
Multiparty Computation
for Interval, Equality, and Comparison
without Bit-Decomposition Protocol

Takashi Nishide1,2 and Kazuo Ohta1

1 Department of Information and Communication Engineering, The University of
Electro-Communications, 1-5-1 Chofugaoka Chofu-shi, Tokyo 182-8585 Japan

{t-nishide,ota}@ice.uec.ac.jp
2 Hitachi Software Engineering Co., Ltd.; 4-12-7 Higashi-Shinagawa Shinagawa-ku,

Tokyo, 140-0002 Japan

Abstract. Damg̊ard et al. [11] showed a novel technique to convert a
polynomial sharing of secret a into the sharings of the bits of a in con-
stant rounds, which is called the bit-decomposition protocol. The bit-
decomposition protocol is a very powerful tool because it enables bit-
oriented operations even if shared secrets are given as elements in the
field. However, the bit-decomposition protocol is relatively expensive.
In this paper, we present a simplified bit-decomposition protocol by an-
alyzing the original protocol. Moreover, we construct more efficient pro-
tocols for a comparison, interval test and equality test of shared secrets
without relying on the bit-decomposition protocol though it seems es-
sential to such bit-oriented operations. The key idea is that we do com-
putation on secret a with c and r where c = a + r, c is a revealed value,
and r is a random bitwise-shared secret. The outputs of these protocols
are also shared without being revealed.
The realized protocols as well as the original protocol are constant-round
and run with less communication rounds and less data communication
than those of [11]. For example, the round complexities are reduced by
a factor of approximately 3 to 10.

Key words: Multiparty Computation, Secret Sharing, Bitwise Sharing

1 Introduction

Secure multiparty computation (MPC) allows a set of mutually distrustful parties
to jointly compute an agreed function of their inputs in such a way that the
correctness of the output and the privacy of the parties’ inputs are guaranteed.
That is, when a function is represented as (y1, . . . , yn) = f(x1, . . . , xn), each
party with its private input xi obtains only the output yi but nothing else.

A great deal of work (e.g., [3, 17, 7, 25]) has been done in this research field.
By using generic circuit based protocols, it is shown that any function can be
computed securely [3, 17]. However, the general protocols tend to be inefficient;
hence the main aim of our research is to construct efficient protocols for specific
functions.

When we are interested in integer arithmetic, there are two choices to repre-
sent a function: an arithmetic circuit over a prime field Zp and a Boolean circuit.

2 T. Nishide and K. Ohta

Inputs (and outputs) in the arithmetic circuit are represented as elements in Zp

(or a ring), while inputs in the Boolean circuit are represented as bits. The input
encoding has an influence on the efficiency of computation. Addition and multi-
plication of shared secrets can be performed efficiently in the arithmetic circuit,
whereas not in the Boolean circuit. On the other hand, bit-oriented operations
like interval tests, equality tests, and comparisons of shared secrets are easy in
the Boolean circuit, whereas they are non-trivial tasks in the arithmetic circuit.

To bridge the gap between arithmetic circuits and Boolean circuits, Damg̊ard
et al. [11] have proposed the MPC protocol called bit-decomposition in the secret
sharing setting (e.g., [3, 16]). Also, Schoenmakers and Tuyls [21] have proposed
a similar protocol for MPC [10, 13] based on threshold homomorphic cryptosys-
tems (THC) [12, 14]. In the bit-decomposition protocol, a sharing of an element
in the field (or an encryption of an element in the ring in the threshold homo-
morphic setting) is converted into sharings (encryptions) of bits.

The bit-decomposition protocol is very useful and has many applications be-
cause it enables bit-oriented operations to be performed in the arithmetic circuit
without performing the entire computation bitwise. For example, when comput-
ing ab by using the techniques in [1, 11], or the Hamming distance between a
and b where shared secrets a and b are elements in Zp, the bit-decomposition
protocol is essential because we need the bitwise sharings of the shared secrets.
Other important applications are comparisons, interval tests and equality tests
of shared secrets. For example, in the comparison protocol, a single shared bit is
computed such that it indicates the result of a comparison between two shared
secrets. In the Boolean circuit, it is relatively easy to compare two shared secrets
because the bits of the secrets are shared. That is, in the comparison protocol
based on the Boolean circuit (which we call the bitwise less-than protocol in
Section 3.3 as in [11]), we can check the secrets bit by bit privately and compare
the two shared secrets even without revealing the bit position that determines
the comparison result. Therefore, even if inputs are given as sharings of elements
in the field, the comparison can be performed easily with the bit-decomposition
protocol.

Thus the bit-decomposition protocol is a very powerful tool because chang-
ing the representations of shared secrets enables us to gain the benefits of both
Boolean circuits and arithmetic circuits. However, the bit-decomposition proto-
col involves expensive computation in terms of round and communication com-
plexities.

In this paper, we present a simplified bit-decomposition protocol by analyz-
ing the original protocol. Moreover, we construct more efficient protocols for the
main applications of the bit-decomposition protocol, which are interval tests,
equality tests, and comparisons, without relying on the bit-decomposition pro-
tocol though it seemed essential. For example, the equality test protocol is an
important subprotocol in [8, 20], so it will be meaningful to construct efficient
protocols for these applications without relying on the bit-decomposition proto-
col if possible. For the equality test, we present deterministic and probabilistic
protocols.

In our constructions, the outputs of the protocols are also shared without
being revealed, so they can be secret inputs for the subsequent computation.

Multiparty Computation for Interval, Equality, and Comparison 3

Therefore, our protocols can be used as building blocks in the more complex
computation.

Our Results. We construct constant-round protocols for bit-decomposition,
interval test, comparison, and equality test, building on the subprotocols in [11].
The proposed bit-decomposition protocol runs with less communication rounds
and less data communication than the original protocol [11]. Therefore, the in-
terval test, comparison and equality test protocols are also improved inevitably
by using the proposed bit-decomposition protocol. However, we present new pro-
tocols dedicated to them without relying on the bit-decomposition protocol. By
using our protocols, given shared secrets as elements in Zp, we can perform the
interval tests, equality tests, and comparisons of the shared secrets more effi-
ciently than the bit-decomposition based protocols. For the equality test, we
propose two kinds of protocols. One (Proposed1) is a deterministic protocol and
the other (Proposed2) is a probabilistic protocol with a negligible error probabil-
ity and a much smaller round complexity. The key idea is that we do computation
on secret a with c and r where c = a+ r, c is a revealed value, and r is a random
bitwise-shared secret.

In Table 1, we summarize the results of the round and communication (comm.)
complexities of each protocol where ℓ is the bit length of prime p of the under-
lying field for linear secret sharing schemes and k must be chosen such that the

error probability
(

1
2

)k
is negligible. Here “BD-based” means that the protocol

is based on the proposed bit-decomposition protocol. As shown in Table 1, we
can see that these bit-oritented operations can be realized with smaller complex-
ities than those of the bit-decomposition based protocols by constructing them
without the bit-decomposition protocol. For example, the round complexities are
reduced by a factor of approximately 3 to 10.

Our protocols (except the probabilistic equality test protocol which is only
applicable to the secret sharing setting) are applicable to both the secret sharing
setting [11] and the threshold homomorphic setting [21] though we describe our
constructions based on the secret sharing setting.

Related Work. Damg̊ard et al. [11] have shown a novel technique to convert a
polynomial sharing of an element in Zp into sharings of bits in constant rounds.
Also Shoenmakers and Tuyls [21] have shown a similar conversion technique for
multiparty computation based on threshold homomorphic cryptosystems [10,
13]. These protocols are the first to bridge the gap between arithmetic circuits
and Boolean circuits.

Toft [24] has proposed another version of a probabilistic equality test protocol
independently of and concurrently with our probabilistic equality test protocol.
Both the protocols use the property of quadratic residues in a probabilistic way.

Recently, as a practical approach (rather than theoretical constant-round
protocols), in [4, 15, 23], the implementation for multiparty integer computation,
including the bit-decomposition and comparison, is described with non-constant-
round protocols where shared secrets are assumed to be sufficiently small com-
pared with prime p of the underlying secret sharing scheme, whereas we do not
assume that shared secrets are upper bounded by a certain value as in [11]. We
mention this aspect in Section 7.

4 T. Nishide and K. Ohta

Table 1. Comparison of Round / Communication Complexities

Protocol Round Comm.

Bit-Decomposition [11] 38 93ℓ + 94ℓ log
2
ℓ

Proposed 25 93ℓ + 47ℓ log
2
ℓ

Interval Test [11] 44 127ℓ + 94ℓ log
2
ℓ + 1

BD-based 31 127ℓ + 47ℓ log
2
ℓ + 1

Proposed 13 110ℓ + 1
Comparison [11] 44 205ℓ + 188ℓ log

2
ℓ

BD-based 31 205ℓ + 94ℓ log
2
ℓ

Proposed 15 279ℓ + 5
Equality Test [11] 39 98ℓ + 94ℓ log

2
ℓ

BD-based 26 98ℓ + 47ℓ log
2
ℓ

Proposed1 8 81ℓ
Proposed2 4 12k

2 Preliminaries

We assume that n parties P1, . . . , Pn are mutually connected by secure and
authenticated channels in a synchronous network and the index i for each Pi is
public among the parties. Let p be an odd prime and ℓ be the bit length of p.
Zp is a prime field. When we write a ∈ Zp, it means that a ∈ {0, 1, . . . , p − 1}.
We use [a]p to denote a polynomial sharing [22] of secret a ∈ Zp. That is, [a]p
means that a is shared among the parties where fa is a random polynomial
fa(x) = a + a1x + a2x

2 + · · · + atx
t mod p with randomly chosen ai ∈ Zp for

1 ≤ i ≤ t, t < n
2 , and fa(i) is the Pi’s share of a. An adversary can corrupt

up to t parties. We describe our protocols in the so-called “honest-but-curious”
model, but standard techniques will be applicable to make our protocols robust.

Let C be a Boolean test. When we write [C]p, it means that C ∈ {0, 1} and
C = 1 iff C is true. For example, we use [a < b]p to denote the output of the
comparison protocol.

Because the multiplication protocol is a dominant factor of the complexity, as
in [11], we measure the round complexity of a protocol by the number of rounds
of parallel invocations of the multiplication protocol [16] and we also measure the
communication complexity by the number of invocations of the multiplication
protocol. The round complexity relates to the time required for a protocol to
be completed and the communication complexity relates to the amount of data
communicated among the parties during a protocol run. Though our measure-
ment of complexities basically follows that of [11], the complexity analysis in [11]
is rough. In this paper, we reevaluate the round and communication complexities
of the protocols in [11] to compare our protocols with those of [11] based on the
same measurement.

Multiparty Computation for Interval, Equality, and Comparison 5

3 Building Blocks

3.1 Distributed Computation with Shared Secrets for Addition and

Multiplication

Let’s assume now that n parties have two shared secrets a and b as [a]p =
{fa(1), . . . , fa(n)} and [b]p = {fb(1), . . . , fb(n)}. Then the parties can obtain
[c+a mod p]p, [ca mod p]p, and [a+b mod p]p easily where c is a public constant
as follows: To compute [c+a mod p]p, [ca mod p]p, and [a+b mod p]p, each Pi has
only to locally compute c + fa(i) mod p, cfa(i) mod p, and fa(i) + fb(i) mod p
respectively. Therefore, these can be done efficiently without communication
among n parties. When we write [c + a]p = c + [a]p, [ca]p = c[a]p, and [a + b]p =
[a]p + [b]p, these mean that the parties perform these operations. We also use
∑

, for example, like
∑3

i=1[ai]p to denote [a1]p + [a2]p + [a3]p.
Multiplication to obtain [ab mod p]p is a bit more complex and it requires

the parties to communicate with each other. We assume that the parties perform
the multiplication protocol in [16]. When we write [ab]p = [a]p × [b]p, it means
that the parties perform the multiplication protocol to compute [ab mod p]p.

We will evaluate the round complexity of a protocol by performing the mul-
tiplication protocol in parallel as much as possible.

3.2 Bitwise Sharing

The concept of bitwise sharing is to share a ∈ Zp(= {0, 1, . . . , p−1}) in the form

of {[aℓ−1]p, . . . , [a0]p} such that a =
∑ℓ−1

i=0 2iai where ai ∈ {0, 1}. We use [a]B to
denote {[aℓ−1]p, . . . , [a1]p, [a0]p}.

3.3 Subprotocols

We describe several subprotocols in [2, 11] necessary for our constructions. All
these subprotocols run in a constant number of rounds. By combining these
subprotocols, we will construct our interval test, equality test, comparison, and
bit-decomposition protocols that also run in a constant number of rounds.

Joint Random Number Sharing. The parties can share a uniformly ran-
dom, unknown number r [2] as follows: Each Pi picks up r i ∈ Zp at random
and shares it by a sharing [r i]p = {fi(1), . . . , fi(n)} where fi(0) = r i and fi

is a random polynomial. That is, Pi distributes fi(j)’s to other Pj ’s. From each
[r i]p, the parties compute [r]p =

∑n

i=1[r i]p. We assume that the complexity for
this is almost the same as the complexity of 1 invocation of the multiplication
protocol. We denote this subprotocol as [r ∈R Zp]p.

Joint Random Bit Sharing. The parties can share a uniformly random
a ∈ {0, 1} as follows: The parties compute [r ∈R Zp]p, perform the multiplication
protocol to obtain [r2]p and reveal r2. If r2 = 0, the parties retry. If r2 6= 0, the

parties compute r′ =
√

r2 such that 0 < r′ < p

2 . This can be done in polynomial

time because p is an odd prime. Then the parties set [a]p = 2−1(r′−1[r]p + 1). It
is clear that r′−1r ∈ {−1, 1}; hence a ∈ {0, 1}. The total complexity is 2 rounds

6 T. Nishide and K. Ohta

and 2 invocations. We denote this subprotocol as [a ∈R {0, 1}]p. In the setting
[10, 13], this can be computed as a = ⊕n

i=1bi where bi ∈R {0, 1} is generated by
Pi (see [21] for the details).

Unbounded Fan-In Or. Given [aℓ−1]p, . . . , [a0]p where ai ∈ {0, 1}, the parties

can compute [∨ℓ−1
i=0ai]p in a constant number of rounds. For this, as in [11], we

can use the same technique to evaluate symmetric Boolean functions as follows:

The parties compute [A]p = 1 +
∑ℓ−1

i=0 [ai]p. Note that 1 ≤ A ≤ ℓ + 1.
Next, the parties define a ℓ-degree polynomial fℓ(x) such that fℓ(1) = 0 and
fℓ(2) = fℓ(3) = · · · = fℓ(ℓ + 1) = 1. fℓ(x) can be determined by using Lagrange

interpolation. Note that fℓ(A) = ∨ℓ−1
i=0ai. Then the parties try to obtain [∨ℓ−1

i=0ai]p
by computing [fℓ(A)]p from [A]p and fℓ(x). This can be done in a constant
number of rounds by using an unbounded fan-in multiplication and the inversion
protocol [2] as follows:

Let’s assume that fℓ(x) is represented as fℓ(x) = α0+α1x+ · · ·+αℓx
ℓ mod p.

To obtain [fℓ(A)]p, the parties compute [A]p, [A
2]p, . . . , [A

ℓ]p because [fℓ(A)]p =

α0 +
∑ℓ

i=1 αi[A
i]p.

For 1 ≤ i ≤ ℓ, the parties generate [bi ∈R Zp]p and [b′i ∈R Zp]p in parallel,

compute [Bi]p = [bi]p × [b′i]p, and reveal Bi. Note that [b−1
i]p can be computed

as [b−1
i]p = B−1

i [b′i]p at the same time (inversion protocol).
Next, the parties compute in parallel

[c1]p = [A]p × [b−1
1]p

[c2]p = [A]p × [b1]p × [b−1
2]p

...

[cℓ−1]p = [A]p × [bℓ−2]p × [b−1
ℓ−1]p

[cℓ]p = [A]p × [bℓ−1]p × [b−1
ℓ]p

and reveal all ci’s.
Then the parties can compute [Ai]p = (

∏i

k=1 ck)[bi]p.
If A = 0, information about A is leaked. That is why we used [A]p = 1 +

∑ℓ−1
i=0 [ai]p to guarantee that A is not zero.
The complexity of computing each component is as follows: 2 rounds and 3ℓ

invocations for [bi]p’s, [b′i]p’s, and Bi’s and 2 rounds and 2ℓ invocations for ci’s.

[bi]p× [b−1
i+1]p for 1 ≤ i ≤ ℓ−1 can be precomputed as [bi]p× [b′i+1]p in the second

round in parallel with [bi]p × [b′i]p. Therefore, the total complexity is 3 rounds
(including 2 rounds for random value generation) and 5ℓ invocations.

Note that we can compute unbounded fan-in And and Xor similarly because
a symmetric Boolean function depends only on the number of 1’s in its inputs.
Also note that the random values necessary for this protocol can be generated
in advance rather than on demand when this subprotocol is used as a building
block in the larger protocol, thus reducing the round complexity. Actually all
the random value generation (for bits and numbers) can be done in the first 2
rounds (3 rounds in the setting [21] by using an unbounded fan-in Xor).

Prefix-Or. Given [a1]p, . . . , [aℓ]p where ai ∈ {0, 1}, the parties can compute

Multiparty Computation for Interval, Equality, and Comparison 7

the Prefix-Or [b1]p, . . . , [bℓ]p such that bi = ∨i
j=1aj in a constand number of

rounds. As in [11], this can be done by using the technique from [5] as follows:
For notational convenience, let’s assume that ℓ = λ2 for an integer λ and

index the bits ak as ai,j = aλ(i−1)+j for i, j = 1, . . . , λ. Other cases can be
adapted quite straightforwardly.

First the parties compute [xi]p = ∨λ
j=1[ai,j]p for i = 1, . . . , λ in parallel by

using unbounded fan-in Or where the size of problems is λ instead of ℓ. Then
the parties compute similarly [yi]p = ∨i

k=1[xk]p for i = 1, . . . , λ in parallel. Now
we can notice that yi = 1 iff some block {ai′,1, . . . , ai′,λ} with i′ ≤ i contains a
ai′,j = 1.

Next, the parties set [f1]p = [x1]p, and for i = 2, . . . , λ, set [fi]p = [yi]p −
[yi−1]p. Now we can notice that fi = 1 iff {ai,1, . . . , ai,λ} is the first block
containing a ai,j = 1. Let i0 be such that fi0 = 1. The parties can compute

{[ai0,1]p, . . . , [ai0,λ]p} by [ai0,j]p =
∑λ

i=1[fi]p × [ai,j]p in parallel without reveal-
ing i0.

Next, the parties compute {[bi0,1]p, . . . , [bi0,λ]p} where bi0,j = ∨j
k=1ai0,k by

using unbounded fan-in Or in parallel.
Finally, the parties set [si]p = [yi]p − [fi]p. Then si = 1 iff i > i0. If we index

the bits of Prefix-Or bk as bi,j = bλ(i−1)+j as we did for ak, the Prefix-Or can
be computed as [bk]p = [bλ(i−1)+j]p = [bi,j]p = [fi]p × [bi0,j]p + [si]p in the end.

When we use several invocations of unbounded fan-in Or, all the necessary
random values in unbounded fan-in Or can be generated in the first 2 rounds.
Therefore, the total complexity is 7 rounds (including 2 rounds for random value
generation) and 17ℓ invocations. 3 Similarly the Prefix-And can also be computed
by using the same technique.

Bitwise Less-Than. Given two bitwise sharings [a]B and [b]B, the parties can
compute [a < b]p without revealing (a < b) itself. The basic idea is the same as
the circuit for the millionaire’s problem. We will give an outline of this subpro-
tocol based on the description in [11].

For 0 ≤ i ≤ ℓ − 1, the parties compute [ci]p = [ai ⊕ bi]p = [ai] + [bi]p −
2[aibi]p in parallel and then compute [di]p = ∨ℓ−1

j=i [cj]p by using Prefix-Or, and

set [ei]p = [di − di+1]p where [eℓ−1]p = [dℓ−1]p. Finally, the parties compute

[a < b]p =
∑ℓ−1

i=0 ([ei]p × [bi]p) in parallel.
The complexity of computing each component is as follows: 1 round and ℓ

invocations for ci’s, 7 rounds and 17ℓ invocations for the Prefix-Or, and 1 round

and ℓ invocations for
∑ℓ−1

i=0 ([ei]p×[bi]p). Because ci’s can be computed in parallel
with random value generation in the Prefix-Or, the total complexity is 8 rounds
(including 2 rounds for random value generation) and 19ℓ invocations. We use
[a <B b]p in order to stress that a and b are bitwise-shared. Note that if b is
known, the complexity is 7 rounds (including 2 rounds for random value genera-

tion) and 17ℓ invocations by saving the invocations for ci’s and
∑ℓ−1

i=0 ([ei]p×[bi]p).

Joint Random Number Bitwise-Sharing. The parties can bitwise-share a

3 The evaluation in [11] is 17 rounds and 20ℓ invocations by generating random values
on demand.

8 T. Nishide and K. Ohta

uniformly random, unknown number r such that 0 ≤ r =
∑ℓ−1

i=0 2iri < p as fol-
lows: The parties generate each bit, [ri ∈R {0, 1}]p for 0 ≤ i ≤ ℓ − 1 in parallel,
compute [r <B p]p by using the bitwise less-than protocol and reveal (r < p). If
r ≥ p, the parties retry.

The complexity of computing each component is as follows: 2 rounds and 2ℓ
invocations for ri’s and 7 rounds and 17ℓ invocations for the bitwise less-than
protocol (note that p is known). Because ri’s can be generated in parallel with
random value generation in the Prefix-Or of the bitwise less-than protocol, the
complexity is 7 rounds and 19ℓ invocations. As in [11], we assume that at least
one of four generated candidates is less than p and the amortized complexity is
7 rounds (including 2 rounds for random value generation) and 76ℓ invocations.
We denote this subprotocol as [r ∈R Zp]B.

Bitwise Sum. Given two bitwise sharings [a]B = {[aℓ−1]p, . . . , [a0]p} and [b]B =
{[bℓ−1]p, . . . , [b0]p}, the parties can compute the bitwise sharing [d]B = {[dℓ]p,
. . . , [d0]p} such that d = a + b over the integers (not mod p). By using the
method of [6], the bitwise sum protocol can be performed in constant rounds
(see [11] for the details). The total complexity based on the complexity analy-
sis in this paper is 15 rounds (including 2 rounds for random value generation)
and 47ℓ log2 ℓ invocations. 4 See Appendix A for the details. We denote this
subprotocol as [d]B = [a]B + [b]B.

4 Existing Protocols [11, 21]

Damg̊ard et al. [11] have shown a novel technique to convert [a]p into [a]B.
This technique is called the bit-decomposition protocol (Fig. 1). Note that we

can obtain [a]p from [a]B easily by computing [a]p =
∑ℓ−1

i=0 2i[ai]p mod p. Also,
Schoenmakers and Tuyls [21] have proposed a similar bit-decomposition protocol
(called BITREP gate) in the context of multiparty computation [10, 13] based
on threshold additively-homomorphic cryptosystems.

The complexity of computing each component in [11] is as follows: 7 rounds
(including 2 rounds for random value generation) and 76ℓ invocations for [r ∈R

Zp]B, 13 rounds and 47ℓ log2 ℓ invocations for [d]B (bitwise sum), 5 rounds and
17ℓ invocations for [q]p, that is, [d <B p]p, and 13 rounds and 47ℓ log2 ℓ invo-
cations for [h]B (bitwise sum). The total complexity is 38 rounds (including 2
rounds for random value generation) and 93ℓ + 94ℓ log2 ℓ invocations.

By using the bit-decomposition protocol, any bit-oriented operation can be
performed in arithmetic circuits where inputs are given as polynomial sharings
(rather than bitwise sharings) of elements in Zp.

However, the bit-decomposition protocol is not cheap, so we try to construct
a simplified bit-decomposition protocol and construct more efficient protocols
for interval tests, equality tests, and comparisons without relying on the bit-
decomposition protocol.

4 The evaluation in [11] is 37 rounds and 55ℓ log
2
ℓ invocations by generating random

values on demand.

Multiparty Computation for Interval, Equality, and Comparison 9

The parties convert [a]p into [a]B .

1. The parties generate [r]B and obtain [r]p eventually.
2. The parties compute [c]p = [a]p−[r]p and reveal c = a−r mod p ∈ {0, 1, . . . , p−1}.
3. The parties compute [d]B = [r]B + [c]B = {[dℓ]p, . . . , [d0]p}.
4. Note that d can be represented as d = a + qp where q ∈ {0, 1}. The parties can

compute the bit q as [q]p = [p ≤ d]p = 1 − [d <B p]p.
5. Consider g = (2ℓ − qp) mod 2ℓ and its bitwise sharing [g]B = {[gℓ−1]p, . . . , [g0]p}.

Let (fℓ−1, . . . , f0)2 be the bit representation of 2ℓ −p such that 2ℓ −p =
Pℓ−1

i=0
2ifi

and fi ∈ {0, 1}. Then the parties can compute [g]B by [gi]p = fi[q]p for 0 ≤ i ≤ ℓ−1
because g = 0 if q = 0 and g = 2ℓ − p if q = 1.

6. The parties now have the two following bitwise sharings, [d]B = [a + qp]B and
[g]B = [(2ℓ − qp) mod 2ℓ]B . Therefore, the parties can compute [h]B = [d]B + [g]B
where h = a + q2ℓ.

7. By discarding the sharing [hℓ]p from [h]B , they can obtain [a]B .

Fig. 1. Bit-Decomposition [11]

5 Simplified Bit-Decomposition Protocol

In the original bit-decomposition protocol, we need 2 invocations of the bitwise
sum protocol (in Steps 3 and 6 in Fig. 1). We can notice that the first invocation
for [d]B can be eliminated by changing the way in which we compute [q]p based
on the following observation.

In Step 4 of the original protocol, the parties compute [q]p = 1 − [d <B p]p
where d = r + c, c is public, and r is bitwise-shared. Therefore, the condition,
(d < p) can be changed into (r < p−c). The parties have [r]B and p−c is public,
so (r < p − c) can be computed by using the bitwise less-than protocol without
computing [d]B = [r]B +[c]B, thus eliminating one invocation of the bitwise sum
protocol.

Since we have eliminated [d]B, we need to specify how to compute [a]B in the
rest of the protocol. Fortunately, we can use [r]B itself to compute [a]B by using
the bitwise sum protocol. The simplified bit-decomposition protocol is given in
Fig. 2.

Complexity of Bit-Decomposition Protocol. The complexity of computing
each component is as follows: 7 rounds (including 2 rounds for random value
generation) and 76ℓ invocations for [r ∈R Zp]B, 5 rounds and 17ℓ invocations for
[q]p, that is, [r <B p−c]p, and 13 rounds and 47ℓ log2 ℓ invocations for [h]B. The
total complexity is 25 rounds (including 2 rounds for random value generation)
and 93ℓ + 47ℓ log2 ℓ invocations.

10 T. Nishide and K. Ohta

The parties convert [a]p into [a]B .

1. The parties generate [r]B and obtain [r]p eventually.
2. The parties compute [c]p = [a]p−[r]p and reveal c = a−r mod p ∈ {0, 1, . . . , p−1}.

If c = 0, the parties are successfully done because [r]B is equal to [a]B by a
coincidence.

3. If c 6= 0, next, the parties compute the bit q, [q]p = [p ≤ r + c]p = 1− [r <B p− c]p
by using the bitwise less-than protocol.

4. Note that a can be represented as a = c+r− qp over the integers where q ∈ {0, 1}.
Therefore, we also have 2ℓ + a = 2ℓ + c − qp + r over the integers. Consider
eg = (2ℓ + c − qp) mod 2ℓ and its bitwise sharing [eg]B = {[egℓ−1]p, . . . , [eg0]p}. Let

(efℓ−1, . . . , ef0)2 be the bit representation of 2ℓ+c−p such that 2ℓ+c−p =
Pℓ−1

i=0
2i efi

and efi ∈ {0, 1}. Also, let (ef ′

ℓ−1, . . . , ef ′

0)2 be the bit representation of c such that

c =
Pℓ−1

i=0
2i ef ′

i and ef ′

i ∈ {0, 1}. Then the parties can compute [eg]B by [egi]p =

(efi − ef ′

i)[q]p + ef ′

i for 0 ≤ i ≤ ℓ−1 because eg = c if q = 0 and eg = 2ℓ + c−p if q = 1.
5. The parties now have the two following bitwise sharings, [r]B and [eg]B = [(2ℓ +

c − qp) mod 2ℓ]B . Therefore, the parties can compute [h]B = [r]B + [eg]B where
h = a + q2ℓ.

6. By discarding the sharing [hℓ]p from [h]B , they can obtain [a]B .

Fig. 2. Simplified Bit-Decomposition

6 Proposed Protocols Without Bit-Decomposition

6.1 Interval Test Protocol

In the interval test protocol, given public constants c1, c2 ∈ Zp (where c1 < c2)
and shared secret a ∈ Zp, the parties compute [c1 < a < c2]p without revealing
(c1 < a < c2) itself.

If the parties use the bit-decomposition protocol, the parties compute [a]B
from [a]p and compute [c1 < a < c2]p = [c1 <B a]p × [a <B c2]p.

The basic idea of our construction is as follows: We randomize a by c = a+ r
and reveal c where r is a bitwise-shared random secret. We obtain an appropriate
interval [rlow, rhigh] from c, c1, and c2. Then computing [c1 < a < c2]p is reduced
to checking whether r exists in the appropriate interval rlow < r < rhigh (for
example, see Fig. 3) by the bitwise less-than protocol.

Procedure. The parties generate [r ∈R Zp]B and obtain [r]p eventually. Next,
the parties compute [c]p = [a]p+[r]p and reveal c = a+r mod p ∈ {0, 1, . . . , p−1}.
At this point, no information about a is leaked from c because r is uniformly
random and unknown to the parties. Now we can think that a ∈ {−(p − c −
1), . . . ,−1, 0, 1, . . . , c − 1, c} because r ∈ {0, 1, . . . , p − 1}.

First, we consider the case where c1 < c < c2 does not hold. When c2 ≤ c
(see Fig. 3), obviously, we have (c1 < a < c2) = 1 if (rlow =)c−c2 < r < c−c1(=
rhigh). Similarly, when c ≤ c1 (see Fig. 4), if (rlow =)c+p−c2 < r < c+p−c1(=
rhigh), we have −(p − c1) < a < −(p − c2). This means that (c1 < a < c2) = 1.
Therefore, the parties compute, by using the bitwise less-than protocol,

[c1 < a < c2]p = [rlow <B r]p × [r <B rhigh]p.

Multiparty Computation for Interval, Equality, and Comparison 11

Fig. 3. Case of c2 ≤ c

Next, we consider the case where c1 < c < c2 holds (see Fig. 5). In this case,
if (rlow =)c − c1 − 1 < r < c + p − c2 + 1(= rhigh), we have −(p − c2) ≤ a ≤ c1.
This means that (c1 < a < c2) = 0. Therefore, the parties compute

[rlow < r < rhigh]p = [c − c1 − 1 <B r]p × [r <B c + p − c2 + 1]p

by using the bitwise less-than protocol and set

[c1 < a < c2]p = 1 − [rlow < r < rhigh]p.

Complexity of Interval Test Protocol. If we use the bit-decomposition
protocol straightforwardly, the complexity of computing each component is as
follows: 38 rounds (including 2 rounds for random value generation) and 93ℓ +
94ℓ log2 ℓ invocations for [a]B, 5 rounds and (17ℓ× 2) invocations for [c1 <B a]p
and [a <B c2]p, and 1 round and 1 invocation for [c1 <B a]p × [a <B c2]p. The
total complexity is 44 rounds (including 2 rounds for random value generation)
and 127ℓ + 94ℓ log2 ℓ + 1 invocations.

On the other hand, in our construction, the complexity of computing each
component is as follows: 7 rounds (including 2 rounds for random value gen-
eration) and 76ℓ invocations for [r ∈R Zp]B, 5 rounds and (17ℓ × 2) invoca-
tions for [rlow <B r]p and [r <B rhigh]p, and 1 round and 1 invocation for
[rlow <B r]p × [r <B rhigh]p. The total complexity is 13 rounds (including 2
rounds for random value generation) and 110ℓ + 1 invocations.

12 T. Nishide and K. Ohta

Fig. 4. Case of c ≤ c1

6.2 LSB Protocol for Special Case of Interval Test Protocol

In order to construct our comparison protocol later, we consider computing
[a < p

2]p. Though it is possible for us to use the technique in Section 6.1, we

compute [a < p
2]p more efficiently by using special properties of p

2 and apply
this subprotocol (called the LSB protocol here) to our comparison protocol. By
a simple observation, we can notice that a ∈ {0, 1, . . . , p−1

2 } ⇔ (2a mod p)0 = 0,

and that a ∈ { p−1
2 + 1, . . . , p − 1} ⇔ (2a mod p)0 = 1 where (x)0 is the least

significant bit (LSB) of x ∈ {0, 1, . . . , p − 1}. That is, if a < p
2 , no wrap-around

modulo p occurs when 2a mod p is computed and 2a mod p is even. On the other
hand, if a > p

2 , a wrap-around modulo p occurs when 2a mod p is computed and
2a mod p is odd. Therefore, if we can compute [(x)0]p from [x]p, we can use it
to compute [a < p

2]p.
To compute [(x)0]p from [x]p, we randomize x by c = x+r and reveal c where

r is a bitwise-shared random secret. Then we can obtain [(x)0]p from (c)0 and
[(r)0]p.

Procedure. The parties want to compute [(x)0]p from [x]p. The parties generate
[r ∈R Zp]B and obtain [r]p eventually. Next, the parties compute [c]p = [x]p+[r]p
and reveal c = x+r mod p ∈ {0, 1, . . . , p−1}. If no wrap-around modulo p occurs
when c is computed, we have (x)0 = (c)0 ⊕ (r)0 and if a wrap-around modulo p
occurs when c is computed, we have (x)0 = 1 − {(c)0 ⊕ (r)0}. Furthermore, we

Multiparty Computation for Interval, Equality, and Comparison 13

Fig. 5. Case of c1 < c < c2

can use (c < r) to know whether or not a wrap-around modulo p occurred when
c was computed. That is, if (c < r) = 0, it means that no wrap-around modulo
p occurred, and if (c < r) = 1, it means that a wrap-around modulo p occurred
because r ∈ {0, 1, . . . , p − 1}.

From these facts, the parties can compute [(x)0]p as

[(x)0]p = [c <B r]p × (1 − {(c)0 ⊕ [(r)0]p}) + (1 − [c <B r]p) × {(c)0 ⊕ [(r)0]p}
= [c <B r]p + {(c)0 ⊕ [(r)0]p} − 2[c <B r]p × {(c)0 ⊕ [(r)0]p}. (1)

The interpretation of Eq. (1) is that if (c <B r) = 1, we have (1−{(c)0⊕[(r)0]p})
and otherwise we have {(c)0⊕[(r)0]p}. Because c is public, note that (c)0⊕[(r)0]p
can be computed as

(c)0 ⊕ [(r)0]p =

{

[(r)0]p if (c)0 = 0
1 − [(r)0]p if (c)0 = 1.

Also note that the parties already have [(r)0]p because r is generated by [r ∈R

Zp]B.
By using the LSB protocol, the parties can compute [a < p

2]p from [a]p as

[a < p

2]p = 1 − [(2a)0]p.

Complexity of LSB Protocol. The complexity of computing each component
is as follows: 7 rounds (including 2 rounds for random value generation) and 76ℓ

14 T. Nishide and K. Ohta

Table 2. Truth Table for (a < b)

w = (a < p/2) x = (b < p/2) y = (a − b mod p < p/2) z = (a < b)

1 0 * 1
0 1 * 0
0 0 0 1
0 0 1 0
1 1 0 1
1 1 1 0

invocations for [r ∈R Zp]B, 5 rounds and 17ℓ invocations for [c <B r]p, and 1
round and 1 invocation for [c <B r]p × [(r)0]p. The total complexity is 13 rounds
(including 2 rounds for random value generation) and 93ℓ + 1 invocations.

6.3 Comparison Protocol

In the comparison protocol, given two shared secrets a, b ∈ Zp, the parties com-
pute [a < b]p without revealing (a < b) itself. For example, we can compute
[max(a, b)]p = [a]p + [a < b]p × [b − a]p by using the comparison protocol.

If the parties use the bit-decomposition protocol, the parties compute [a]B
and [b]B from [a]p and [b]p and compute [a <B b]p as in [11].

It seems difficult for us to compare a and b directly without using the bit-
decomposition protocol. Therefore, we compare a and b indirectly via the value
of p

2 by computing [a < p
2]p, [b < p

2]p, and [a − b mod p < p
2]p.

Procedure. By a simple observation, we can notice that (a < b) is determined
from (a < p

2), (b < p
2), and (a−b mod p < p

2). This observation can be confirmed
by the truth table (Table 2).

When we denote (a < p

2), (b < p

2), (a − b mod p < p

2), and (a < b) as w, x,
y, and z respectively, then z is represented as

z = wx̄ ∨ w̄x̄ȳ ∨ wxȳ

= w(1 − x) + (1 − w)(1 − x)(1 − y) + wx(1 − y)

= w(x + y − 2xy) + 1 − y − x + xy. (2)

Therefore, if the parties can compute [a < p

2]p, [b < p

2]p, and [a− b mod p < p

2]p,

they can compute [a < b]p from Eq. (2) by using addition and the multiplication
protocol. We can use the LSB protocol to compute all three of these values.

Complexity of Comparison Protocol. If we use the bit-decomposition pro-
tocol straightforwardly, the complexity of computing each component is as fol-
lows: 38 rounds (including 2 rounds for random value generation) and 2× (93ℓ+
94ℓ log2 ℓ) invocations for [a]B and [b]B and 6 rounds and 19ℓ invocations for
[a <B b]p. The total complexity is 44 rounds (including 2 rounds for random
value generation) and 205ℓ + 188ℓ log2 ℓ invocations.

Multiparty Computation for Interval, Equality, and Comparison 15

On the other hand, in our construction, the complexity of computing each
component is as follows: 13 rounds (including 2 rounds for random value genera-
tion) and 3× (93ℓ+1) invocations for [a < p

2]p, [b < p

2]p, and [a− b mod p < p

2]p
and 2 rounds and 2 invocations for Eq. (2). The total complexity is 15 rounds
(including 2 rounds for random value generation) and 279ℓ + 5 invocations.

6.4 Equality Test Protocol

In the equality test protocol, given two shared secrets a, b ∈ Zp, the parties
compute [a = b]p without revealing (a = b) itself.

Because [a = b]p can be computed by [a − b = 0]p, we focus on computing
[a = 0]p.

If the parties use the bit-decomposition protocol, the parties compute [d]B
from [d]p = [a − b]p and compute [∧ℓ−1

i=0 (1 − di)]p by using an unbounded fan-in
And as in [11].

In our construction, we use a very simple observation that the randomization
c(= d + r) of d is equal to r if d is zero.

Procedure. First the parties generate [r ∈R Zp]B and obtain [r]p eventually.
Next, the parties compute [c]p = [a]p + [r]p and reveal c = a + r mod p ∈
{0, 1, . . . , p − 1}. We can note that c = r iff a = 0. Therefore, the parties com-
pute whether all bits of c are the same as [r]B . Let (cℓ−1, . . . , c0)2 be the bit
representation of c. Then the parties compute [c′i]p for 0 ≤ i ≤ ℓ − 1 as

[c′i]p =

{

[ri]p if ci = 1
1 − [ri]p if ci = 0.

We can note that c′i ∈ {0, 1} and that c′i = 1 iff ci = ri. Finally, the parties

compute [a = 0]p as [∧ℓ−1
i=0c′i]p by using an unbounded fan-in And.

Complexity of Equality Test Protocol. If we use the bit-decomposition
protocol straightforwardly, the complexity of computing each component is as
follows: 38 rounds (including 2 rounds for random value generation) and 93ℓ +

94ℓ log2 ℓ invocations for [d]B and 1 rounds and 5ℓ invocations for [∧ℓ−1
i=0 (1 −

di)]p. The total complexity is 39 rounds (including 2 rounds for random value
generation) and 98ℓ + 94ℓ log2 ℓ invocations.

On the other hand, in our construction, the complexity of computing each
component is as follows: 7 rounds (including 2 rounds for random value genera-

tion) and 76ℓ invocations for [r]B and 1 rounds and 5ℓ invocations for [∧ℓ−1
i=0c′i]p.

The total complexity is 8 rounds (including 2 rounds for random value genera-
tion) and 81ℓ invocations.

6.5 Probabilistic Equality Test Protocol

We consider another version of the equality test protocol with a very small
round complexity. We focus on computing [a = 0]p again. In our construction,
we assume that p = 3 mod 4 or p = 5 mod 8. These imply that Legendre symbol

16 T. Nishide and K. Ohta

(

−1
p

)

= −1 if p = 3 mod 4 and that
(

2
p

)

= −1 if p = 5 mod 8. The basic idea is

based on the property of quadratic residues as follows: If a is a zero, we always

have
(

c
p

)

=
(

r
p

)

where c = a + r, r is a random secret and c is a revealed

value. If a is not a zero, we have
(

c
p

)

6=
(

r
p

)

with non-negligible probability.

By checking whether
(

c
p

)

=
(

r
p

)

secretly with sufficiently many trials, we can

perform the equality test on a in a probabilistic way. Here note that we need to

generate random secret r in a special way to compute
(

r
p

)

secretly.

Procedure. First we describe the case of p = 3 mod 4. The case of p = 5 mod 8
can be obtained quite straightforwardly as we mention later.

The parties generate [bj ∈R {−1, 1}]p, [rj ∈R Zp]p, and [r′j ∈R Zp]p for

1 ≤ j ≤ k in parallel where k is chosen such that the error probability
(

1
2

)k
is

negligible. The value bj can be generated by a joint random bit sharing. Next,
the parties compute for 1 ≤ j ≤ k in parallel,

[cj]p = [a]p × [rj]p + [bj]p × [r′j]p × [r′j]p

and reveal all the cj ’s. Note that bjr
′2
j is uniformly random and unknown to the

parties, so no information about a is leaked from cj . Actually we can confirm
that Pr[bjr

′2
j = 0] = Pr[r′j = 0] = 1

p
, that Pr[bjr

′2
j = y] = Pr[bj = 1] × Pr[r′j =

±√
y] = 1

2 × 2
p

= 1
p

if y is a quadratic residue , and that Pr[bjr
′2
j = y] = Pr[bj =

−1] × Pr[r′j = ±√−y] = 1
2 × 2

p
= 1

p
if y is a quadratic nonresidue.

Also note that if a = 0, arj is always a zero and that if a 6= 0, arj is uniformly
random.

If cj is a zero, the parties discard the cj and retry. The probability that cj

happens to be a zero is 1
p

and negligible in the practical setting (e.g., p > 232).

Assuming that cj is not a zero, we can notice that a = 0 ⇒
(

cj

p

)

=
(

bjr′2

j

p

)

=

bj with prob. 1, and that a 6= 0 ⇒
(

cj

p

)

= bj with prob. 1
2 . The case of a = 0

is obvious. When a 6= 0, cj is uniformly random whether bj is −1 or 1 because

arj is uniformly random, so the probability that
(

cj

p

)

= bj is 1
2 .

Then the parties compute for 1 ≤ j ≤ k,

[xj]p =

2−1([bj]p + 1) if
(

cj

p

)

= 1

−2−1([bj]p − 1) if
(

cj

p

)

= −1.

Note that xj ∈ {0, 1} and that xj = 1 iff
(

cj

p

)

= bj. Finally, the parties compute

[a = 0]p = [∧k
j=1xj]p by using an unbounded fan-in And, assuming that at least

one of xj ’s is 0 if a 6= 0 with sufficiently large k.

The error probability that (a = 0) = 1 when a 6= 0 is
(

1
2

)k
and it can be

negligible if we use sufficiently large k.

Multiparty Computation for Interval, Equality, and Comparison 17

Similarly, when p = 5 mod 8, the parties compute and reveal for 1 ≤ j ≤ k

cj = arj + b′jr
′2
j mod p

instead of cj = arj + bjr
′2
j mod p where b′j = −2−1(bj − 3).

Note that b′j ∈R {2, 1} because bj ∈R {−1, 1}. Therefore, noting that
(

2
p

)

=

−1, we can notice that a = 0 ⇒
(

cj

p

)

=
(

b′jr′2

j

p

)

= bj with prob. 1, and that

a 6= 0 ⇒
(

cj

p

)

= bj with prob. 1
2 . The rest of computation can be done as we

did for p = 3 mod 4.
Though we assumed, for simplicity, that p = 3 mod 4 or that p = 5 mod 8,

actually we can extend the idea to arbitrary primes if we generate bj ∈R {y, 1}
such that

(

y

p

)

= −1.

Quadratic Residuosity Test Protocol. Incidentally, by using the random
secret bjr

2
j in Section 6.5, we can also construct a quadratic residuosity test

protocol where, given [a ∈ Z
∗

p]p, the parties can compute [
(

a
p

)

]p as follows:

Here we assume that p = 3 mod 4 for simplicity. The parties generate [br2]p
in the same way as bjr

2
j is generated in Sect. 6.5, and reveal c = br2a. If c

is a zero, the parties retry. The parties can compute [
(

a
p

)

]p as
(

c
p

)

[b]p since
(

c
p

)

=
(

b
p

)(

a
p

)

= b
(

a
p

)

.

Complexity of Probabilistic Equality Test Protocol. The complexity of
computing each component is as follows: 3 rounds (including 2 rounds for random
value generation) and 7k invocations for [cj]p’s and 1 rounds and 5k invocations
for [∧k

j=1xj]p. The total complexity is 4 rounds (including 2 rounds for random

value generation) and 12k invocations.

7 Implementation

In the real implementation, we can use (odd-even) parallel prefix computation
[19, 18] based on carry propagation and generation for the bitwise less-than and
bitwise sum protocols as in [4, 15, 23] where the complexity of bitwise less-than is
roughly 2+log2(ℓ) rounds and 3ℓ−1 invocations (2ℓ−1 invocations if one of the
two operands is known) and the complexity of bitwise sum is roughly 2 log2(ℓ)−1
rounds and 5ℓ − 2 log2(ℓ) − 4 invocations (4ℓ − 2 log2(ℓ) − 4 invocations if one
of the two operands is known). Also, instead of joint random number sharing,
we can use non-interactive pseudo-random secret sharing by Cramer, Damg̊ard
and Ishai [9] in the secret sharing setting in order to reduce the round and com-
munication complexities. In Table 3, we summarize the number of invocations
of main subprotocols in each protocol. Whether we use constant-round subpro-
tocols or non-constant-round subprotocols as building blocks, our constructions
are more efficient according to Table 3. Though, in the comparison protocol, we
need 3 invocations of joint random number bitwise-sharing compared with 2 in
[11], this can be done in advance and our protocol seems more advantageous.

18 T. Nishide and K. Ohta

Table 3. Number of Invocations of Subprotocols

Protocol Random Bitwise-Sharing Bitwise Less-Than Bitwise Sum

Bit-Decomposition [11] 1 1 2
Proposed 1 1 1

Interval Test [11] 1 3 2
Proposed 1 2 0

Comparison [11] 2 3 4
Proposed 3 3 0

Equality Test [11] 1 1 2
Proposed1 1 0 0

Acknowledgements.

We would like to thank Tomas Toft for giving us the idea in Section 6.2 that led
to an efficient comparison protocol and the information on [24]. We also thank
Prof. Ivan Damg̊ard for suggesting the possibility of using quadratic residues to
construct an efficient equality test protocol. We are also grateful to the anony-
mous reviewers and Prof. C.Pandu Rangan for their helpful comments.

References

1. J. Algesheimer, J. Camenisch, and V. Shoup, “Efficient computation modulo a
shared secret with application to the generation of shared safe-prime products,”
CRYPTO’02, LNCS 2442, pp.417–432, Springer Verlag, 2002.

2. J. Bar-Ilan and D. Beaver, “Non-cryptographic fault-tolerant computing in a con-
stant number of rounds of interaction,” Proc. ACM Symposium on Principles of
Distributed Computing, pp.201–209, 1989.

3. M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorem for non-
cryptographic fault-tolerant distributed computation,” 20th Annual ACM Sympo-
sium on Theory of Computing, pp.1–10, 1988.

4. P. Bogetoft, I. Damg̊ard, T. Jakobsen, K. Nielsen, J. Pagter, and T. Toft, “A prac-
tical implementation of secure auctions based on multiparty integer computation,”
Financial Cryptography 2006, LNCS 4107, pp.142–147, Springer Verlag, 2006.

5. A.K. Chandra, S. Fortune, and R.J. Lipton, “Lower bounds for constant depth
circuits for prefix problems,” ICALP, LNCS 154, pp.109–117, Springer Verlag, 1983.

6. A.K. Chandra, S. Fortune, and R.J. Lipton, “Unbounded fan-in circuits and asso-
ciative functions,” Proc. 15th ACM Symposium on Theory of Computing, pp.52–60,
1983.

7. D. Chaum, C. Crêpeau, and I. Damg̊ard, “Multi-party unconditionally secure pro-
tocols,” Proc. ACM STOC’88, pp.11–19, 1988.

8. R. Cramer and I. Damg̊ard, “Secure distributed linear algebra in a constant number
of rounds,” CRYPTO’01, LNCS 2139, pp.119–136, Springer Verlag, 2001.

9. R. Cramer, I. Damg̊ard, and Y. Ishai, “Share conversion, pseudorandom secret shar-
ing and applications to secure computation,” Proc. 2nd Theory of Cryptography
Conference, LNCS 3378, pp.342–362, Springer Verlag, 2005.

Multiparty Computation for Interval, Equality, and Comparison 19

10. R. Cramer, I. Damg̊ard, and J.B. Nielsen, “Multiparty computation from thresh-
old homomorphic encryption,” EUROCRYPT’01, LNCS 2045, pp.280–300, Springer
Verlag, 2001.

11. I. Damg̊ard, M. Fitzi, E. Kiltz, J.B. Nielsen, and T. Toft, “Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and expo-
nentiation,” Proc. 3rd Theory of Cryptography Conference, LNCS 3876, pp.285–304,
Springer Verlag, 2006.

12. I. Damg̊ard and M. Jurik, “A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system,” PKC 2001, LNCS 1992, pp.119–136,
Springer Verlag, 2001.

13. I. Damg̊ard and J.B. Nielsen, “Universally composable efficient multiparty compu-
tation from threshold homomorphic encryption,” CRYPTO’03, LNCS 2729, pp.247–
264, Springer Verlag, 2003.

14. P.-A. Fouque, G. Poupard, and J. Stern, “Sharing decryption in the context of
voting or lotteries,” Financial Cryptography 2000, LNCS 1962, pp.90–104, Springer
Verlag, 2000.

15. S. L. From and T. Jakobsen, “Secure multi-party computation on integers,” Mas-
ter’s Thesis, http://www.daimi.au.dk/~mas/thesis/index.html, 2006

16. R. Gennaro, M.O. Rabin, and T. Rabin, “Simplified VSS and fast-track multi-
party computations with applications to threshold cryptography,” Proc. 17th ACM
Symposium on Principles of Distributed Computing, pp.101–110, 1998.

17. O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental game or a
complete theorem for protocols with honest majority,” Proc. 19th STOC, pp.218–
229, 1987.

18. H. Jordan and G. Alaghband “Fundamentals of parallel processing,” Prentice Hall,
2003.

19. R. Ladner and M. Fischer, “Parallel prefix computation,” Journal of the Associa-
tion for Computing Machinery vol.27, pp.831–838, 1980.

20. E. Ong and J. Kubiatowicz, “Optimizing robustness while generating shared secret
safe primes,” PKC 2005, LNCS 3386, pp.120–137, Springer Verlag, 2005.

21. B. Schoenmakers and P. Tuyls, “Efficient binary conversion for Paillier encrypted
values,” EUROCRYPT’06, LNCS 4004, pp.522–537, Springer Verlag, 2006.

22. A. Shamir, “How to share a secret,” Communications of ACM, vol.22, no.11,
pp.612–613, 1979.

23. T. Toft, “Secure integer computation with applications in economy,”
http://www.aicis.alexandra.dk/uk/projects/scet_demo.htm#Tof05,
Available from http://www.daimi.au.dk/~tomas/publications/progress.pdf

24. T. Toft, “An efficient, unconditionally secure equality test for secret shared values,”
Workshop on Models for Cryptographic Protocols (MCP 2006),
Abstract available from http://www.daimi.au.dk/~buus/mcp2006/talks/T.pdf

25. A. Yao, “Protocols for secure computation,” Proc. 23rd FOCS, pp.160–164, 1982.

A Complexity of Bitwise Sum Protocol

Based on [11] (see unbounded fan-in carry propagation in Section 6.4), the com-
plexity of the bitwise sum protocol is evaluated as follows:

If the Prefix-And is computed with x rounds and y× ℓ invocations, the com-
plexity of the bitwise sum protocol is upper bounded by 2(x+1)+1 rounds and
(2(y+6)+1)ℓ log2 ℓ invocations. Assuming that all the random values are gener-
ated in the first 2 rounds and that the complexity of the Prefix-And is 5 rounds
(not including 2 rounds for random value generation) and 17ℓ invocations, the
total complexity is 15 rounds (including 2 rounds for random value generation)
and 47ℓ log2 ℓ invocations.

