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Abstract. In this paper, we show that identification schemes (ID-schemes)
are very powerful in some areas of cryptography. We first prove an equiva-
lence between non-interactive trapdoor commitment schemes and a nat-
ural class of identification schemes. We next propose a more efficient
on-line/off-line signature transformation than Shamir-Tauman. As an
application, we present a variant of Boneh-Boyen (BB) signature scheme
which is not only on-line/off-line but also has a smaller public key size
than the original BB scheme. Finally, we present the first identity-based
ID-scheme which is secure against concurrent man-in-the-middle attack
without random oracles by using our variant of BB signature scheme.
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1 Introduction

1.1 Background

A commitment scheme consists of two phases: in the commit phase, a sender
commits to a message, while in the decommit phase, the sender reveals the
committed message. A trapdoor commitment scheme admits a trapdoor whose
knowledge allows to open a commitment in any possible way. Gennaro gener-
alized trapdoor commitment schemes to multi-trapdoor commitment schemes
[12]. A multi-trapdoor commitment scheme is a family of secure trapdoor com-
mitment schemes such that it admits a master trapdoor whose knowledge allows
to open any commitment in the family in any possible way. He also showed a
compiler which transforms any proof of knowledge (identification scheme) into
one which is secure against the concurrent man-in-the-middle attack, where the
compiler needs a multi-trapdoor commitment scheme and a strong one-time sig-
nature scheme in addition. We can thus have the following relationship:

ID-scheme + multi-trapdoor commitment + strong one-time signature
→ ID-scheme secure against concurrent man-in-the-middle attack.



On the other hand, the notion of on-line/off-line signature schemes was intro-
duced by Even et al. [9]. The on-line phase of this kind of signatures can be made
very fast due to the pre-computation of the off-line phase. Shamir and Tauman
showed how to transform a non-adaptively secure signature scheme to an adap-
tively secure on-line/off-line signature scheme by using trapdoor commitment
schemes [25]. That is,

Non-adaptive signature + trapdoor commitment → Adaptive on-line/off-line signature
(1)

This result is important because there exist only a few adaptively secure sig-
nature schemes in the standard model: Cramer-Shoup scheme [8] and Gennaro-
Halevi-Rabin scheme [13] under the strong RSA assumption, and Boneh-Boyen
scheme [1] under the strong Diffie-Hellman assumption.

Meanwhile, the idea of identity (ID)-based cryptography was formulated by
Shamir [24] in 1984. An ID-based scheme is an asymmetric system wherein the
public key is effectively replaced by a user’s publicly available identity informa-
tion or any arbitrary string which derived from the user’s identity. It enables
any pair of users to communicate securely without exchanging public or private
keys and without keeping any key directories. Many ID-based schemes appeared
in the literature since then, for example ID-based encryption schemes [4, 2, 3],
ID-based signature schemes [21, 16, 7], etc.

The notion of ID-based identifications was formalized in Kurosawa and Heng
[18] and Bellare et al. [6] independently. All the ID-based ID-schemes presented
in the above two papers are provably secure in the random oracle model only.
Provably secure ID-based ID-schemes in the standard model were first appeared
in [19], but they are not secure against concurrent man-in-the-middle attack. In
this paper, we propose the first ID-based ID-scheme which is provably secure
against concurrent man-in-the-middle attack in the standard model.

1.2 Our Contributions

In this paper, we show that identification schemes (ID-schemes) are very powerful
in some areas of cryptography.

We first prove an equivalence between non-interactive trapdoor commitment
schemes and a natural class of identification schemes. This class includes Schnorr
scheme [23], GQ scheme[15], Fiat-Shamir scheme [11] and the 2!-th root scheme
[26].

Next, we show a more efficient transformation from a non-adaptively secure
signature to an adaptively secure on-line/off-line signature than equation (1)
by directly employing the canonical ID-scheme as a tool. The proposed trans-
formation requires lesser memory in the off-line phase than Shamir-Tauman
transformation [25] which is indicated by equation (1)).

Additionally, we present an on-line/off-line variant of Boneh-Boyen signature
scheme (BB scheme) [1] as an example of the above transformation. The pro-
posed scheme is not only on-line/off-line, but also the public key size is smaller



than that of the original BB scheme. Although a similar scheme can be ob-
tained by applying Shamir-Tauman transformation, our scheme, however, re-
quires lesser memory in the off-line phase.

Finally, we present the first ID-based ID-scheme which is provably secure
against concurrent man-in-the-middle attack in the standard model, deriving
from our proposed variant of BB signature scheme.

All our results hold without relying on the random oracle heuristic. In the
random oracle model, it is well-known that a canonical identification scheme can
be transformed to a signature scheme by using the Fiat and Shamir technique
[11]. Many signature schemes are obtained by this transformation [10, 15, 23, 20].

1.3 Organization

The rest of this paper is organized as follows. In Section 2, we briefly review
some preliminaries. In Section 3, we prove the equivalence between identifica-
tion scheme and trapdoor commitment scheme. In Section 4, we present a general
transformation from any non-adaptively secure signature to the adaptively se-
cure on-line/off-line signature by employing a canonical ID-scheme as a tool. In
Section 5, we exhibit a concrete example by applying the above transformation
to Boneh-Boyen signature scheme. In Section 6, we propose the first ID-based
ID-scheme which is secure against concurrent man-in-the-middle attack in the
standard model. Finally, we conclude this paper in Section 7.

2 Preliminaries

Throughout this paper, ! denotes the security parameter and a PPT algorithm
denotes a probabilistic polynomial time algorithm.

2.1 Identification Scheme

In an identification scheme (ID-scheme), a prover P proves to a verifier V that
she knows a witness sI related to a public instance pI . A canonical ID-scheme
can be formalized by ID = (GID,Commit,Response,Check), where GID is a PPT
algorithm which generates (pI , sI). Commit , Response and Check are algorithms
which specify the protocol (P, V ) as follows.

Step 1. P chooses r at random from a certain domain Cmt and computes
x = Commit(r). P then sends x to V .

Step 2. V chooses a challenge c at random from a certain set Cha and sends
it to P .

Step 3. P computes a response y = Response(sI , r, c) and sends y to V . Let
Res denote the set of possible y for pI .

Step 4. V checks if
x = Check(pI , c, y). (2)

V accepts P if and only if equation (2) holds.



The above protocol (P, V ) is often called a Σ-protocol. We say that (x, c, y)
is a valid transcript for pI if it satisfies equation (2).

Definition 1. We say that ID is a Σ-ID-scheme if the following holds:

Completeness. Pr(equation (2) holds) = 1.
Special Soundness. It is hard to compute two valid transcripts (x, c, y) and

(x, c′, y′) such that c "= c′ on input pI .
y-Uniformity. For any fixed (sI , c), y = Response(sI , r, c) is uniformly distrib-

uted over Res if r is uniformly distributed over Cmt.

It is easy to see that y-uniformity implies that the protocol (P, V ) is honest-
verifier zero-knowledge. All the important identification schemes in cryptographic
applications are Σ-ID-schemes.

2.2 Trapdoor Commitment Scheme

A trapdoor commitment scheme is defined by T C = (GTC ,Tcom,Topen). GTC

is a PPT algorithm which generates (pk, tk), where pk is the public key and tk
is the trapdoor.

Tcom is the algorithm that computes a commitment on m as x = Tcom(pk,m, r),
where r is a random number. To open the commitment x, the sender reveals m, r
and the receiver recomputes x.

Topen is the algorithm that opens a commitment in any possible way with
the trapdoor tk. For given m, r and m′ "= m, it outputs r′ = Topen(tk,m, r,m′)
such that x = Tcom(pk,m, r) = Tcom(pk,m′, r′).

This implies that the receiver has no information on m given x. We require
that the sender cannot find a collision such as follows.

Definition 2. We say that a trapdoor commitment scheme T C is secure if it
is hard to compute (m, r) and (m′, r′) such that Tcom(m, r) = Tcom(m′, r′) on
input pk where m "= m′.

An example of trapdoor commitment scheme under the discrete logarithm
assumption [22] is shown in Appendix A.

2.3 Signature Scheme

A signature scheme is denoted by Ω = (Gsign,Sign,Verify). Gsign is a PPT
algorithm which generates (vk, sk), where vk is a verification key and sk is the
secret key. Sign is a PPT algorithm which generates a signature σ on input a
message m and the secret key sk. Verify is a polynomial time algorithm which
checks the validity of (m,σ) by using vk, say Verify(vk,m,σ) = accept or reject.

Adaptive Security. The standard security notion of signature schemes is exis-
tential unforgeability against adaptive chosen message attack [14]. It is defined
using the following game between a challenger and an adversary A:



1. The challenger runs Gsign to obtain (vk, sk). A is given vk.
2. A queries some message mi to the challenger for i = 1, . . . , t adaptively. The

challenger responds to each query with a signature σi = Sign(sk,mi).
3. Eventually, A outputs a forgery (m∗,σ∗). A wins the game if m∗ "∈ {m1, . . . ,mt}

and Verify(vk,m∗,σ∗) = accept.

We say that Ω is adaptively secure if Pr(A wins) is negligible for any PPT
adversary A as shown above.

Non-Adaptive Security. A much weaker security notion is existential unforge-
ability against weak non-adaptive chosen message attack. It is defined using the
following game between a challenger and an adversary A:

1. On input the security parameter 1!, the adversary A submits messages
m1, . . . ,mt (non-adaptively) to the challenger.

2. The challenger generates (vk, sk) randomly and computes the signatures
σ1, . . . ,σt. He then sends vk,σ1, . . . ,σt to A.

3. A outputs a forgery (m∗,σ∗). A wins the game if m∗ "∈ {m1, . . . ,mt} and
Verify(vk,m∗,σ∗) = accept.

We say that Ω is non-adaptively secure if Pr(A wins) is negligible for any
PPT adversary A as shown above.

There is another notion called one-time signature, informally this means that
the adversary A is given the verification key vk and the signature σ on a message
m of her choice (chosen after seeing vk), then it is infeasible for A to compute
the signature of a different message, say (m∗,σ∗) such that m∗ "= m.

A strong one-time signature scheme means that it is infeasible for A to also
generate (m∗,σ∗) such that (m∗,σ∗) "= (m,σ).

3 Equivalence between ID and T C

We say that a Σ-ID-scheme is reversible if there exists a polynomial time algo-
rithm Reverse which computes r such that

x = Commit(r) = Check(pI , c, y)

from pI , sI , c and y. All the important identification schemes in cryptographic
applications are reversible Σ-ID-schemes.

For example, we have a look at the famous Schnorr ID-scheme [23]. Suppose
that the Schnorr ID-scheme is defined as ID = (GID,Commit,Response,Check).
Let G be a group of prime order q and g be the generator of G. GID is a PPT
algorithm which generates (pI , sI) = (gs, s) where s is randomly chosen from Zq.
Commit , Response and Check are algorithms which specify the protocol (P, V )
as follows.

Step 1. P chooses r at random from Zq and computes x = Commit(r) = gr. P
then sends x to V .



Step 2. V chooses a challenge c at random from Zq and sends it to P .
Step 3. P computes a response

y = Response(s, r, c) = r + cs mod q (3)

and sends y to V .
Step 4. V checks if

x = Check(gs, c, y).

More precisely, V checks whether x = gr = gy/(gs)c. V accepts P if and
only if the above equation holds.

Thus, it is not difficult to see that the Schnorr ID-scheme is a Σ-ID-scheme
since it satisfies all the conditions in Definition 1. It is also a reversible Σ-ID-
scheme since there exists a polynomial time algorithm Reverse which computes
r such that

x = Commit(r) = Check(gs, c, y),

given gs, s, c and y. That is, r can be computed from equation (3) via

r = y − cs mod q.

Next, we prove that non-interactive trapdoor commitment schemes are equiv-
alent to reversible Σ-ID-schemes.

Theorem 1. If there exists a reversible Σ-ID-scheme, then there exists a trap-
door commitment scheme.

Proof. We first prove that a reversible Σ-ID-scheme implies a trapdoor com-
mitment scheme. Suppose that there exists a reversible Σ-ID-scheme. We then
construct a trapdoor commitment scheme T C = (GTC ,Tcom,Topen) as follows.
Let H be a collision-resistant hash function. Let GTC = GID. That is, the key
pair of T C is given by (pk, tk) = (pI , sI), where (pI , sI) ← GID(1!).

(Commitment) For a message m, let x = Tcom(pk,m, y) = Check(pI ,H(m), y),
where y is chosen at random. That is, we consider an execution of ID on input
pI such that x is a commit, H(m) is a challenge and y is a response.

(Trapdoor) Suppose that m, y and m′ "= m are given. Then we compute y′

such that x = Check(pI ,H(m), y) = Check(pI ,H(m′), y′) as follows. By using
Reverse, compute r such that x = Commit(r) from pI , sI ,H(m) and y. Then let
y′ = Response(sI , r,H(m′)).

(Security) The above T C is secure from the special soundness of ID. &'

Theorem 2. If there exists a trapdoor commitment scheme, then there exists a
reversible Σ-ID-scheme.



Proof. We prove that a trapdoor commitment scheme implies a reversible Σ-
ID-scheme. Suppose that there exists a trapdoor commitment scheme T C =
(GTC ,Tcom,Topen). We then construct a reversible Σ-ID-scheme as follows. Let
H be a collision-resistant hash function.

Let GID = GTC . That is, let (pI , sI) = (pk, tk). Let x = Commit(R) =
Tcom(pI ,m, r), where R = (m, r) is randomly chosen.

From R = (m, r) and a given challenge c, compute y such that

Tcom(pI , c, y) = Tcom(pI ,m, r)

by using the trapdoor key tk. Let Response(tk,R, c) = y.
Define Check(pI , c, y) = Tcom(pI , c, y).
We show that the above scheme is a reversible Σ-ID-scheme. It is easy to see

that Pr(equation (2) holds) = 1. The special soundness holds from the security
of T C. The y-uniformity is clearly satisfied. Finally, we need to show Reverse
which computes R = (m, r) such that

x = Commit(T ) = Check(pI , c, y)

from tk, c and y. From our definition of Commit and Check, the above equation
is written as

Tcom(pI ,m, r) = Tcom(pI , c, y).
Next, Reverse chooses r at random and computes r which satisfies the above
equation by using tk. This completes the proof. &'

4 New On-line/Off-line Signature Scheme

The notion of on-line/off-line signature schemes was introduced by Even et al.
[9]. In these schemes, the on-line phase of the signing algorithm is made very fast
due to the pre-computation in the off-line phase. Shamir and Tauman showed
how to transform a non-adaptively secure signature scheme to an on-line/off-
line signature scheme which is adaptively secure by using trapdoor commitment
schemes [25].

In this section, we show a more efficient transformation which requires lesser
memory than Shamir-Tauman transformation by directly using Σ-ID-schemes
instead of using our equivalence of Section 3 (see Table 1).

4.1 Proposed Transformation

Let Ω = (Gsign,Sign,Verify) be a non-adaptively secure signature scheme.
Let ID = (GID,Commit,Response,Check) be a Σ-ID-scheme, where Cha is the
set of challenges and Res is the set of responses. Let H : {0, 1}∗ → Cha be a
collision-resistant hash function.

Then our on-line/off-line signature scheme is constructed as follows.

Key generation. Run Gsign to generate (vk, sk), and run GID to generate
(pI , sI). The verification key is vk′ = (vk, pI) and the secret key is sk′ = (sk, sI).

Signing. The signing algorithm operates as follows.



1. Off-line phase: Choose r ∈ Cmt randomly and compute x = Commit(r). For
x, compute σ = Sign(sk, x) and store (r,σ).

2. On-line phase: Given a message m ∈ {0, 1}∗, the on-line phase proceeds as
follows. Retrieve (r,σ) from the memory. Compute y = Response(sI , r,H(m)).
Let σ′ = (σ, y) be a signature of m.

Note that (x,H(m), y) is a valid transcript of ID.

Verification. For m and σ′ = (σ, y), first compute x = Check(pI ,H(m), y).
Next accept (m,σ′) if and only if (x,σ) is a valid message-signature pair under
vk, that is, Verify(vk, x,σ) = accept.

Note that the on-line phase is efficient because it computes only
y = Response(sI , r,H(m)).

Theorem 3. The above signature scheme Ω′ is adaptively secure if Ω is non-
adaptively secure and ID is a Σ-ID-scheme.

Proof. Suppose that there exists a PPT adversary A for Ω′ such that Pr(A wins)
is non-negligible in the adaptive chosen message attack. Then we show that Ω
is not non-adaptively secure or ID is not a Σ-ID-scheme.

The challenger gives vk′ = (vk, pI) to A as the verification key. Assume that
A queries messages mi to the challenger and the challenger returns signature
σ′ = (σi, yi) for i = 1, . . . , t. Eventually, A outputs a forgery m∗ and z = (σ∗, y∗).
Let x∗ = Check(pI ,H(m∗), y∗) and xi = Check(pI ,H(mi), yi) for i = 1, . . . , t.

We then distinguish two types of forgeries, Type-1 in which x∗ = xj for some
j, and Type-2 in which x∗ "= xi for any i. Type-1 forgery or type-2 forgery occurs
with non-negligible probability.

(Type-1 forgery) In this case, we show a PPT algorithm M which breaks the
special soundness of ID. On input pI , M behaves as follows.

1. M runs Gsign to obtain (vk, sk). M then acts as a challenger and sends
vk′ = (vk, pI) to A.

2. M simulates the challenger of A as follows. Suppose that A asks for a sig-
nature on mi. Then M chooses yi ∈ Res randomly and computes xi =
Check(pI ,H(mi), yi). M next computes σi = Sign(sk, xi) by using sk and
returns a signature σ′

i = (σi, yi) to A.
3. Eventually, A returns a valid forgery m∗ and z = (σ∗, y∗) such that m∗ "= mj

and x∗ = xj for some j.

M then outputs two valid transcripts (x∗(= xj),H(m∗), y∗) and (xj ,H(mj), yj)
for pI . Note that H(m∗) "= H(mj) with overwhelming probability because
m∗ "= mj and H is collision-resistant. This means that M breaks the special
soundness of ID.

(Type-2 forgery) In this case, we show a PPT adversary B that breaks Ω by
non-adaptive chosen message attack. On input 1!, B behaves as follows.



1. M runs GID to obtain (pI , sI). For i = 1, . . . , t, B chooses ri ∈ Cmt ran-
domly and computes xi = Commit(ri). B sends x1, . . . , xt as messages to its
challenger.

2. The challenger runs Gsign to obtain (vk, sk). It computes σi = Sign(sk, xi)
for i = 1, . . . , t. It then returns vk,σ1, . . . ,σt to B.

3. B runs A on input vk′ = (vk, pI).
4. M simulates the challenger of A as follows. Suppose that A asks for a signa-

ture on mi. Then B computes yi = Response(sI , ri,H(mi)) by using sI and
returns a signature σ′

i = (σi, yi) to A.
5. Eventually, A returns a valid forgery m∗ and z = (σ∗, y∗) such that x∗ "= xi

for any i because it is a type-2 forgery.

B then outputs a forgery (x∗,σ∗). Now B wins because x∗ "= xi for any i and
σ∗ is a valid signature on x∗.

This completes the proof. &'

4.2 Comparison

Shamir-Tauman [25] showed a transformation using trapdoor commitment schemes
T C = (GTC ,Tcom,Topen) as follows.

Let Ω = (Gsign,Sign,Verify) be a non-adaptively secure signature scheme. A
secret key of the on-line/off-line signature scheme is (sk, tk), where sk is a secret
key of Ω and tk is a trapdoor key of T C. The public key is (vk, pk), where vk is
a verification key of Ω and pk is a public key of T C.

1. Off-line phase: Choose a random message m′ and a random number r′. Com-
pute hash = Tcom(pk,m′, r′) and σ = Sign(sk, hash). Then store (m′, r′,σ).

2. On-line phase: Given a message m, the on-line phase proceeds as follows. Re-
trieve (m′, r′,σ) from the memory. By using tk, find r such that Tcom(pk,m, r) =
Tcom(pk,m′, r′). Let σ′ = (σ, r) be a signature of m.

Now in Shamir-Tauman scheme, the off-line phase must store (m′, r′,σ). On
the other hand, our off-line phase stores only (r,σ). Hence our memory size is
smaller if |r| = |r′|.

Table 1. On-line/Off-line Signature Transformation

Tool Memory
Shamir-Tauman [25] trapdoor commitment (m′, r′,σ)

Proposed Σ-ID-scheme (r,σ)

5 Application to BB Signature Scheme

Boneh and Boyen showed a signature scheme under the strong Diffie-Hellman
assumption in the standard model [1].



In this section, we show an on-line/off-line variant of BB signature scheme
as an application of our transformation. The proposed scheme is not only on-
line/off-line, but also the public key size is smaller than that of BB scheme while
the other parameters are of the same size. A similar scheme can be obtained
by using Shamir-Tauman transformation. Our scheme, however, requires lesser
memory in the off-line phase as shown in Table 1.

5.1 BB Signature Scheme

Let (G1, G2) be bilinear groups such that |G1| = |G2| = p, where p is a prime.
Let e : G1 ×G2 → GT be a pairing, where |GT | = p. Let g1 be a generator of G1

and g2 be a generator of G2. Let H : {0, 1}∗ → Z∗
p be a collision-resistant hash

function.
The basic BB scheme is non-adaptively secure under the strong DH assump-

tion. A verification key is v(= gα
2 ), where α ∈ Zq is the secret key. For a message

m ∈ {0, 1}∗, a signature is given by σ = g
1

α+H(m)
1 . Given (m,σ), verify that

e(σ, v · gH(m)
2 ) = e(g1, g2).

The full BB scheme is adaptively secure under the same assumption. A ver-
ification key is u(= gα

2 ) and v(= gβ
2 ), where α,β ∈ Zq are the secret key. For a

message m ∈ {0, 1}∗, a signature is given by (σ = g
1

α+H(m)+βr

1 , r), where r ∈ Zq

is randomly chosen by the signer. Given (m,σ, r), verify that

e(σ, u · gH(m)
2 · vr) = e(g1, g2).

5.2 Proposed On-line/Off-line Signature Scheme

We now apply our transformation of Section 4.1 to the basic BB scheme Ω and
Schnorr identification scheme. Let H : {0, 1}∗ → Z∗

p and H̃ : G1 → Z∗
p be two

collision-resistant hash functions.

Key generation. Choose α ∈ Zp randomly and compute v = gα
2 . Let g̃1 be a

generator of G1. Choose s ∈ Zp randomly and compute w = g̃1
−s. Let (v, w) be

a verification key and (α, s) be the secret key. Note that (v,α) is a key-pair of
the basic BB scheme and (w, s) is a key-pair of Schnorr identification scheme.

Signing.

1. Off-line phase: Choose r ∈ Zp randomly and compute x = g̃1
r. For x, com-

pute σ = g

1

α+H̃(x)
1 and store (r,σ). (Note that σ is a signature on x in the

basic BB scheme.)
2. On-line phase: Given a message m ∈ {0, 1}∗, the on-line phase proceeds as

follows. Retrieve (r,σ) from the memory. Compute y = r + sH(m) mod p.
Let σ′ = (σ, y) be a signature of m.



Verification. Given (m,σ, y), first compute x = g̃1
ywH(m). Next by using x,

verify that
e(σ, v · gH̃(x)

2 ) = e(g1, g2). (4)

Theorem 4. The above on-line/off-line signature scheme is adaptively secure
under strong DH assumption in the standard model.

Proof. The basic BB scheme is non-adaptively secure under strong DH assump-
tion [1] and Schnorr scheme is a Σ-ID-scheme under the discrete logarithm as-
sumption. Therefore, from Theorem 3, the above signature scheme is adaptively
secure under strong DH assumption. &'

Note that the on-line phase computes only y = r + sH(m) mod p. Hence it
is very efficient. Moreover, our scheme has a smaller verification key as shown
below. In [5], it is suggested to use an elliptic curve over GF (3!) for G1 and
one over GF (36!) for G2. Hence in our scheme, the verification key size is ap-
proximately a half of the full BB signature scheme as shown in the following
table.

Table 2. BB Scheme and Our Variant
verification key secret key signature

Full BB scheme [1] u, v ∈ G2 α,β ∈ Zp σ ∈ G1, r ∈ Zp

Our scheme v ∈ G2, w ∈ G1 α, s ∈ Zp σ ∈ G1, y ∈ Zp

6 ID-Based ID-Scheme without Random Oracles

The main differences of ID-based identification schemes from the usual identi-
fication schemes are that: (1) The adversary can choose a target identity ID of
her choice to impersonate as opposed to a random public key; (2) The adversary
can possess private keys of some users which she has chosen. The formal model
of ID-based identification scheme was formalized in [18, 6].

In this section, we show the first ID-based ID-scheme which is provably secure
against man-in-the-middle attack in the standard model by using our variant of
BB signature scheme in Section 5.2. By applying Gennaro’s technique [12] to the
BB on-line/off-line signature scheme, we manage to transform it to an ID-based
ID-scheme secure against concurrent man-in-the-middle attack under the strong
DH assumption.

Gennaro [12]: Σ-ID-scheme → Very secure ID-scheme
Proposed: BB signature scheme → Very secure ID-based ID-scheme

6.1 Another Tool

We adopt the strong DH-based multi-trapdoor commitment scheme introduced
by Gennaro into our construction since our BB on-line/off-line signature scheme
is also based on the strong DH assumption.



The master key generation algorithm selects a random µ ∈ Zp which will be
the master trapdoor. The master public key will be the pair (g, g′) where g′ = gµ

in G. Each commitment in the family will be identified by a specific public key
which is simply an element n ∈ Zp. The specific trapdoor of this scheme is
the value fn in G such that fµ+n

n = g. To commit a message m ∈ Zp with
public key n, the sender runs Pedersen’s commitment [22] with bases g, hn, where
hn = gn ·g′. That is, it selects a random γ ∈ Zp and computes com = gmhγ

n. The
commitment to m is the value com. To open a commitment, the sender reveals
m and F = gγ . The receiver accepts the opening if (g, F, gn · g′, com · g−m) is a
DH-tuple.

We also use a strong one-time signature scheme Ω = (Gsign,Sign,Verify).

6.2 Proposed ID-Based ID-Scheme

Let IBI = (S, E ,P,V) be four PPT algorithms known as setup, extract, and
the identification protocol (P,V). Basically, our proposed scheme employs the
key generation algorithm of BB on-line/off-line signature scheme as the setup
algorithm and its signing algorithm as the extract algorithm.

Let (G1, G2) be bilinear groups where |G1| = |G2| = p for some prime p.
As usual, g1 is a generator of G1 and g2 is a generator of G2. Our proposed
construction is as follows.

Setup. Choose α ∈ Zp randomly and compute v = gα
2 . Let g̃1 be a generator

of G1. Choose s ∈ Zp randomly and compute w = g̃1
−s. Choose two collision-

resistant hash functions H : {0, 1}∗ → Z∗
p and H̃ : G1 → Z∗

p .
We also need the following extra common reference string: g′1 = gµ

1 for a
random µ ∈ Zp and a collision-resistant hash function H ′ with output in Zp.
The system parameters params is (g1, g′1, g̃1, g2, v, w,H, H̃,H ′) and the master-
key is (α, s).

Extract. Given a master-key (α, s) and an identity ID ∈ {0, 1}∗, pick a random

r ∈ Z∗
p and compute x = g̃1

r. For x, compute σ = g

1

α+H̃(x)
1 ∈ G1. Next, compute

y = r + sH(ID) mod p. The user private key is (σ, y).

Protocol (P,V).

1. P first computes (vk, sk) ← Gsign(1!) (run the key generation of the strong
one-time signature scheme) and computes n = H(vk), where n is a specific
public key of the multi-trapdoor commitment scheme.

It next chooses R ∈ G1 randomly and computes X = e(R, v · gH̃(x)
2 ). It also

does the following: sets hn = gn
1 g′1; chooses γ ∈ Zp randomly and computes

the commitment com = gH′(X)
1 hγ

n. It finally sends (y, com, vk) to V.
2. V chooses c ∈ Zp randomly and sends c to P.
3. P computes S = R + cσ and sig = Sign(sk, ID, v, w, com, c,X, γ, S). It then

sends (X, γ, S, sig) to V.



4. V first computes x = g̃1
ywH(ID). V accepts if and only if com = gH′(X)

1 hγ
n,

Verify(vk, ID, v, w, com, c,X, γ, S) = accept and e(S, v ·gH̃(x)
2 ) = X ·e(g1, g2)c.

Note that (v, w) is a verification key, (α, s) is a secret key and (σ, y) is a
signature on a message ID of our variant of BB signature scheme. In the basic
Σ-ID-scheme, the prover reveals y at step 1, and then proves that it knows σ
satisfying equation (4), where (X, c, S) is a valid transcript of the Σ-ID-scheme.

W can prove the following theorem even if the prover reveals y at step 1.

Theorem 5. The above scheme is an ID-based ID-scheme which is secure against
concurrent man-in-the-middle attack under the strong DH assumption.

The above theorem can be proven similarly to Theorem 2 of the full version
of [12] by adapting the proof for the identity-based setting.

7 Conclusion

We proved an equivalence between non-interactive trapdoor commitment schemes
and a natural class of identification schemes. We also showed an efficient trans-
formation from any non-adaptively secure signature to an adaptively secure on-
line/off-line signature by using a canonical ID-scheme as a tool. For instance,
we applied the above transformation to Boneh-Boyen signature scheme and we
managed to obtain an on-line/off-line signature scheme with smaller public key
size than that of the original Boneh-Boyen scheme. Finally, we presented the
first ID-based ID-scheme which is provably secure against concurrent man-in-
the-middle attack in the standard model.
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A DLOG-Based Trapdoor Commitment

The public key consists of a group G of prime order p and its two generators g1

and g2 = gt
1, where t is the trapdoor key. Let Tcom(m, r) = gm

1 gr
2. From m, r

and m′ "= m, it is easy to compute r′ such that Tcom(m, r) = Tcom(m′, r′) by
using t. Just solve

m + tr = m′ + tr′ mod p. (5)

On the other hand, if one can find such a collision pair, then he can compute
the discrete logarithm t of g2 on base g1 by solving equation (5) on t.


