
Optimistic Fair Exchange
in a Multi-User Setting

Yevgeniy Dodis1, Pil Joong Lee2†, and Dae Hyun Yum2†

1Department of Computer Science, New York University, NY, USA
dodis@cs.nyu.edu

2Department of Electronic and Electrical Eng., POSTECH, Pohang, Korea
{pjl, dhyum}@postech.ac.kr

Abstract. This paper addresses the security of optimistic fair exchange
in a multi-user setting. While the security of public key encryption and
public key signature schemes in a single-user setting guarantees the se-
curity in a multi-user setting, we show that the situation is different
in the optimistic fair exchange. First, we show how to break, in the
multi-user setting, an optimistic fair exchange scheme provably secure in
the single-user setting. This example separates the security of optimistic
fair exchange between the single-user setting and the multi-user setting.
We then define the formal security model of optimistic fair exchange
in the multi-user setting, which is the first complete security model of
optimistic fair exchange in the multi-user setting. We prove the exis-
tence of a generic construction meeting our multi-user security based on
one-way functions in the random oracle model and trapdoor one-way
permutations in the standard model. Finally, we revisit two well-known
methodologies of optimistic fair exchange, which are based on the veri-
fiably encrypted signature and the sequential two-party multisignature,
respectively. Our result shows that these paradigms remain valid in the
multi-user setting.

1 Introduction

Multi-User Security. In the early stage of modern cryptography, public
key cryptography was usually studied in the single-user setting and the security
model assumed only one public key [20, 21]; one receiver in the public key en-
cryption and one signer in the public key signature. However, there are many
users in the real world and the security in the single-user setting does not guard
against the attacks by colluding dishonest users. The security in the multi-user
setting was formally studied only recently [4, 18]. Fortunately, these researches
show that the security of encryption schemes in the single-user setting is pre-
served in the multi-user setting [4] and the same result holds good for signature
schemes [18]. Therefore, we only have to deal with the single-user security and

† The research of the second author and the third author was supported by the MIC of
Korea, under the ITRC support program (IITA-2006-C1090-0603-0026) and BK21.



need not consider the multi-user security in the public key encryption and signa-
ture schemes. While the security of public key encryption and public key signa-
ture schemes in the single-user setting guarantees the security in the multi-user
setting, there are other cryptosystems (e.g. identity-based encryption schemes)
where the single-user security is not enough.

Optimistic Fair Exchange. A fair exchange scheme is a protocol by which
two parties Alice and Bob swap items or services without allowing either party
to gain an advantage by quitting prematurely or otherwise misbehaving. For
instance, Alice signs some statement (e.g., e-cash) and Bob fulfills some obliga-
tion (e.g., delivery of goods). However, each party will play the role only if he
(or she) is sure that the other party will keep the appointment. Of course, one
could use an online trusted third party in every transaction to act as a media-
tor; each party sends the item to the trusted third party, who upon verifying the
correctness of both items, forwards each item to the other party. A drawback of
this approach is that the trusted third party is always involved in the exchange
even if both parties are honest and no fault was occurred. In practice, sending
messages via a trusted third party can lead to performance problems.

A more desirable approach is that a semi-trusted arbitrator involves only in
cases where one party attempts to cheat or simply crashes. We call such a fair
exchange protocol optimistic. In this model, Alice first issues a verifiable “partial
signature” σ′ to Bob. Bob verifies the validity of the partial signature and fulfills
his obligation, after which Alice sends her “full signature” σ to complete the
transaction. Thus, if no problem occurs, the arbitrator does not participate in
the protocol. However, if Alice refuses to send her full signature σ at the end,
Bob will send σ′ (and proof of fulfilling his obligation) to the arbitrator who will
convert σ′ into σ, sending σ to Bob.

Optimistic fair exchange was introduced by Asokan et al. [1] and formally
studied in [2, 3] where several solutions were presented based on verifiably en-
crypted signatures. The approach of [2, 3] was later generalized by [9], but all
these schemes involve expensive and highly interactive zero-knowledge proofs
in the exchange phase. The first non-interactive verifiably encrypted signature
was built by Boneh et al. [8] under a form of the computational Diffie-Hellman
assumption over special elliptic curve groups.

A different approach for building non-interactive optimistic fair exchange
based on sequential two-party multisignatures was proposed by Park et al. [24],
which was broken and repaired by Dodis and Reyzin [14]. While the schemes
in [14] are very efficient, one important drawback of the approach based on the
sequential two-party multisignature is that it is setup-driven [32]; the registration
is required between the user and the arbitrator.

Our Contribution. There have been attempts to formally define the security
of optimistic fair exchange. The first formal security model was proposed by
Asokan et al. [2, 3] but was not complete as their model did not consider a
dishonest arbitrator. A more generalized and unified model for non-interactive
optimistic fair exchange was suggested by Dodis and Reyzin [14]. Their model,



called verifiably committed signatures, incorporates all aspects of non-interactive
optimistic fair exchange but was defined in a single-user setting. If the security
of optimistic fair exchange in the single-user setting guarantees the multi-user
security, the model of [14] is satisfactory. Otherwise, we should extend the model
to the multi-user setting.

In this paper, we show that the single-user security of optimistic fair ex-
change does not guarantee multi-user security. We present a simple counterex-
ample based on a signature scheme and a trapdoor permutation. We then define
the multi-user security model of optimistic fair exchange, extending the model
of [14]. While the single-user model of [14] is setup-driven, our multi-user model
is setup-free [32], which we feel is a more natural and advantageous realization of
“optimistic” fair exchange in the multi-user setting; (1) If every fair exchange is
performed normally (i.e., every user behaves honestly), it is desirable that users
need not contact the arbitrator even for the registration purpose. (2) The arbi-
trator in setup-driven schemes should be semi-online to respond to registration
requests, even when no dispute between users occurs. (3) If there are several
arbitrators, the user in setup-free schemes can decide on a particular arbitrator
in run-time.

After defining security notions, we address our attention to the basic theo-
retical question, namely whether or not a scheme satisfying the security notions
exists, and, if so, what are the minimal computational complexity assumptions
under which this existence can be proven. We answer this by providing a generic
setup-free construction which relies on one-way functions in the random ora-
cle model and trapdoor one-way permutations in the standard model. While
the construction in the standard model is of theoretic interest, some specific in-
stantiations in the random oracle model are efficient enough for practical use.
Finally, we revisit two well-known techniques of optimistic fair exchange; the ver-
ifiably encrypted signature and the sequential two-party signature. Fortunately,
our result shows that these paradigms remain valid in the multi-user setting
if the underlying primitives satisfy some security properties. Furthermore, the
construction based on the verifiably encrypted signature shows that trapdoor
permutations imply optimistic fair exchange schemes that are stand-alone as
well as setup-free; a fair exchange scheme is stand-alone if the full signature is
the same as it were produced by an ordinary signature scheme only [32].

2 Preliminaries

2.1 NP-Relations and Σ-Protocols

An NP-relation R is a subset of {0, 1}∗ × {0, 1}∗ for which there is an efficient
algorithm to decide whether (α, β) ∈ R or not in time polynomial in |α|. The
NP-language LR associated with R is the set of α for which there exists β such
that (α, β) ∈ R, i.e., LR = {α | ∃β [(α, β) ∈ R]}.

A Σ-protocol [12] for an NP-relation R is an efficient 3-move two-party
protocol between the prover and the verifier on a common input α ∈ LR. Besides



α, a valid NP-witness β for α, meaning (α, β) ∈ R, is also given to the prover as
a private input. The prover first sends a commitment message c to the receiver.
After receiving the commitment message c, the verifier sends a challenge message
e to the prover. Finally, the prover sends a response message s to the verifier who
decides to output 1 (accept) or 0 (reject) based on the input α and the transcript
π = {c, e, s}. The transcript π is valid if the verifier outputs 1 (accept).

A Σ-protocol should satisfy three properties: correctness, special soundness,
and special (honest-verifier) zero-knowledge. Correctness property states that
for all α ∈ LR and all valid witnesses β for α, if the prover and the verifier fol-
low the protocol honestly, the verifier must output 1 (accept). Special soundness
property states that there is an efficient extraction algorithm (called a knowledge
extractor) that on input α ∈ LR and two valid transcripts π1, π2 with the same
commitment message c outputs β such that (α, β) ∈ R. Special zero-knowledge
property states that there is an efficient simulation algorithm (called a simulator)
that on input α ∈ LR and any challenge message e, outputs a valid transcript
π′ = {c′, e, s′}. Moreover, the distribution of (c′, s′) is computationally indistin-
guishable from the corresponding distribution on (c, s) produced by the prover
knowing a valid witness β for α and the verifier.

A function f : {0, 1}∗ → {0, 1}∗ is a one-way function, if there exists a
polynomial time algorithm which computes f(x) correctly for all x and the
following probability is negligible for all PPT algorithm A: Pr[f(x′) = y | x ←
{0, 1}k; y = f(x);x′ ← A(y, 1k)]. A one-way function f is called a trapdoor
(one-way) permutation, if f is a permutation (that is, every f(x) has a unique
pre-image x) and there exists a polynomial-length trapdoor td such that the
inverse of f can efficiently be computed with td. For simplicity, we let f−1 be
an inverse algorithm of f with the trapdoor td. It is known that any language
in NP has a Σ-protocol if one-way functions exist.

Theorem 1 ([15, 19]). A Σ-protocol for any NP-relation can be constructed
if one-way functions exist.

While the Σ-protocol for any NP-relation can be constructed in generic ways
[15, 19], there exist very efficient Σ-protocols for specific cases; for example, GQ
protocol [22] and Schnorr protocol [31].

A Σ-protocol can be transformed into a signature scheme by using the Fiat-
Shamir heuristic [17]. To sign a message m, the legal signer produces a valid
transcript π = {c, e, s} of the Σ-protocol, where e = H(c,m) and H(·) is a cryp-
tographic hash function modeled as a random function. The signature scheme
obtained by applying the Fiat-Shamir heuristic to the Σ-protocol is secure in
the random oracle model [5, 26]. It is also known that the Fiat-Shamir heuristic
provides a non-interactive proof of knowledge in the random oracle model (i.e.,
the witness can be extracted by rewinding the adversary).

If there are two Σ-protocols, i.e., Σ1 for R1 and Σ2 for R2, we can con-
struct another Σ-protocol ΣOR (called OR-proof) [12] which allows the prover
to show that given two inputs x1, x2, he knows w such that either (x1, w) ∈ R1

or (x2, w) ∈ R2 without revealing which is the case (called the witness indistin-



guishability property [16]). By applying the Fiat-Shamir heuristic to the OR-
proof ΣOR, we obtain a signature scheme SOR (called the OR-signature) secure
in the random oracle model such that a valid signature can be generated by the
signer who knows a valid witness w corresponding to either of the two inputs
x1, x2. It is known that the Fiat-Shamir heuristic does not affect the witness
indistinguishability property of the Σ-protocol.

2.2 Signatures

A signature scheme S consists of three efficient algorithms: S = (Sig-Gen,Sign,
Vrfy). We consider existential unforgeability under adaptive chosen message at-
tacks, denoted by UF-CMA [21]. The adversary A is given oracle access to the
signing oracle OSign. Naturally, A is considered successful only if it forges a valid
signature σ of a message m which has not been queried to OSign. Quantitatively,
we define

AdvSA(k) = Pr[Vrfyvk(m,σ) = 1 | (sk, vk)← Sig-Gen(1k), (m,σ)← AOSign(vk)]

where m should not be queried to the signing oracle OSign. An adversary A is
said to (t, qs, ε)-break S, if A runs in time at most t, makes at most qs signing
queries to OSign, and succeeds in forgery with probability at least ε. S is said
to be (t, qs, ε)-secure, if no adversary can (t, qs, ε)-break it. Asymptotically, S is
UF-CMA-secure if AdvSA(k) is negligible for any PPT adversary A.

2.3 Encryption

An encryption scheme E consists of three algorithms: E = (Enc-Gen, Enc, Dec).
We consider indistinguishability against adaptive chosen ciphertext attacks, de-
noted by IND-CCA [27]. For an efficient algorithm A, which runs in two stages
of find and guess, we define the adversary’s advantage CCA-AdvEA(k) as∣∣∣∣Pr

[
b = b̃

(ek, dk)← Enc-Gen(1k), (m0,m1, α)← AODec(ek, find),
b← {0, 1}, cb ← Encek(mb), b̃← AODec(cb, α, guess)

]
− 1

2

∣∣∣∣
where the challenge ciphertext cb should not be queried to the decryption oracle
in the guess stage. An adversary A is said to (t, qd, ε)-break E , if A runs in
time at most t, makes at most qd decryption queries to ODec, and succeeds in
distinguishing the challenge ciphertext with advantage at least ε. The encryption
scheme E is said to be (t, qd, ε)-secure, if no adversary can (t, qd, ε)-break it.
Asymptotically, E is CCA-secure if CCA-AdvEA(k) is negligible for any efficient
adversary A.

3 Optimistic Fair Exchange in a Single-User Setting

3.1 Definition

We review the single-user model of optimistic fair exchange [14].



Definition 1. A non-interactive optimistic fair exchange involves the signer Al-
ice, the verifier Bob and the arbitrator Charlie, and is given by the following
efficient algorithms:

– Setup. This is a registration protocol between Alice and Charlie, by the end
of which Alice learns her secret signing key SK, Charlie learns his secret
arbitration key ASK, and they publish Alice’s public verification key PK and
Charlie’s partial verification key APK.

– Sig and Ver. These are similar to conventional signing and verification al-
gorithms of an ordinary digital signature scheme. Sig(m,SK,APK) — run
by Alice — outputs a signature σ on m, while Ver(m,σ, PK,APK) — run by
Bob (or any verifier) — outputs 1 (accept) or 0 (reject).

– PSig and PVer. These are partial signing and verification algorithms. PSig
together with Res is functionally equivalent to Sig. PSig(m,SK,APK) — run
by Alice — outputs a partial signature σ′, while PVer(m,σ′,PK,APK) — run
by Bob (or any verifier) — outputs 1 (accept) or 0 (reject).

– Res. This is a resolution algorithm run by Charlie in case Alice refuses to
open her signature σ to Bob, who in turn possesses a valid partial signature
σ′ on m (and a proof that he fulfilled his obligation to Alice). In this case,
Res(m,σ′,ASK,PK) should output a legal signature σ on m.

Correctness property states that

– Ver(m,Sig(m,SK,APK),PK,APK) = 1, PVer(m,PSig(m,SK,APK),PK,APK)
= 1, and Ver(m,Res(m,PSig(m,SK,APK),ASK,PK),PK,APK) = 1.

Ambiguity property states that

– Any “resolved signature” Res(m,PSig(m,SK,APK),ASK,PK) is computa-
tionally indistinguishable from the “actual signature” Sig(m,SK,APK).

In a meaningful application, Charlie runs Res to produce a full signature σ
from σ′ only if Bob’s obligation to Alice has been fulfilled. The security of non-
interactive optimistic fair exchange consists of ensuring three aspects: security
against the signer, security against the verifier, and security against the arbitra-
tor. In the following, we denote by OPSig an oracle simulating the partial signing
procedure PSig, and by ORes an oracle simulating the resolution procedure Res.

Security against Alice. We require that any PPT adversary A succeeds
with at most negligible probability in the following experiment.

Setup∗(1k)→ (SK∗,PK,ASK,APK)
(m,σ′)← AORes(SK∗,PK,APK)

σ ← Res(m,σ′,ASK,PK)

success of A = [PVer(m,σ′,PK,APK) ?= 1 ∧ Ver(m,σ, PK,APK) ?= 0]

where Setup∗ denotes the run of Setup with dishonest Alice (run by A) and SK∗

is A’s state after this run. In other words, Alice should not be able to produce



partial signature σ′, which looks good to Bob but cannot be transformed into
her full signature by honest Charlie.

Security against Bob. We require that any PPT adversary B succeeds
with at most negligible probability in the following experiment.

Setup(1k)→ (SK,PK,ASK,APK)
(m,σ)← BOPSig,ORes(PK,APK)

success of B = [Ver(m,σ, PK,APK) ?= 1 ∧ (m, · ) 6∈ Query(B,ORes)]

where Query(B,ORes) is the set of valid queries of B has asked to the resolution
oracle ORes (i.e., (m,σ′) such that PVer(m,σ′,PK,APK) = 1). In other words,
Bob should not be able to complete any partial signature σ′ that he received
from Alice into a complete signature σ, without explicitly asking Charlie to do
so. Note that there is no need to provide B with access to the signing oracle
OSig, since it could be simulated by OPSig and ORes. Finally, we remark that we
also want Bob to be unable to generate a valid partial signature σ′ which was
not produced by Alice (via a query to OPSig). However, this guarantee will follow
from a stronger security against Charlie, which is defined below.

Security against Charlie. We require that any PPT adversary C succeeds
with at most negligible probability in the following experiment.

Setup∗(1k)→ (SK,PK,ASK∗,APK)
(m,σ)← COPSig(ASK∗,PK,APK)

success of C = [Ver(m,σ,PK,APK) ?= 1 ∧ m 6∈ Query(C,OPSig)]

where Setup∗ denotes the run of Setup with dishonest Charlie (run by C), ASK∗

is C’s state after this run, and Query(C,OPSig) is the set of queries of C asked
to the partial signing oracle OPSig. In other words, Charlie should not be able
to produce a valid signature on m without explicitly asking Alice to produce
a partial signature on m (which Charlie can complete into a full signature by
himself using ASK).

3.2 Single-User Security ; Multi-User Security

We show that the single-user security of optimistic fair exchange does not imply
the multi-user security by presenting a counter-example.

Scheme. Let f(·) be a trapdoor permutation and S = (Sig-Gen,Sign,Vrfy) be
a signature scheme.

– Setup. Charlie generates a trapdoor permutation (f, f−1) and publishes
APK = f , while he keeps ASK = f−1 secret. Alice generates (sk, vk) ←
Sig-Gen(1k) and publishes PKA = vk and keeps SKA = sk secret.

– Sig and Ver. To sign a message m, Alice chooses a random number rA,
and computes yA = f(rA) and δA = Signsk(m‖yA). The signature of m is
σA = (rA, δA). To verify Alice’s signature σA = (rA, δA) of m, Bob computes
yA = f(rA) and checks Vrfyvk(m‖yA, δA) ?= 1.



– PSig and PVer. To generate a partial signature, Alice chooses a random
number rA and computes yA = f(rA) and δA = Signsk(m‖yA). The partial
signature of m is σ′A = (yA, δA). Bob verifies σ′A = (yA, δA) by checking
Vrfyvk(m‖yA, δA) ?= 1.

– Res. Given a partial signature (m, yA, δA), the arbitrator Charlie first verifies
its validity by checking Vrfyvk(m‖yA, δA) ?= 1. If valid, he computes rA =
f−1(yA) and returns σA = (rA, δA).

The Single-User Security. The above scheme is secure in the single-user
setting, which can easily be shown following the proofs in [14].

Attack Scenario. We observe that yA can be re-used by a dishonest user
without knowing the corresponding rA, which causes the scheme to be insecure
in the multi-user setting. Dishonest users Bob and Eve attack Alice as follows:

1. Alice gives a partial signature (mA, yA, δA) to Bob, where yA = f(rA) and
δA = SignSKA

(mA‖yA).
2. Bob gives (mB , yB , δB) to his dishonest friend Eve, where mB 6= mA, yB =

yA and δB = SignSKB
(mB‖yB).

3. Eve comes to the arbitrator with (mB , yB , δB) and claims that Bob refuses
to open his signature (and maybe gives a proof to the arbitrator that Eve
fulfilled her obligation to Bob).

4. The arbitrator does not suspect anything and completes this signature by
giving rA = f−1(yB) to Eve.

5. Eve gives rA to Bob, who now has completed the signature of Alice, (mA, rA,
δA), although Alice never intended to open this and Bob did not fulfill his
duty to Alice.

Therefore, the above optimistic fair exchange scheme is secure in the single-user
setting but insecure in the multi-user setting. This counterexample entails the
following theorem.

Theorem 2. The single-use security of optimistic fair exchange does not imply
the multi-user security.

4 Optimistic Fair Exchange in a Multi-User Setting

4.1 Definition

Instead of defining the syntax and security from scratch, we extend the model
of [14] to the multi-user setting. Firstly, we separate the Setup algorithm of
the single-user setting into two algorithms SetupTTP and SetupUser to model the
setup-free optimistic fair exchange. By running SetupUser, each user Ui generates
his own key pair (SKUi

,PKUi
).

Definition 2. A non-interactive optimistic fair exchange involves the users (sign-
ers and verifiers) and the arbitrator, and is given by the following efficient algo-
rithms:



– SetupTTP. The arbitrator setup algorithm takes as input a security parameter
and returns a secret arbitration key ASK and a public partial verification key
APK.

– SetupUser. The user setup algorithm takes as input a security parameter and
(optionally) APK. It returns a private signing key SK and a public verification
key PK.

– Sig and Ver. These are similar to conventional signing and verification algo-
rithms of an ordinary digital signature scheme. Sig(m,SKUi

,APK) — run by
a signer Ui — outputs a signature σUi

on m, while Ver(m,σUi
,PKUi

,APK)
— run by a verifier — outputs 1 (accept) or 0 (reject).

– PSig and PVer. These are partial signing and verification algorithms. PSig to-
gether with Res is functionally equivalent to Sig. PSig(m,SKUi ,APK) — run
by a signer Ui — outputs a partial signature σ′Ui

, while PVer(m,σ′Ui
,PKUi

,
APK) — run by a verifier — outputs 1 (accept) or 0 (reject).

– Res. This is a resolution algorithm run by the arbitrator in case a signer Ui

refuses to open his signature σUi
to a user Uj, who possesses a valid partial

signature σ′Ui
on m (and a proof that Uj fulfilled his obligation to Ui). In

this case, Res(m,σ′Ui
,ASK,PKUi) should output a legal signature σUi on m.

Correctness property states that

– Ver(m,Sig(m,SKUi
,APK),PKUi

,APK) = 1,
PVer(m,PSig(m,SKUi

,APK),PKUi
,APK) = 1, and

Ver(m,Res(m,PSig(m,SKUi
,APK),ASK,PKUi

),PKUi
,APK) = 1.

Ambiguity property states that

– Any “resolved signature” Res(m,PSig(m,SKUi
,APK),ASK,PKUi

) is compu-
tationally indistinguishable from the “actual signature” Sig(m,SKUi ,APK).

We do not deal with the subtle issue of timely termination addressed by [2,
3]. We remark, however, that the technique of [2, 3] can easily be added to our
solutions to resolve this problem. The security of non-interactive optimistic fair
exchange is composed of ensuring three aspects: security against signers, security
against verifiers, and security against the arbitrator. To clarify the identity of
the signer, we hereinafter assume that the message m (implicitly) includes the
identity of the signer. One simple and trivial solution is to include the signer’s
identity inside the message. If the included signer’s identity does not correspond
to the subject of the alleged signer’s public key, we consider the signature (or
the partial signature) is invalid. We also remark that it is a good practice to
include an enforcing resolution policy κ inside the message, as suggested in [3].

In order to consider the collusion attack of dishonest users, we modify the
resolution oracle ORes. In the single-user setting, the input to ORes is (m,σ′),
assuming that σ′ is the partial signature value of the single signer Alice and
the oracle checks the validity of σ′ by using Alice’s public key. In the multi-user
setting, we define the input to ORes as (m,σ′,PKUi) where PKUi is the public
key of the alleged signer Ui. As usual, we assume that the authenticity of public



keys can be verified and each user should show his knowledge of the legitimate
private key in the public key registration stage to defend against key substitution
attacks.

For simplicity but without loss of generality, when we model either the dis-
honest verifier or the dishonest arbitrator, we suppose that the adversary attacks
an honest user Alice and the adversary can collude with all other (dishonest)
users. Therefore, the dishonest verifier or the dishonest arbitrator has access to
private keys of all users except Alice, and the partial signing oracle OPSig, taking
as input a message m, always returns Alice’s partial signature σ′A on m.

Security against Signers. We require that any PPT adversary A, who
models the dishonest signer Alice, succeeds with at most negligible probability
in the following experiment.

SetupTTP(1k)→ (ASK,APK)
(m,σ′,PKA)← AORes(APK)

σ ← Res(m,σ′,ASK,PKA)

success of A = [PVer(m,σ′,PKA,APK) ?= 1 ∧ Ver(m,σ, PKA,APK) ?= 0]

In the single-user setting, the signer Alice wins if she comes up with a partial
signature (m,σ′) which is valid with respect to her public key but cannot be
transformed into her full signature by the honest arbitrator. In the multi-user
setting, Alice wins if she comes up with (m,σ′,PKA) where σ′ is a valid partial
signature with respect to PKA but cannot be completed to the full signature
(w.r.t. PKA) by the honest arbitrator. Note that there is no need to provide
A with access to any kind of the partial signing oracle, since she has access to
private keys of all users and can simulate all partial signing oracles by herself.

Security against Verifiers. We require that any PPT adversary B suc-
ceeds with at most negligible probability in the following experiment.

SetupTTP(1k)→ (ASK,APK)
SetupUser(1k)→ (SKA,PKA)

(m,σ)← BOPSig,ORes(PKA,APK)

success of B = [Ver(m,σ, PKA,APK) ?= 1 ∧ (m, · ,PKA) 6∈ Query(B,ORes)]

where Query(B,ORes) is the set of valid queries of B has asked to the resolution
oracle ORes (i.e., (m,σ′,PKUi) such that PVer(m,σ′,PKUi ,APK) = 1). Even
though the adversary B is not allowed to ask a valid query (m, · ,PKA) with the
target message m, it can freely ask (·, · ,PKUi

) to the resolution oracle ORes as
long as PKUi

is not Alice’s public key. This very property was used to attack
the scheme of Section 3.2. Note that there is no need to provide B with access
to the signing oracle OSig, since it can be simulated by OPSig and ORes.

Security against the Arbitrator. We require that any PPT adversary
C succeeds with at most negligible probability in the following experiment.

SetupTTP∗(1k)→ (ASK∗,APK)



SetupUser(1k)→ (SKA,PKA)
(m,σ)← COPSig(ASK∗,PKA,APK)

success of C = [Ver(m,σ, PKA,APK) ?= 1 ∧ m 6∈ Query(C,OPSig)]

where SetupTTP∗ denotes the run of SetupTTP with the dishonest arbitrator (run
by C), ASK∗ is C’s state after this run, and Query(C,OPSig) is the set of queries
of C asked to the partial signing oracle OPSig.

4.2 Generic Construction

We present a generic construction of non-interactive setup-freei optimistic fair
exchange based on the OR-proof where the signer has one witness and the ar-
bitrator has the other witness. We use the Fiat-Shamir heuristic in the random
oracle model and the non-interactive witness indistinguishable proof of knowl-
edge in the standard model.

Scheme. Let S = (Sig-Gen,Sign,Vrfy) be an ordinary signature scheme.

– SetupTTP. The arbitrator chooses (sk, vk) by running Sig-Gen(1k) and sets
(ASK,APK) = (sk, vk).

– SetupUser. Each user Ui chooses (ski, vki) by running Sig-Gen(1k) and sets
(SKUi

,PKUi
) = (ski, vki).

– Sig. When a user Ui wants to sign a message m, the signer generates an
ordinary signature s1 on “0||m” (i.e., s1 = Signski

(0||m)) and then generates
an OR-signature s2 on “1||m” for the knowledge of ski or Signsk(1||m).
Since the signer Ui knows ski, he can generate the valid OR-signature s2.
The signature value on m is σUi

= (s1, s2).
– Ver. To verify the signature σUi = (s1, s2) on m, a verifier checks that (1)

Vrfyvki
(0||m, s1)

?= 1 and (2) s2 is a valid OR-signature on “1||m” for the
knowledge of ski or Signsk(1||m).

– PSig and PVer. The same as Sig and Ver except that the partial signature
σ′Ui

on m is s1.
– Res. For the user Ui’s partial signature σ′Ui

= s1 on m, the arbitrator first
checks that Vrfyvki

(0||m, s1)
?= 1 and then computes an OR-signature s2 on

“1||m” for the knowledge of ski or Signsk(1||m). Since the arbitrator knows
sk, he can compute an ordinary signature Signsk(1||m) and then the valid
OR-signature s2. The arbitrator outputs σUi = (s1, s2).

The correctness property of the scheme is obvious and the ambiguity property
follows from the witness indistinguishability of the OR-signature s2.

Theorem 3. The generic construction of the optimistic fair exchange is multi-
user secure in the random oracle model if the underlying signature is secure.

i If we allow the registration between the signer and the arbitrator, there are trivial
setup-driven solutions.



Proof. See [13].

Theorem 4. If there are one-way functions, we can build the setup-free opti-
mistic fair exchange schemes that are multi-user secure in the random oracle
model.

Proof. Secure signatures exist if and only if one-way functions exist [23, 28].
Together with Theorem 3, we obtain Theorem 4 .

The proof of Theorem 3 only requires two properties from the Fiat-Shamir
proofs: (1) witness indistinguishability and (2) proof of knowledge. Hence, we
can use the straight-line extractable witness indistinguishable proof [25] instead
of the Fiat-Shamir proof. Like the Fiat-Shamir heuristic, the construction of
the straight-line extractable witness indistinguishable proof starts with the Σ-
protocol but the length of the resulting proof is much longer. However, non-
programmable random oracle is used and better exact security can be obtained.

Instead of the Fiat-Shamir proof, we can also use the non-interactive witness
indistinguishable proofs of knowledge for ski or Signsk(m). In this case, we do not
need the random oracle and can instead use a common reference string (which
could be generated by the arbitrator).ii The construction of non-interactive wit-
ness indistinguishable proofs of knowledge requires the existence of trapdoor
permutations [30] and this observation leads to the following theorem.

Theorem 5. If there are trapdoor permutations, we can build the setup-free op-
timistic fair exchange schemes that are multi-user secure in the standard model.

Remark 1. While the construction using non-interactive witness indistinguish-
able proofs of knowledge in the standard model is mainly of theoretic interest,
the construction using the Fiat-Shamir heuristic in the random oracle is efficient
for specific cases, as there are efficient Σ-protocols for the knowledge of a signa-
ture value and for the knowledge of a secret key corresponding to a given public
key (e.g., [22, 31, 10, 11, 7]).

5 Previous Paradigms Revisited

5.1 Optimistic Fair Exchange from Verifiably Encrypted Signature

Suppose Alice wants to show Bob that she has signed a message. Alice first
encrypts her signature using the public encryption key of the arbitrator, and
sends the ciphertext to Bob with proof that she has given him a valid encryption
of her signature. Bob can verify that Alice has signed the message, but cannot
deduce any information on her signature. Later in the protocol, if Alice is unable
or unwilling to reveal her signature, Bob can ask the arbitrator to decrypt the
ciphertext of Alice’s signature.
ii We use a common “reference” string rather than a common “random” string. The

arbitrator can indeed publish the common reference string because in our particular
scheme cheating in OR-signature or NIZK does not help the arbitrator.



Scheme. Let (P, V ) be a non-interactive zero-knowledge (NIZK) proof system
for the NP-language L = {(c,m, ek, vk) | ∃s [c = Encek(s) ∧ Vrfyvk(m, s) =
1]}, where E = (Enc-Gen,Enc,Dec) is an encryption scheme and S = (Sig-Gen,
Sign,Vrfy) is a signature scheme.iii

– SetupTTP. The arbitrator chooses (dk, ek) by running Enc-Gen(1k) and sets
(ASK,APK) = (dk, ek).

– SetupUser. Each user Ui chooses (ski, vki) by running Sig-Gen(1k) and sets
(SKUi ,PKUi) = (ski, vki).

– Sig. When a user Ui wants to sign a message m, the signer generates a
signature s = Signski

(m). The signature value of m is σUi = s.
– Ver. To verify the signature σUi

= s of m, a verifier checks Vrfyvki
(m, s) ?= 1.

– PSig. When a user Ui wants to generate a partial signature of m, the signer
first computes a signature s = Signski

(m) and then encrypts s with APK,
i.e., c = Encek(s). The partial signature of m is σ′Ui

= (c, π), where π is a
proof showing (c,m, ek, vki) ∈ L.

– PVer. To verify the partial signature σ′Ui
= (c, π) of m, a verifier checks

that π is an accepting proof for the statement (c,m, ek, vki) ∈ L. If so, 1 is
returned and otherwise, 0 is returned.

– Res. For the user Ui’s partial signature σ′Ui
= (c, π) of m, the arbitrator first

checks that π is an accepting proof for the statement (c,m, ek, vki) ∈ L and
then decrypts s = Decdk(c). The arbitrator outputs σUi

= s.

Theorem 6. The optimistic fair exchange scheme based on a verifiably en-
crypted signature is secure if the underlying E is CCA-secure, S is UF-CMA-
secure, and (P, V ) is a simulation-sound NIZK proof system.

Proof. See [13].

We observe that the full signature σUi
= s is a signature value of the under-

lying ordinary signature scheme S, which means that the fair exchange scheme
is stand-alone. In addition, CCA-secure encryption E , UF-CMA-secure signature
S, and simulation-sound NIZK proof system (P, V ) can be built from trapdoor
permutations [29, 23, 28]. Hence, we obtain the following existence theorem of
setup-free and stand-alone fair exchange schemes.

Theorem 7. If there are trapdoor permutations, we can build the optimistic fair
exchange schemes that are setup-free and stand-alone.

5.2 Optimistic Fair Exchange from Sequential Two-Party
Multisignature

A multisignature scheme allows any subgroup of users to jointly sign a document
such that a verifier is convinced that each user of the subgroup participated in

iii For brevity’s sake, we omit the description of a common reference string, which could
be generated by the arbitrator.



signing. To construct an optimistic fair exchange, we can use a simple type of
multisignature, which is called a sequential two-party multisignature.

A sequential two-party multisignature MS consists of five efficient algo-
rithms: MS = (Sig-Gen, Sign, Vrfy, MSign, MVrfy). Key generation algorithm
Sig-Gen, signing algorithm Sign, and verification algorithm Vrfy are similar to the
conventional algorithms of an ordinary signature scheme. MSign takes as input
(m, si, vki, skj) and returns a multisignature sij , where m ∈M is a message, skj

is a signing key, si is a valid signature w.r.t. a verification key vki, and sij is a
multisignature w.r.t. verification keys vki and vkj . MVrfy takes (m, sij , vki, vkj)
as input and returns 1 (accept) or 0 (reject). Correctness property requires that
Vrfyvki

(m,Signski
(m)) = 1 and MVrfy(m,MSign(m, si, vki, skj), vki, vkj) = 1,

for any m ∈ M. A multisignature scheme is symmetric if sij and sji are com-
putationally indistinguishable.

For security consideration, we allow the adversary A, who tries to forge a
multisignature w.r.t. a given verification key, to have access to the signing oracle
OSign and the multi-signing oracle OMSign. A’s query to OSign is (m, vki) and OSign

returns Signski
(m). A’s query to OMSign is (m, si, vki, vkj) and OMSign returns sij

if Vrfyvki
(m, si) = 1. While the adversary A is allowed to create arbitrary keys

for corrupted users, we require A to prove knowledge of secret keys during the
public key registration. For simplicity, we follow the model of [6] which asks A
to output the public key and secret key of a corrupted user in the key registra-
tion stage. Let Query(A, OSign) and Query(A, OMSign) be the set of valid queries
of A to OSign and OMSign, respectively. We define A’s advantage AdvMS

A (k) of
attacking MS as follows.

Pr[MVrfy(m, s, vki, vkj) = 1 ∨MVrfy(m, s, vkj , vki) = 1 |
(ski, vki)← Sig-Gen(1k), (m, s, vkj)← AOSign,OMSign(vki)]

Definition 3. LetMS = (Sig-Gen,Sign,Vrfy,MSign,MVrfy) be a sequential two-
party signature scheme. An adversary A is said to (t, qs, qms, ε)-breakMS, if A
runs in time at most t, makes at most qs signing queries to OSign and qms multi-
signing queries to OMSign, and succeeds in forgery with probability at least ε.
MS is said to be (t, qs, qms, ε)-secure, if no adversary can (t, qs, qms, ε)-break it.
Asymptotically, MS is UF-CMA-secure if AdvMS

A (k) is negligible for any PPT
adversary A.

By relaxing the definition of optimistic fair exchange to allow interactive
registration during setup (i.e., setup-driven), we can have much simpler (almost
trivial) schemes based on the sequential two-party multisignature. Each user Ui

generates four keys SKUi
, PKUi

, ASKUi
, APKUi

and sends PKUi
, ASKUi

, APKUi

to the arbitrator, who checks if the keys were properly generated. The arbitrator
will then store ASKUi

and certify APKUi
. A verifier will accept partial signatures

from Ui only if they are valid w.r.t. APKUi .

Scheme. Let MS = (Sig-Gen,Sign,Vrfy,MSign,MVrfy) be a sequential two-
party multisignature scheme.



– SetupTTP and SetupUser. Each user Ui chooses (sk0
Ui

, vk0
Ui

) and (sk1
Ui

, vk1
Ui

)
by running Sig-Gen(1k) twice, and sends (vk0

Ui
, sk1

Ui
, vk1

Ui
) to the arbitrator.

After checking validity of the keys, the arbitrator stores sk1
Ui

and certifies
vk1

Ui
. If we use a simplified notation such as ski0 = sk0

Ui
, vki1 = vk1

Ui
, the

output is (SKUi ,PKUi ,ASKUi ,APKUi) = ((ski0 , ski1), (vki0 , vki1), ski1 , vki0).
– Sig. When a user Ui wants to sign a message m, the signer computes si0 =

Signski0
(m) and a multisignature si0i1 = MSign(m, si0 , vki0 , ski1). The sig-

nature value of m is σUi
= si0i1 .

– Ver. A verifier checks MVrfy(m, si0i1 , vki0 , vki1)
?= 1.

– PSig. When a user Ui wants to generate a partial signature of a message m,
the signer computes si0 = Signski0

(m). The partial signature is σ′Ui
= si0 .

– PVer. To verify the partial signature σ′Ui
= si0 of m w.r.t. PKUi , a verifier

checks Vrfyvki0
(m, si0)

?= 1. If so, 1 is returned and otherwise, 0 is returned.
– Res. For the user Ui’s partial signature σ′Ui

= si0 of m, the arbitrator first
checks Vrfyvki0

(m, si0)
?= 1 and then generates a multisignature si0i1 =

MSign(m, si0 , vki0 , ski1). The arbitrator outputs σUi
= s.

Remark 2. Specific instantiations could be very efficient by directly using the
combined signing key skUi

= sk0
Ui
� sk1

Ui
to generate multisignatures and the

combined verification key pkUi
= pk0

Ui
◦ pk1

Ui
to verify multisignatures.

Theorem 8. The setup-driven optimistic fair exchange scheme based on a se-
quential two-party multisignature is secure if the underlying multisignature is
UF-CMA-secure.

Proof. See [13].

References

1. N. Asokan, M. Schunter, and M. Waidner. Optimistic protocols for fair exchange.
ACM CCS, pages 7–17. ACM, 1997.

2. N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signa-
tures (extended abstract). EUROCRYPT 1998, pages 591–606, 1998.

3. N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signa-
tures. IEEE Journal on Selected Areas in Communication, 18(4):593–610, 2000.

4. M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user
setting: Security proofs and improvements. EUROCRYPT 2000, pages 259–274.

5. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. ACM CCS, pages 62–73, 1993.

6. A. Boldyreva. Threshold signatures, multisignatures and blind signatures based
on the gap-Diffie-Hellman-group signature scheme. PKC 2003, pages 31–46, 2003.

7. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. CRYPTO 2004,
pages 41–55, 2004.

8. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably en-
crypted signatures from bilinear maps. EUROCRYPT 2003, pages 416–432, 2003.



9. J. Camenisch and I. Damg̊ard. Verifiable encryption, group encryption, and their
applications to separable group signatures and signature sharing schemes. ASI-
ACRYPT 2000, pages 331–345, 2000.

10. J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. In
SCN 2002, pages 268–289, 2002.

11. J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials
from bilinear maps. CRYPTO 2004, pages 56–72, 2004.

12. R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. CRYPTO 1994, pages 174–187, 1994.

13. Y. Dodis, P.J. Lee, and D.H. Yum. Optimistic fair exchagne in a multi-user setting.
IACR ePrint Archive, http://eprint.iacr.org/, 2007.

14. Y. Dodis and L. Reyzin. Breaking and repairing optimistic fair exchange from
PODC 2003. 2003 ACM Workshop on Digital Rights Management, pages 47–54.

15. U. Feige and A. Shamir. Zero knowledge proofs of knowledge in two rounds.
CRYPTO 1989, pages 526–544, 1989.

16. U. Feige and A. Shamir. Witness indistinguishable and witness hiding protocols.
the 22nd STOC, pages 416–426. ACM, 1990.

17. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. CRYPTO 1986, pages 186–194, 1986.

18. S. D. Galbraith, J. Malone-Lee, and N. P. Smart. Public key signatures in the
multi-user setting. Inf. Process. Lett., 83(5):263–266, 2002.

19. O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. J. ACM,
38(3):691–729, 1991.

20. S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
28(2):270–299, 1984.

21. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988.

22. L. C. Guillou and J.-J. Quisquater. A “paradoxical” indentity-based signature
scheme resulting from zero-knowledge. CRYPTO 1988, pages 216–231, 1988.

23. M. Naor and M. Yung. Universal one-way hash functions and their cryptographic
applications. the 21st STOC, pages 33–43. ACM, 1989.

24. J. M. Park, E. K. P. Chong, and H. J. Siegel. Constructing fair-exchange protocols
for e-commerce via distributed computation of RSA signatures. PODC 2003, pages
172–181. ACM, 2003.

25. R. Pass. On deniability in the common reference string and random oracle model.
CRYPTO 2003, pages 316–337, 2003.

26. D. Pointcheval and J. Stern. Security proofs for signature schemes. EUROCRYPT
1996, pages 387–398, 1996.

27. C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack. CRYPTO 1991, pages 433–444, 1991.

28. J. Rompel. One-way functions are necessary and sufficient for secure signatures.
the 22nd STOC, pages 387–394. ACM, 1990.

29. A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. the 40th FOCS, pages 543–553. IEEE, 1999.

30. A. D. Santis and G. Persiano. Zero-knowledge proofs of knowledge without inter-
action. the 33rd FOCS, pages 427–436. IEEE, 1992.

31. C.-P. Schnorr. Efficient identification and signatures for smart cards. CRYPTO
1989, pages 239–252, 1989.

32. H. Zhu and F. Bao. Stand-alone and setup-free verifiably committed signatures.
CT-RSA 2006, pages 159–173, 2006.


