rig-
orously analyzed security proof in the random oracle model does not guaranty
security in the real world. As a real world adversary may exploit some weak-
nesses of the hash functions used, a proof in the ROM can only exclude generic



attacks against the scheme. Even worse, recently published results show sepa-
rations between the random oracle scenario and standard model as there exist
cryptosystems provably secure in the ROM that nevertheless are breakable when
implemented with any concrete realization [CGH98,CGH04].

Then, in 1999, Cramer and Shoup on the one hand and Gennaro, Halevi
and Rabin on the other hand independently came up with practical solutions
for digital signature schemes provably secure without random oracles, i.e., in
the standard model [CS99,GHR99]. Interestingly, the security of both proposals
relies on the same intractability assumption, namely the hardness of the flexible
RSA problem, also known as the strong RSA assumption. However, none of
these solutions is free from disadvantages. The major drawback of the Cramer-
Shoup scheme—referred to as CS scheme in the following—is that the signer
is required to generate a prime number for producing a signature. According
to heuristics given in [CS99], the costs for prime number generation are one
third of the total signing costs on average. The most crucial disadvantage of the
Gennaro-Halevi-Rabin scheme—referred to as GHR scheme in the following—
is that its security relies on a strong non-standard assumption placed on the
hash function used. Gennaro et al. prove the existence of suitable hash functions
under the strong RSA assumption by constructing a concrete implementation,
however, when utilizing this fully proved hash function the entire system becomes
less efficient than the CS scheme. Our aim in this paper is to overcome both
drawbacks.

On the first glance, the CS scheme and the GHR scheme seem quite different.
But in the light of more recent results about generic constructions of provably
secure signature schemes, one may observe a common design principle (here, we
consider the fully proved GHR scheme): In both cases, first a commitment to
the message is constructed, followed by signing the commitment with a “weak”
signature scheme. For the first step a trapdoor commitment scheme is utilized,
which enables the simulator in the security proof to answer signature queries
based on previously computed commitments. Although the weak basic signature
schemes are different in CS and GHR, both make use of prime numbers to permit
the reduction of the flexible RSA problem to the security of the basic signature
scheme1. In 2001, Shamir and Tauman universalized this approach and proposed
a generic construction for online/offline signature schemes [ST01]. As now the
mechanisms to enhance the security of “weak” signature schemes by the means
of trapdoor commitments are better understood, it seems worthwhile to revisit
the CS and GHR schemes.

Our goal is to get rid off the need for prime number generation as well as off
the strong assumption placed on the hash function. Therefore, the GHR basic
signature scheme seems to be a more promising candidate to start with because

1 In the GHR scheme, the hash function used in the basic signature scheme has to
satisfy a rather strong assumption. Gennaro et al. show that a trapdoor commitment
scheme combined with a collision resistant hash function producing prime digests
only is a possible implementation for the hash function. Thus, formally the task of
prime number generation is assigned to the hash function here.



prime number generation is incorporated directly in its CS pendant. An analysis
of this scheme reveals that the weak security conditions necessary for a Shamir-
Tauman-like construction can be fulfilled if the utilized hash function possesses
a property that is similar but intuitively less demanding than its analog in the in
the GHR framework. To be more concrete, Gennaro et al. introduced the notion
of a division-intractable family of hash functions H, which briefly states that
given H ∈ H, it is infeasible to find values X1, . . . , Xn, Y such that H(Y ) divides
the product

∏n
i=1 H(Xi). In contrast, our construction only requires what we

call weak division-intractability, meaning that given H ∈ H and X1, . . . , Xn, it is
infeasible to find Y such that H(Y ) divides the product

∏n
i=1 H(Xi). Thus, the

values Xi are not longer under the attacker’s control. Note that our newly defined
property relaxes Gennaro et al.’s notion of (strong) division intractability in
exactly the same way as second pre-image resistance relaxes collision resistance.

2 Preliminaries

Throughout this paper, we use the following notations:
For any positive integer N we write ZN for the ring of residue classes modulo
N , and Z×

N for its multiplicative group. |N |2 denotes the bit-length of N , and
we write [N ]k for the integer corresponding to the k most significant bits of N .
As usual, a probability Pr(k) is called negligible if Pr(k) decreases faster than the
inverse of any polynomial in k, i.e. ∀c∃kc(k > kc ⇒ Pr(k) < k−c). In contrast,
a probability Pr(k) is called overwhelming, if 1 − Pr(k) is negligible.
We abbreviate probabilistic polynomial time by PPT.

2.1 Digital Signature Schemes

A digital signature scheme is denoted by Ω = (Gsign , Sign, Verify). Gsign is a PPT
algorithm which on input a security parameter generates (sk, vk), where vk and
sk are the secret signing and the public verification key, respectively. Sign is a
PPT algorithm which produces a signature σ on input a message m and the
secret key sk. Verify is a polynomial time algorithm which checks the validity
of (m,σ) by using vk, say Verify(vk, m,σ) = valid or invalid. It is required that
Verify(vk, m,σ) = valid holds if and only if σ is a possible outcome of Sign(sk, m).
For brevity, we also write Signsk(m) instead of Sign(sk, m) and Verifyvk(m,σ)
instead of Verify(vk, m,σ).

In the following, we review security notions for digital signature schemes. All
the notions below have been introduced by Goldwasser, Micali and Rivest [GMR88].

The standard security notion of signature schemes is existential unforgeability
under adaptive chosen message attacks (EF-CMA). Here, the attacker is allowed
to query the signing oracle adaptively.

Definition 1 (EF-CMA). A digital signature scheme Ω = (Gsign , Sign, Verify)
is said to be existentially unforgeable under adaptive chosen message attacks if



for any PPT adversary A the following probability is negligible in #:

Pr





(sk, vk) ←! Gsign(1!),
FOR i = 1, . . . , k:

{mi ←! A(vk, m1,σ1, . . . , mi−1,σi−1); σi ←! Signsk(mi)} ,
(m∗,σ∗) ←! A(vk, m1,σ1, . . . , mk,σk) :
m∗ '∈ {m1, . . . , mt} ∧ Verifyvk(m∗,σ∗) = valid




.

In this paper, we call a signature scheme is adaptively secure if it is EF-CMA.
A much weaker security notion is existential unforgeability against random

message attacks, a.k.a. known message attacks (EF-KMA). Here, the adversary
is just given the verification key and a list of randomly generated valid mes-
sage/signature pairs without any control over the messages.

Definition 2 (EF-KMA). A digital signature scheme Ω = (Gsign , Sign, Verify)
is said to be existentially unforgeable under known message attacks if for any
PPT adversary A the following probability is negligible in #:

Pr





(sk, vk) ←! Gsign(1!),
FOR i = 1, . . . , k: {mi ←! M, σi ←! Signsk(mi)} ,
(m∗,σ∗) ←! A(vk, m1,σ1, . . . , mk,σk) :
m∗ '∈ {m1, . . . , mt} ∧ Verifyvk(m∗,σ∗) = valid



 .

In this paper, we call EF-KMA secure signature schemes weakly secure.

2.2 Trapdoor Commitment Schemes

A trapdoor commitment scheme is defined by T C = (GTC , Tcom, Topen), where
Topen is Twopen or Tsopen as shown below. GTC is a PPT algorithm which
generates (pk, tk), where pk is the public key and tk is the trapdoor. Associated
to T C are the spaces of messages M, randomness R and commitments C.

Tcom is the algorithm that computes a commitment to m as x = Tcom(pk, m, r),
where r ∈ R is a random nonce. To open the commitment x, the sender reveals
m, r and the receiver recomputes x.

Twopen is the algorithm that weakly opens a commitment in any desired
way with the trapdoor tk. For given m, r and a target message m′, it outputs
r′ = Twopen(tk, m, r, m′) such that x = Tcom(pk, m, r) = Tcom(pk, m′, r′).

Hence, the trapdoor holder is able to create a “dummy commitment” and
later open this commitment to any message of his choice.

However, for some applications a strictly stronger property turns out to be
useful; namely, the owner of the trapdoor key should be able to open a com-
mitment arbitrarily even without knowledge of the pre-image values r, m. We
call this mechanism strong trapdoor opening2 and the corresponding schemes
strong. In such a strong trapdoor commitment scheme there exists an algorithm
Tsopen such that for a given commitment x and a target message m it outputs
r = Tsopen(tk, m, x) with x = Tcom(pk, m, r).
2 In [ST01], this property is referred to as inversion property.



The existence of (strong or weak) trapdoor opening algorithms Topen implies
that the receiver cannot obtain any information about m given x.

The security of trapdoor commitment schemes requires that without knowl-
edge of the trapdoor key it should be hard to find collisions. Moreover, random-
ness r obtained by invoking the trapdoor opening algorithm should be indistin-
guishable from properly generated r. Again, we simplify the notation by writing
the keys as indices.

Definition 3. We say that a trapdoor commitment scheme T C = (GTC , Tcom,
Topen) is secure if the following properties hold:

Collision resistance: For any PPT A the following probability is negligible in
#:

Pr
[

(pk, tk) ←! GTC (1!),A(pk) = (r, m, r′, m′),
m '= m′ ∧ Tcompk(r, m) = Tcompk(r′, m′)

]
.

Uniformity: The outcome of Topen is computationally indistinguishable from
uniform in R provided that
– in case of weak altering the input r is uniformly distributed in R, resp.
– in case of strong altering the following holds: for any m ∈ M the dis-

tribution of the input x is computationally indistinguishable from the
distribution of Tcompk(m, r), where r is uniformly distributed in R.

2.3 Hash Functions

A hash function is an efficiently computable procedure that maps strings of ar-
bitrary length to strings of fixed length. The sequence H = (Hk)k∈N is called a
family of hash functions if each Hk is a collection of hash functions with output
length k. Analog to signature and trapdoor commitment schemes, collections
of hash functions can also be defined via a key generation algorithm, but for
better readability, we utilize less formal notations below. Within the scope of
this paper, the most important security properties of hash functions are the
standard requirements (second pre-image) collision resistance (dating back to
Damg̊ard [Dam87]) and the non-standard ones weak/strong division intractabil-
ity (the strong version introduced by Gennaro, Halevi and Rabin [GHR99], the
weak version introduced and defined below in the present paper).

Definition 4 ((Second pre-image) collision resistance). A family H =
(Hk)k∈K of hash functions is said to be

collision resistant if for any PPT adversary A, the following probability is
negligible in k:

Pr
H∈Hk

[A(H) = (X, Y ) : X '= Y ∧ H(X) = H(Y )],

second pre-image collision resistant if for any PPT adversary A, the fol-
lowing probability is negligible in k:

Pr
H∈Hk,X

[A(H, X) = (Y ) : X '= Y ∧ H(X) = H(Y )].



It is obvious that collision resistance implies second pre-image collision resis-
tance.

Definition 5 (Weak/strong division intractability). A family H = (Hk)k∈N
of hash functions is said to be

strongly division intractable if for any PPT adversary A, the following prob-
ability is negligible in k:

Pr
H∈Hk

[
A(H) = (X1, X2, . . . , Xn, Y ) :
Y '∈ {X1, X2, . . . , Xn} ∧ H(Y ) divides

∏n
i=1 H(Xi)

]
,

weakly division intractable if for any PPT adversary A, the following prob-
ability is negligible in k for any n which is polynomially bounded by k:

Pr
H∈Hk,X1,...,Xn

[
A(H, X1, X2, . . . , Xn) = Y :
Y '∈ {X1, X2, . . . , Xn} ∧ H(Y ) divides

∏n
i=1 H(Xi)

]
.

Note that our newly defined property of weak division intractability relaxes Gen-
naro et al.’s notion of (strong) division intractability in exactly the same way
as second pre-image collision resistance lessens full collision resistance. More-
over, while division intractability obviously implies collision resistance, it is also
easy to see that weak division intractability implies second pre-image collision
resistance. The opposite directions, however, are not true. We will discuss the
relationship between strong and weak division intractability further in Section 5.

2.4 Intractability Assumptions

Our proposed online/offline signature schemes rely on the following standard
intractability assumptions:

Claim (Blum Factorization Assumption). Given N = pq for two random primes
p, q with |p|2 ≈ |q|2 and p = q = 3 mod 4, it is hard to factor N .

The integer N from the preceeding assumption is called a Blum integer. If N is a
Blum integer, then squaring is a permutation on the group QR(N) of quadratic
residues modulo N .

Claim (p2q Factorization Assumption). Given N = p2q for two random primes
p, q with |p|2 ≈ |q|2, it is hard to factor N .

The following assumption has been first described by Barić and Pfitzmann [BP97].

Claim (Strong RSA Assumption). Given N = pq for two random primes p, q
and a randomly chosen s ∈ Z×

N , it is hard to find values r ∈ Z×
N and e > 1 such

that re = s mod N .



In the preceeding claim, the tuple (N, s) is called an instance of the flexible RSA
problem. In the rest of this paper, we sometimes use special moduli such as Blum
integers or products of safe primes3. In this case, the Strong RSA Assumption
has to be understood with respect to these kind of moduli.

We now state a useful lemma, which is proved, for example, in [CL02].

Lemma 1 Let N = pq be the product of two distinct safe primes p = 2p′+1, q =
2q′ + 1. Given s, t ∈ QR(N) along with 0 < a < b such that sb = ta mod N
and gcd(a, b) < a, one can efficiently compute values r, e > 1 such that re =
s mod N .

Proof. By using extended Euclidean algorithm, we can efficiently find u, v ∈ Z
such that au + bv = gcd(a, b) =: c. In particular, we have (a/c)u + (b/c)v = 1.

Without loss of generality, we may assume gcd(c, p′q′) = 1, because otherwise
we can factor N (either directly from the knowledge of p′ resp. q′, or by applying
Miller’s algorithm [Mil75] on a multiple of ϕ(N) = 4p′q′). Therefore, from sb =
ta mod N , we conclude sb/c = ta/c mod N , leading to

s = s(a/c)u+(b/c)v = s(a/c)ut(a/c)v = (sutv)(a/c) mod N.

Hence, we obtain e = a/c and r = sutv mod N . *+

Note that as one quarter of the elements of Z×
N are quadratic residues, we have

that if the Strong RSA Assumption is true at all, then it is also true for instances
(N, s) where s is randomly chosen from QR(N). Thus efficiently finding t, a, b
given N, s as in Lemma 1 above violates the Strong RSA Assumption.

2.5 Online/Offline Signature Schemes

The notion of online/offline signatures was introduced by Even et al. [EGM96].
In such schemes, the online phase of the signing algorithm is made very fast
due to the precomputation performed in the offline phase before the message
actually to be signed is known.

In 2001, Shamir and Tauman improved this generic construction [ST01].
Informally, their new approach can be described as using the well-known hash-
then-sign paradigm, where the ordinary hash function is replaced by a trapdoor
commitment scheme: Let Ω = (Gsign , Sign, Verify) and T C = (GTC , Tcom, Topen)
be a weakly secure signature scheme and a trapdoor commitment scheme, respec-
tively. The key generation algorithm of the entire online/offline signature scheme
runs both individual key generation algorithms Gsign , GTC , and the signer is
given the secret signing key sk as well as the secret trapdoor key tk. The public
key is (vk, pk), where vk is the verification key of Ω and pk is the public key of
T C.

Offline phase: Choose a dummy message m̃ and a random number r̃. Compute
hash = Tcompk(m̃, r̃), σ = Signsk(hash) and store (m̃, r̃,σ).

3 A prime p is called a safe prime if (p − 1)/2 is also prime.



Online phase: Given a message m, first retrieve (m̃, r̃,σ) from memory. Then,
by using tk, find r such that Tcompk(m, r) = Tcompk(m̃, r̃) holds. Output
(σ, r) as the signature of m.

Verification is straightforward, as by construction σ is a valid hash-then-sign
signature of m.

Fortunately, this generic construction also enhances the security of the basic
signature scheme: If Ω is existentially unforgeable against generic message at-
tacks (EF-GMA), then the online-offline scheme as described above is adaptively
secure (EF-CMA). Moreover, if T C also allows strongly trapdoor opening, then
Ω is only required to be existentially unforgeable under known message attacks
(EF-KMA).

Therefore, Shamir and Tauman’s construction might also be useful in envi-
ronments where the distinction between online and offline costs is not an issue.
In this case, the composed signature algorithm simply consists of committing to
the message and signing the commitment, and there is no need for the signer
to know the trapdoor key. The ability of arbitrarily opening commitments is
only required in the security proof to enable the simulator to respond to the sig-
nature queries. In the following, we call this construction the commit-then-sign
approach. As mentioned in the Introduction, the CS scheme also follows this
design principle4.

Remark 1. The technique of commiting to a message with a trapdoor commit-
ment scheme and signing the commitment has also been used by Krawczyk and
Rabin for introducing chameleon signatures [KR00]. In contrast to the approach
above, in a chameleon signature scheme the recipient is the trapdoor holder.
Whilst in case of Shamir/Tauman, the intended goal is efficient online signing
and a security enhancement of the basic signature scheme, the aim of chameleon
signatures is to distract the receiver of a signature from revealing the signed
message to any third party.

3 The Primitives

In this section, we present the building blocks for our proposed full signature
schemes. As noted above, the basic primitives are a (strong) trapdoor commit-
ment scheme and a weakly secure signature scheme.

3.1 A Trapdoor Commitment Scheme with Strongly Trapdoor
Opening Based on Factoring

We propose a factorization-based trapdoor commitment scheme T C2k = (GTC ,
Tcom, Topen) resting on the 2k identification scheme of Shoup [Sho99] as follows:
4 In fact, Cramer and Shoup also proposed an online/offline version of their scheme

by providing the signer with the trapdoor key. Thus, Shamir and Tauman’s idea is
not new.



GTC : Let # be a security parameter. Choose two #-bit prime numbers p and q
such that p = q = 3 mod 4. Let N = pq. Pick v ∈ QR(N) randomly and
define a parameter k such that 2k grows faster than any polynomial in #.
The public key consists of (N, v, k) and the trapdoor key is (p, q).

Tcom: To commit to a message m ∈ {0, . . . , 2k−1 − 1}, the commiter chooses a
random value r ∈ Z×

N and computes Tcompk(r, m) = r2k
vm mod N .

Topen: Given a target message m and a commitment x, the strong trapdoor
opening algorithm computes r ∈ Z×

N such that x = r2k

vm mod N . Weak
trapdoor opening is realized by Twopentk(m, r, m′) = r′ = rv(m−m′)2−k

mod
N .

We have the following theorem:

Theorem 1. Under the Blum Factorization Assumption the above construction
T C2k is a strong trapdoor commitment scheme secure in the sense of Definition 3.

Proof. The correctness of the trapdoor opening algorithms is obvious.
To prove the collision resistance, we assume that A is a PPT collision finder.

We then construct a PPT algorithm I which can factor Blum integers N as
follows: On input N , I chooses a such that

( a

N

)
= −1

randomly, where
( ·
·
)

denotes the Jacobi symbol. I computes v = a2 mod N and
runs A on input (N, v). A eventually outputs (m, r), (m′, r′) such that m '=
m′, Tcom(r, m) = Tcom(r′, m′). It holds that

r2k

vm = r′2
k

vm′
mod N.

Therefore, we obtain that

(r/r′)2
k

= vm′−m mod N.

Wlog, assume that m′ > m and let m′−m = u2t, where u is odd. Then t < k−1.
Let z = r/r′ mod N . Now

z2k

= vu2t

= (a2)u2t

mod N.

Since p = q = 3 mod 4, we have

(z2k−t−1
)2 = (au)2 mod N.

From k − t − 1 > 0, we have
(

z2k−t−1

N

)
= 1.



On the other hand, (
au

N

)
= −1

because u is odd. Therefore, we can factor N with probability 1 by computing
gcd(au − z2k−t−1

, N).
Finally, we note that for each message m ∈ {0, . . . , 2k−1 − 1} and for each

commitment x ∈ QR(N) there are exactly four r ∈ Z×
N with x = Tcom(r, m).

Consequently, uniformity holds for both trapdoor opening algorithms. *+

Remark 2. If weak altering is sufficient, we define v2−k
mod N as the trapdoor

key.

As we will see, combined with a weakly secure signature scheme, T C2k yields
an adaptively secure commit-then-sign scheme as described in Section 2.5. How-
ever, as the opening algorithms require a modular exponentiation, it is not rea-
sonable to use T C2k as a building block for a full online/offline signature scheme.

For the construction of schemes with real online/offline properties, trapdoor
commitments with extremely fast weak trapdoor opening are required. A variant
of the following scheme T Cp2q = (GTC , Tcom, Topen) has recently been proposed
by Schmidt-Samoa and Takagi [SST05]:

GTC : Let # be a security parameter. Randomly choose two #-bit primes p, q with
p ! q− 1, q ! p− 1 and compute N = p2q. Define a parameter k minimal with
respect to 2k > pq

√
p, and a parameter l maximal with respect to lpq < 2k.

The public key is pk = (N, k), and the trapdoor key is tk = (p, q, l).
Tcom: To commit to a message m ∈ {0, . . . , [N ]|N |2−k−1}, a value r ∈ {0, . . . , 2k−

1} is chosen uniformly at random and Tcom(r, m) = (2km + r)N mod N
is computed, where [N ]|N |2−k stands for the integer corresponding to the
|N |2 − k most significant bits of N .

Topen: Given a target message m and a commitment x, the strong trapdoor
opening algorithm first computes aux = x1/N − 2km mod pq. Then, 0 ≤
s < l is chosen uniformly at random, and the output r is computed as
r = aux + spq.
Weak trapdoor opening on the input m, r, m′ is realized by first computing
aux = 2k(m − m′) + r mod pq, and then proceeding as before.

Theorem 2 ([SST05]). T Cp2q = (GTC , Tcom, Topen) is a secure trapdoor com-
mitment scheme in the sense of Definition 3.

Remark 3. In the original scheme from [SST05], the randomness is chosen from
Zpq. In this case, however, a polynomial number of trapdoor openings reveals a
logarithmic number of the most significant bits of the secret pq. Although this
is not a thread in the light of current factoring achievements (lattice methods
like [Cop97] require the knowledge of the O((pq)1/3) most significants bit of pq
to factor p2q), we slightly modified the scheme as described above. Now, the ran-
domness is sampled from the set {0, . . . , 2k − 1}, and the r constructed by the



opening algorithms Topen is uniformly distributed over the set {0, . . . , lpq − 1}.
These distributions are statistically close (a simple computation shows that the
distance is upperbounded by 2/

√
p). This modification also ensures that the sim-

ulator in the commit-then-sign security proof is able to compute commitments
properly.

Note that weak trapdoor opening only requires a modular addition, a short
integer multiplication, and a bit-shift, and therefore can be computed extremely
fast.

3.2 A Weakly Secure Signature Scheme Based on Strong-RSA

In this section, we analyze a simple RSA-type hash-then-sign signature scheme.
The proposed scheme is essentially the same as Gennaro, Halevi and Rabin
introduced in [GHR99]. In that paper, Gennaro et al. proved that when instan-
tiated with a so-called suitable hash function, their scheme is adaptively secure
(EF-CMA) under the Strong RSA Assumption. The most crucial demands on a
suitable hash function are (strong) division intractability, which can be achieved
by forcing the output to be a prime, and the property that collision finding does
not help solving the flexible RSA problem, i.e., the two associated intractabil-
ity assumptions should be unrelated in a sense. The latter requirement is dealt
with by implementing the hash function as a trapdoor commitment scheme. In
the following, we prove that if we relax the hash requirement to weak division
intractability, then the signature scheme is still weakly secure.
Let us now describe the basic signature scheme ΩS−RSA = (Gsign , Sign, Verify).

Gsign : On input a security parameter #, choose two safe #-bit primes p, q. Set
N = pq and randomly select y ∈ QR(N). Finally, pick a weakly division
intractable hash function H from a family of hash functions. We assume
that H always outputs odd integers5. The public key consists of N, y and
H ; the secret key is p, q.

Sign: To sign a message m ∈ {0, 1}∗, first compute the hash e = H(m). Then,
with knowledge of p and q, compute an e-th root of y modulo N :

σ = y
1
e mod N.

Then, σ is the signature of m.
Verify: Given (m,σ), output valid if σH(m) = y mod N holds and invalid, other-

wise.

Note that the signing algorithm can compute an appropriate root modulo N
with overwhelming probability because N is a product of safe primes. Namely,
four is the only small factor of ϕ(N) and thus, any odd element not co-prime
with ϕ(N) reveals the factorization of N .

5 This can be easily achieved by setting the least significant output bit to one.



Theorem 3. Provided the Strong RSA Assumption is valid, the basic signature
scheme ΩS−RSA above is existentially unforgeable under known message attacks
(EF-KMA).

Proof. Let F be a EF-KMA adversary against ΩS−RSA. We construct an attacker
A against the Strong RSA Assumption, which uses F as a subroutine. A is given
a quadratic instance (N, s) of the flexible RSA problem for safe moduli, i.e., N
is a product of two safe primes and s is a quadratic residue modulo N . A picks
dummy messages m1, . . . , mk at random and defines

y = s
Qk

i=1 H(mi) mod N.

Moreover, A computes

σj = s
Qk

i=1,i#=j H(mi) mod N

for j = 1, . . . , k. Observe that, by construction, σj is a valid signature on mj .
A gives the forger F the public key N, y as well as the signature/message pairs
(m1,σ1), . . . , (mk,σk). Eventually, F outputs a forgery (m,σ). Validity of this
forgery implies

σH(m) = y = s
Qk

i=1 H(mi) mod N.

As H is weakly division intractable and m '∈ {m1, . . . , mk}, we must have
gcd(

∏k
i=1 H(mi), H(m)) < H(m). Thus, by applying Lemma 1, A can efficiently

find values r, e > 1 with re = s mod N . Consequently, A could break the Strong
RSA Assumption if the advantage of F were non-negligible. *+

4 New Adaptively Secure Signatures Based on
Strong-RSA

In this section, we eventually combine the primitives described in the section
above using Shamir-Tauman’s approach. As mentioned before, we utilize the
trapdoor commitment T C2k to enhance the weak security of the basic signature
scheme ΩS−RSA to full adaptive security, whereas the usage of T Cp2q additionally
provides online/offline functionality. The reason why we have introduced T C2k

is that its underlying intractability assumption (Blum Factorization) is implied
by the Strong RSA Assumption, and thus we can base the entire construction
on the latter only.

In the following, we assume that H is a hash function that always outputs
odd integers. Our first proposal is as follows:

Gsign : Choose two safe primes p1, q1 as well as two primes p2, q2 with p2 = q2 =
3 mod 4. Set N1 = p1q1, N2 = p2q2 and randomly select y ∈ QR(N1), v ∈
QR(N2). Define a parameter k such that 2k grows faster than any polynomial
in the security parameter. The public key consists of N1, N2, y, v, k; the secret
key is p1, q1.



Sign: To sign a message m ∈ {0, . . . , 2k−1 − 1}, first commit to m by choosing
a random value r ∈ Z×

N2
and computing x = r2k

vm mod N2. Then build the
hash e = H(x). Finally, with knowledge of p1 and q1, construct an e-th root
of y modulo N1:

σ = y
1
e mod N1.

Output (σ, r) as the signature of m.
Verify: Given (m,σ, r), first compute x = r2k

vm mod N2. Output valid if σH(x) =
y mod N1 holds and invalid, otherwise.

Theorem 4. If H is weakly division intractable and the Strong RSA Assump-
tion is valid, then the signature scheme above is existentially unforgeable under
adaptive chosen message attacks (EF-CMA).

Proof. From Theorem 1 we have that the commitment scheme utilized in the con-
struction above is a secure trapdoor commitment scheme which allows strongly
trapdoor opening. Theorem 1 states that the basic signature scheme used to sign
the commitments is weakly secure under the Strong RSA Assumption. The gen-
eration of different moduli ensures that the underlying problems are unrelated,
i.e., even with knowledge of p2, q2, which enables to open the commitments in
any desired way, it is still assumed to be infeasible to solve the flexible RSA prob-
lem with respect to N1. Thus, from the results of Shamir and Tauman [ST01],
the assertion follows.

A direct proof without using the result from Shamir and Tauman is given in
the full version of this paper [KSS06]. *+

Now we replace the commitment scheme to achieve online/offline functionality.

Gsign : Choose two safe primes p1, q1 as well as two primes p2, q2 with p2 ! q2 −
1, q2 ! p2 − 1. Set N1 = p1q1, N2 = p2

2q2 and randomly select y ∈ QR(N1).
Define a parameter k minimal with respect to 2k > pq

√
p, and a parameter

l maximal with respect to lpq < 2k. The public key consists of N1, N2, y, k;
the secret key is p1, q1, p2, q2, l.

Sign: 1. Offline phase: Pick a dummy message m̃ ∈ {0, . . . , [N2]|N2|2−k − 1},
and commit to m̃ by choosing a random value r̃ ∈ Zp2q2 and computing
x = (2km̃ + r̃)N2 mod N2. Then build the hash e = H(x). Finally, with
knowledge of p1 and q1, construct an e-th root of y modulo N1:

σ = y
1
e mod N1.

Store σ, m̃, r̃.
2. Online phase: To finish the signature generation when the message m

to be signed is known, first retrieve σ, m̃, r̃ from memory. Then compute
aux = 2k(m̃ − m) + r̃ mod p2q2. Finally, 0 ≤ s < l is chosen uniformly
at random, and r is computed as r = aux + spq. Output (σ, r) as the
signature of m.

Verify: Given (m,σ, r), first compute x = (2km + r)N2 mod N2. Output valid if
σH(x) = y mod N1 holds and invalid, otherwise.



The following theorem can be proved exactly as the theorem above because
the commitment scheme utilized in the construction above is a secure trapdoor
commitment scheme [SST05] which allows strongly trapdoor opening.

Theorem 5. Assume the Strong RSA Assumption and the p2q Factorization
Assumption are valid. If H is weakly division intractable, then the signature
scheme above is existentially unforgeable under adaptive chosen message attacks
(EF-CMA).

Remark 4. In the schemes above, we restricted the message spaces according to
the requirements of the trapdoor commitment schemes. Extensions to arbitrary
message spaces are possible when utilizing families of collision-resistant hash
functions.

5 Comparison

In this section, we compare our proposals with the CS and GHR schemes6. Under
the assumption that weak, resp. strong division intractable hash functions exist,
neither GHR nor our proposals require the signer to perform costly prime number
generations as in (modified) CS.

We next discuss why we regard weak division intractability as more reason-
able than its strong pendant. First note that a random oracle is weakly as well as
strongly division intractable. Assuming a hash function behaving like a random
oracle, Coron and Naccache analyzed the complexity of an attack against strong
division intractability [CN00]. The outline of their proposed attack is to find a
smooth hash value first, and then, for each of its (small) prime divisors p, to
search for another hash value divisible by p. Based on theoretical results on the
density of smooth numbers, Coron and Naccache show that the running time of
this attack is sub-exponential in the digest length. Thus, they recommend a di-
gest length of at least 1024 bits, which is twice as large as suggested by Gennaro
et al. in [GHR99]. We want to point out that this attack does not work against
weak division intractability where the adversary has no control over the hash
values that should be divided.

We conducted some experiments to investigate weak division intractability
(of random oracles) heuristically. For each pair (n, k), we performed 200 experi-
ments: n k-bit numbers were chosen uniformly at random, and we counted the
number of random k-bit numbers x to pick, until x divides the product of the
others. The measured data suggests that the expected value of numbers x to pick
is lower bounded by n−1.52k/3 for n chosen polynomial in k. Table 1 shows the
results of some of these experiments. For each pair (n, k), the table contains three
entries: the first one is the evaluation of n−1.52k/3, the second one is the mean
of all performed experiments, and the third one is the second-smallest number
6 In [CL02], Camenisch and Lysyanskaya also propose a signature scheme based on

strong RSA in the standard model. As their scheme is less efficient as CS–it has
other qualities instead–we exclude it from our considerations.



appearing in the 200 experiments (an entry “-” indicates that no experiments
have been performed at all, whilst the index “+” denotes that the respective
data is based on less than 200 experiments).

n"k 20 40 60 80 100(+)

k 1 56 1 41 21555 606 2256 18490671 93702 − −
k1.5 <1 9 1 3 415 4 105 33631 229 5566 3141452 14240 −
k2 <1 3.5 1 <1 44 1 5 941 11 208 28883 431 10823 493263 13613

k2.5 <1 2.2 1 <1 14 1 <1 135 2 8 1383 7 342 13749 1289

k3 <1 1.5 1 <1 5 1 − − −
Table 1. Experiments on weak division intractability

If the assumed bound n−1.52k/3 is correct, than the probability that for n
fixed uniformly distributed k-bit integers a randomly chosen k-bit integer divides
the product of the others is upperbounded by n1.52−k/3. That is, asymptotically
this probability is independent from n (provided that n is polynomial in k). For
a more practical-oriented interpretation, recall that in our schemes the number
n describes the number of the adversary’s signature queries. It is common to
upperbound this number by 230. Therefore, we assume that moderate digest
lengths, say 256-512 bits, are reasonable for our proposals. We leave the theo-
retical investigation of weak division-intractability as further work.

Gennaro et al. showed how to build strongly division intractable hash func-
tions from collision resistant hash functions essentially by forcing the output to
be a prime. Although this approach is not of practical relevance (because in this
case CS is clearly more efficient), note that to achieve weak division intractabil-
ity in that way only second pre-image collision resistant hash functions instead
of collision resistant ones were required.

We finally compare the computational efficiency. For a fair comparison, in
case of GHR we refer to the variant where suitability of the hash function is
achieved by combining a division intractable hash function with a trapdoor com-
mitment scheme. Referring to the computational costs for the modular exponen-
tiations, the differences between all schemes are within a small margin. There is
one full modular exponentiation needed for signing in the basic signature scheme,
but this task can be significantly sped up by using standard techniques like Chi-
nese remaindering and efficient exponentiation based on precomputation. For the
latter, comb methods like [LL94] can be applied because the base of the expo-
nentiation is fixed (this is immediate in our proposals and in the GHR scheme,
whilst it requires appropriately chosen verification keys and additional secret
keys in the CS scheme and in its modification proposed by Fischlin [Fis03]). In
addition, all schemes require a short exponentiation for commiting to the mes-



sage7. In Fischlin’s modification of CS, this short exponentiation is eliminated at
the expense of a slightly more costly full exponentiation and an increased length
of the verification key. Verification requires two short exponentiation in CS, one
short plus one short double exponentiation in Fischlin’s modified CS and in our
first proposal, and one short plus one full exponentiation in our second proposal.
The verification costs for GHR depend on the trapdoor commitment used.

6 Conclusion

In this paper we utilized a Shamir-Tauman-like framework to construct new sig-
nature schemes based on the strong RSA assumption. Our proposals are existen-
tially unforgeable under adaptive chosen message attacks in the standard model.
As in the well-known Gennaro-Halevi-Rabin scheme, we utilized a hash function
with a special property, namely division intractability. However, we significantly
relaxed this requirement such that for our proposal weak division intractability
is sufficient. The relation between weak and strong division intractability can be
compared to the relation between second pre-image resistance and collision resis-
tance. This newly defined property may be of independent interest. In contrast to
the Cramer-Shoup signature scheme based on strong RSA, in our schemes there
is no need for the signer to generate a fresh prime number for each message to
be signed.
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