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Abstract. A shuffle is a permutation and rerandomization of a set of cipher-
texts. Among other things, it can be used to construct mix-nets that are used in
anonymization protocols and voting schemes. While shuffling is easy, it is hard
for an outsider to verify that a shuffle has been performed correctly. We suggest
two efficient honest verifier zero-knowledge (HVZK) arguments for correctness
of a shuffle. Our goal is to minimize round-complexity and at the same time have
low communicational and computational complexity.
The two schemes we suggest are both 3-move HVZK arguments for correctness
of a shuffle. We first suggest a HVZK argument based on homomorphic integer
commitments, and improve both on round complexity, communication complex-
ity and computational complexity in comparison with state of the art. The second
HVZK argument is based on homomorphic commitments over finite fields. Here
we improve on the computational complexity and communication complexity
when shuffling large ciphertexts.

Keywords: Shuffle, homomorphic commitment, homomorphic encryption, mix-
net, honest verifier zero-knowledge.

1 Introduction

The main motivating example for shuffling is mix-nets. Parties can encrypt messages
and send them to the mix-net; the mix-net then permutes, decrypts and outputs the
messages. This allows parties to submit messages anonymously, which for instance is
very useful in voting.

One approach to construct a mix-net is the following. The authorities, one by one,
permute and rerandomize the ciphertexts. When all authorities have done this, they run
a threshold decryption protocol to get out the messages. The central operation here is
the permutation and rerandomization of a set of ciphertexts, a shuffle.

Obviously, it may be problematic if a dishonest authority replaces some of the ci-
phertexts, or cheats in some other way. If the cryptosystem is semantically secure, we
cannot detect the cheating directly. We therefore need to add verifiability to the shuffle.
One option is to request the shuffling authority to create a zero-knowledge argument
for correctness of the shuffle. The goal of this paper is to present new honest verifier
zero-knowledge arguments for correctness of a shuffle.
? Supported by NSF grant No. 0456717, and NSF Cybertrust grant.



RELATED WORK. Due to the direct applicability of proofs for the correctness of a shuf-
fle, several researchers have investigated the problem and suggested schemes. Proving
the correctness of a shuffle is a complicated matter, and as a consequence the most ef-
ficient schemes are also very complex. We will mention the more recent and efficient
schemes here.

Abe and Hoshino [Abe99, AH01] proposed a 3-move proof for correctness of a
shuffle of size O(kn log n) bits, where k is the security parameter and n is the number
of ciphertexts. Neff [Nef01] suggested an honest verifier zero-knowledge proof for cor-
rectness of a n ElGamal ciphertext shuffle based on the invariance of polynomials under
permutation of the roots. While giving an efficient proof of size O(kn) bits, the draw-
back of this scheme is that it is a 7-move proof. Groth [Gro03, Gro05b] generalized
Neff’s scheme to work with a large class of homomorphic cryptosystems.

Furukawa and Sako [FS01], later improved by Furukawa [Fur05], proposed a 3-
move argument for correctness of a shuffle. This method is based on committing to a
permutation matrix and proving that the ciphertexts have been shuffled according to
this permutation. They focus on the verifiability of an ElGamal ciphertext shuffle. Sub-
sequent work by Nguyen et al. [NSNK04, NSNK05] and Onodera and Tanaka [OT04]
have used the permutation matrix approach to construct correctness arguments for shuf-
fles of Paillier ciphertexts. Peng at al. [PBD05] also investigate shuffling of Paillier
ciphertexts, but use different techniques.

Yet another method for proving the correctness of a shuffle has been suggested by
Wikström [Wik05a] based on unique factorization of integers. Unlike the other schemes
that use commitments over Zq for a prime q, he uses a homomorphic integer commit-
ment scheme as a central building block. In some instances, this is actually desirable,
for instance in [WG06]. One drawback of this scheme is that it uses 5 rounds.

OUR CONTRIBUTION. We suggest honest verifier zero-knowledge arguments for cor-
rectness of a shuffle. Since shuffles are typically used for anonymization, and since
anonymization works best when individuals or groups can hide among a large set of
other people, it is possible that we need to shuffle a huge number of ciphertexts. As an
example, a voting scheme may have thousands or even millions of voters casting ballots.
This implies that communication complexity and computational complexity are both of
high importance. Furthermore, in a mix-net the authorities shuffle the ciphertexts one at
a time and cooperate to generate the challenges for the honest verifier zero-knowledge
argument. In order to minimize this work, we want to have as low round complexity as
possible.

Our first scheme uses homomorphic integer commitments as the central building
block. By working with integers, instead of working over Zq as [FS01, Fur05], we show
a much simpler way to demonstrate that indeed we have committed to a permutation
matrix. The relevant comparison for this scheme is Wikström’s argument for correctness
of a shuffle [Wik05b] that is also based on integer commitments. Our scheme is better
on all performance parameters, a detailed comparison can be found in Section 5.

Our second scheme uses homomorphic commitments over a message space Zq for
a prime q, just like [FS01, Fur05]. We combine Furukawa’s [Fur05] scheme with tech-
niques from [Gro05b] to obtain a 3-move argument for correctness of a shuffle. This
generalization of Furukawa’s scheme permits shuffling of almost any homomorphic



cryptosystem. If we look at the case of shuffling ElGamal ciphertexts, with the plain-
texts belonging to a subgroup of relatively small order, our scheme is almost identi-
cal to Furukawa’s scheme. However, a scenario with a large message space is perhaps
more realistic. For instance, if we are looking at a voting scheme, we may want to per-
mit write-in votes. If we are looking at a scheme for anonymous broadcast, senders
may want to post large messages. For this setting, the most relevant comparison of our
scheme is with the papers dealing with a shuffle of Paillier ciphertexts. Our scheme, has
the same round complexity and is better on the other performance parameters. We refer
to Section 5 for a detailed comparison with these schemes.

2 Preliminaries

We shuffle homomorphic ciphertexts and we use homomorphic commitments to shuffle
them. For completeness, we will describe them here. We also recap the notion of an
honest verifier zero-knowledge argument.

SPECIAL HONEST VERIFIER ZERO-KNOWLEDGE (SHVZK) ARGUMENT. We will de-
scribe 3-move public-coin arguments of knowledge with the special honest verifier
zero-knowledge [CDS94] property. To explain this, consider a prover and a verifier.
They both have access to a common reference string, in the paper it will consist of a
public key for the commitment scheme and a public key for the cryptosystem. They
also both have access to a statement x. In our case, this statement will consist of two
sets of ciphertexts and a claim that one set is a shuffle of the other set. The prover sends
an initial message a, the verifier selects a random challenge t, and the prover provides
an answer z. The verifier can now evaluate (a, t, z) and decide whether to accept the
truth of the statement.

That the protocol is public coin simply means that the challenge t is a random string.
In the present paper the challenge will actually be n strings of bit-length `t. A possible
choice is `t = 80. If we wish to make the argument non-interactive, i.e., let the prover
compute the challenges as a hash-value of x, a, then `t = 160 would be suitable to
account for the adversary being able to search many combinations of initial messages
and hash-values offline.

The protocol must be complete, i.e., given a witness for the statement it should be
easy for the prover to convince an honest verifier. It must be sound, i.e., it is infeasi-
ble to convince an honest verifier about a false statement. Moreover, the protocol will
be an argument of knowledge in the following sense. If an adversary can produce a
statement x and has non-negligible3 probability ε of convincing the verifier, then with
overwhelming probability it should be possible to extract a witness in expected poly-
nomial time divided by ε. Finally, the protocols we present will have special honest
verifier zero-knowledge (SHVZK). Given an arbitrary challenge t, we can simulate the
argument (a, t, z).

Well-known examples of 3-move public coin SHVZK arguments of knowledge are
Schnorr’s [Sch91] and Guillou-Quisquater’s [GQ88] identification protocols.

3 A non-negligible function is the inverse of some polynomial of the security parameter.



HOMOMORPHIC ENCRYPTION. The public key of our cryptosystem specifies a mes-
sage space, a randomizer space, and a ciphertext space that are abelian groups. The
encryption algorithm E takes as input a message and a randomizer and outputs a ci-
phertext. The homomorphic property is

E(m⊕m′; r � r′) = E(m; r)⊗ E(m′; r′),

where ⊕,�,⊗ are the binary operations for messages, randomizers and ciphertexts
respectively. For notational convenience, we will in the rest of the paper use + for the
messages and randomizers, and · for the ciphertexts.

For the purpose of proving knowledge we assume the cryptosystem has the follow-
ing root extraction property: Suppose an adversary produces a ciphertext E, an exponent
e that is coprime with the order of the message space, and a message and randomizer
so Ee = E(M ;R). Then we can efficiently extract m, r so E = E(m; r). Examples
of homomorphic cryptosystems with the root extraction property are ElGamal [ElG84],
Okamoto-Uchiyama [OU98] and Paillier [Pai99].

We need an order of the message space that does not have any prime factors
smaller than 2`t . When specifying the protocols we will for simplicity assume that
the randomizer space is Z, and we encrypt M by choosing R ← {0, 1}`R and setting
E = E(M ;R). This choice is purely out of notational convenience, the protocols work
just as fine with other types of randomizer spaces.

HOMOMORPHIC COMMITMENT. The public key of the commitment scheme specifies
a randomizer space and a commitment space that are abelian groups or abelian semi-
groups. We allow commitment to multiple elements at once. The homomorphic property
is

com(m1⊕m′
1, . . . ,mn⊕m′

n; r�r′) = com(m1, . . . ,mn; r)⊗com(m′
1, . . . ,m

′
n; r′).

Again, for notational convenience we will in the rest of the paper use + for the messages
and randomizers, and · for the commitments.

In addition, the commitment scheme has a root extraction property which will be
used for proving soundness. If an adversary produces a commitment c, and exponent
e 6= 0 and a randomizer R and messages M1, . . . ,Mn so ce = com(M1, . . . ,Mn;R),
then we can find m1, . . . ,mn, r so c = com(m1, . . . ,mn; r).

The two shuffles we will propose make use of two different types of commitments:
one will make use of integer commitments and the other will make use of commitments
over a finite field Zq.

An example of a homomorphic commitment scheme over Zq is the following vari-
ant of the Pedersen commitment [Ped91]. The public key consists of primes q, p with
q|p− 1, and random generators g1, . . . , gn, h of the order-q subgroup of Z∗

p. To commit

to n messages m1, . . . ,mn using randomness (u, r) ∈ Z∗
p × Zq so u

p−1
q = 1 mod p,

we compute the commitment c = ugm1
1 · · · gmn

n hr mod p. Typically, we pick random-
ness u = 1 and r ← Zq uniformly at random. Observe, any 0 < c < p is a valid
commitment, so it is straightforward to check that a commitment is well-formed. Note
also that the commitment scheme is perfectly hiding.



Examples of homomorphic integer commitment schemes can be found in [FO97],
later revised in [DF02], and [Gro05a]. We present the latter homomorphic integer com-
mitment scheme that is the most efficient one. The public key consists of an RSA mod-
ulus N = pq, where p = 2p′rp + 1, q = 2q′rq + 1 and p′, q′ are primes. We work in
the unique subgroup G of order p′q′. Let g1, . . . , gn, h be randomly chosen generators
of G. To commit to a set of integers m1, . . . ,mk using randomness (u, e > 0, r) so
ue = 1 mod n, we use

c = com(m1, . . . ,mk; (u, e, r)) = ugm1
1 · · · gmk

k hr mod N.

To open it we reveal m1, . . . ,mk, (u, e, r). When selecting the randomness the usual
choice is u = 1, e = 1, r ← {0, 1}`r+`s , where `r = |G| and `s is a small security
parameter. It is of course straightforward to test whether c is a valid commitment, we
simply test c ∈ Z∗

N . This commitment scheme is statistically hiding.

3 Verifiable Secret Shuffle Based on Integer Commitment

A shuffle of input ciphertexts e1, . . . , en consists of output ciphertexts E1, . . . , En so
there exists a permutation π and randomizers R1, . . . , Rn so Ek = eπ(k)E(0;Rk). Ei

is then the encryption of message Mi = mπ(i). In this section, we suggest a SHVZK
argument of knowledge of correctness of a shuffle based on homomorphic integer com-
mitments.

The permutation defines a permutation matrix in the following way. Let A have
entries aπ(i)i = 1 and all other entries 0. We can visualize relating the messages
(m1, . . . ,mn) with the permuted ones (M1, . . . ,Mn) = (mπ(1), . . . ,mπ(n)) by a mul-
tiplication by the permutation matrix A:

m1

m2

...
mn

 =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann




mπ(1)

mπ(2)

...
mπ(n)


The idea in the shuffle argument is the following. We commit to the rows of A,

ci ← com(ai1, . . . , ain) for i = 1, . . . , n. The verifier selects random challenges
t1, . . . , tn ← {0, 1}`t and we argue knowledge of the contents of

∏n
i=1 cti

i . As we shall
see this implies knowledge of the contents of each commitment ci, i.e., knowledge of
the matrix A.

The content of
∏n

i=1 cti
i is (

∑n
i=1 ai1ti, . . . ,

∑n
i=1 ainti). We will show that∑n

j=1(
∑n

i=1 aijti) =
∑n

i=1 ti for randomly chosen ti’s. Looking at each coefficient of
the multi-variate polynomial, this means that with overwhelming probability we have∑n

j=1 aij = 1 for i = 1, . . . , n. In other words, each row of A sums to 1.
We also show that

∑n
k=1(

∑n
i=1 aikti)2 =

∑n
i=1 t2i for randomly chosen ti’s. This

gives us

0 =
n∑

k=1

(
n∑

i=1

aikti

)2

−
n∑

i=1

t2i =
n∑

k=1

n∑
i=1

n∑
j=1

aiktiajktj −
n∑

i=1

n∑
j=1

δiktitj



=
n∑

i=1

n∑
j=1

[(
n∑

k=1

aikajk

)
− δij

]
titj .

Looking at coefficients of each pair titj we see that
∑n

k=1 aikajk = δij , where δij = 1
if i = j and 0 if i 6= j. I.e., the rows are orthogonal and have norm 1, so AAT = I .
Lemma 1 now shows that A is a permutation matrix defining some permutation π.

Finally, we have to connect the matrix A with the ciphertexts. We use the values∑n
i=1 aijti = tπ(j) that we have from the commitments. We show that

n∏
i=1

E
tπ(i)
i =

n∏
i=1

eti
i E

(
0;

n∑
i=1

tπ(i)Ri

)
,

which implies
n∏

i=1

(Eie
−1
π(i))

tπ(i) = E

(
0;

n∑
i=1

tπ(i)Ri

)
.

Since the ti’s are chosen at random this shows that with overwhelming probability Ei

and eπ(i) have the same message for any i. We shall see later that for cryptosystems
with the root extraction property, we obtain a proof of knowledge, where we can extract
randomizers Ri so Ei = eπ(i)E(0;Ri).

These are the main ideas for obtaining soundness. What remains, is the problem of
achieving zero-knowledge. We add some disguising values dj to the sums we get out,
i.e., we work with dj +

∑n
i=1 aijti, where the dj’s are large random numbers. More

precisely, dj ← {0, 1}`t+`s , where `s is a small security parameter, for instance `s =
80. This way the actual value of

∑n
i=1 aijti is hidden throughout the argument. This

modification entails a few other modifications to the protocol. The resulting argument
is described in Figure 1.

Lemma 1. Consider an n × n integer matrix A with entries aij . If AAT = I and
n∑

j=1

aij = 1 for all i then A is a permutation matrix.

Proof. The condition AAT = I shows us that all rows have norm 1. In other words, each
row has n−1 entries that are 0, and one single entry that is±1. Then

∑n
j=1 aij = 1 for

all i shows us that these entries must be +1. Since A is invertible, the n 1-entries must
be spread over all columns and all rows. In other words, A is a permutation matrix. �

Theorem 1. The protocol in Figure 1 is a 3-move public coin SHVZK argument of
knowledge of a correct shuffle. If the commitment scheme is statistically hiding, then
the argument is statistical SHVZK.

Proof. Completeness follows from direct algebraic manipulations. Left is to argue
SHVZK and soundness and knowledge.
SHVZK. Given arbitrary challenges t1, . . . , tn ∈ {0, 1}`t we have to simulate an ar-
gument. The simulation will mimic the real argument and we will highlight the main
differences with a bar over the variable.



Shuffle Argument SHUFZ

Common input: Ciphertexts e1, . . . , en, E1, . . . , En and public keys.
Prover’s input: Permutation π ∈ Σn and randomizers R1, . . . , Rn so Ei = eπ(i)E(0; Ri).

Initial message (P −→ V): Choose randomness ri ← {0, 1}`r , rd ←
{0, 1}`r+log n+`t+`s , dj ← {0, 1}`t+`s , RR ← {0, 1}`R+log n+`t+`s and set
dn := −

Pn−1
j=1 dj . Set ER := E(0;−RR)

Qn
i=1 Edi

i . Generate commitments

c1 ← com( 0 1π−1(1) 0 . . . 0, 2dπ−1(1) ; r1)
c2 ← com( 0 0 0 . . . 1π−1(2), 2dπ−1(2) ; r2)
...

cn ← com( 0 . . . 0 1π−1(n) 0, 2dπ−1(n) ; rn)
and
cd ← com( d1, d2, . . . , dn−1, dn,

Pn
j=1 d2

j ; rd)

Send (c1, . . . , cn, cd, ER) to the verifier.
Challenge (P ←− V): t1, . . . , tn ← {0, 1}`t .
Answer (P −→ V): Set fj := tπ(j) + dj , z :=

Pn
i=1 tiri + rd and

Z := RR +
Pn

i=1 tπ(i)Ri.
Send (f1, . . . , fn, z, Z) to the verifier.

Verification: Check that c1, . . . , cn, cd are valid commitments and ER is a valid ciphertext.
Set f∆ :=

Pn
j=1 f2

j −
Pn

i=1 t2i . Verify

Pn
j=1 fj

?
=

Pn
i=1 ti

cd

Qn
i=1 cti

i

?
= com(f1, . . . , fn, f∆; z)Qn

i=1 Efi
i

?
= E(0; Z)ER

Qn
i=1 eti

i

Fig. 1. SHVZK Argument of Correct Shuffle Based on Integer Commitment

Initial message: Choose randomness ri, rd Choose random fj so that
∑n

j=1 fj =∑n
i=1 ti and set f∆ :=

∑n
j=1 fj

2 −
∑n

i=1 t2i . Set ci ← com(0, . . . , 0). Choose
random z and set cd ← com(f1, . . . , fn, f∆; z)

∏n
i=1 c−ti

i . Choose random Z and

set ER := E(0;−Z)
∏n

i=1 Efi

i e−ti
i

Write (c1, . . . , cn, cd, ER) to the transcript.
Challenge: Write the t1, . . . , tn received as input to the transcript.
Answer: Send (f1, . . . , fn, z, Z) to the verifier.

The simulated argument is (c1, . . . , cn, cd, ER, t1, . . . , tn, f1, . . . , fn, z, Z).
To see that this is a good simulation, consider the following hybrid argument. We

proceed exactly as in the simulation except when forming c1, . . . , cn. Here we set dj :=
fj − tπ(j). We set ci ← com(0, . . . , 1π−1(i), . . . , 0, 2dπ−1(i)). Proceed with the rest of
simulation as described above.

The hybrid argument is statistically indistinguishable from a real argument as the
randomness chosen in the hybrid is linearly related to the randomness in the real argu-
ment, thus it retains the same distribution. On the other hand, the only thing that differs



from the simulation is the way we form the ci’s. The hiding property of the commit-
ment scheme therefore gives us indistinguishability between the hybrid argument and
the simulated argument. If the commitment scheme is statistically hiding, then we have
statistical indistinguishability between the hybrid argument and the simulated argument.

SOUNDNESS AND KNOWLEDGE. Consider an adversary that has already sent the ini-
tial message (c1, . . . , cn, cd, ER) to the verifier and has non-negligible probability ε of
answering the challenge. We store the state of this prover and now wish to extract a
witness for correctness of the shuffle.

We select at random challenges t1, . . . , tn and run the adversarial prover until we
have n + 1 acceptable answers. We use an expected number of (n + 1)/ε tries to
do this. Call the challenges t

(j)
1 , . . . , t

(j)
n for j = 0, . . . , n and the corresponding an-

swers f
(j)
1 , . . . , f

(j)
n , z(j), Z(j). Since cd

∏n
i=1 c

t
(j)
i

i = com(f (j)
1 , . . . , f

(j)
n , f

(j)
∆ ; z(j))

we have

n∏
i=1

c
t
(0)
i −t

(j)
i

i = com(f (0)
1 − f

(j)
1 , . . . , f (0)

n − f (j)
n , f

(0)
∆ − f

(j)
∆ ; z(0) − z(j)).

Consider the n × n matrix T with entries tij = t
(0)
i − t

(j)
i . With overwhelming

probability over the choices of t
(j)
i the columns are linearly independent. We can in

polynomial time find the transpose of the cofactor matrix CT so TCT = |T |I , where
|T | is the determinant of T .

Call the entries of CT as vjk, then we have |T | =
∑n

j=1 tkjvjk and 0 =∑n
j=1 tijvjk for k 6= i. So

c
|T |
k = c

Pn
j=1 tkjvjk

k =
n∏

i=1

c
Pn

j=1 tijvjk

i =
n∏

i=1

n∏
j=1

c
tijvjk

i =
n∏

j=1

(
n∏

i=1

c
t
(0)
i −t

(j)
i

i

)vjk

.

This means

c
|T |
k = com

 n∑
j=1

vjk(f (0)
1 − f

(j)
1 ), . . . ,

n∑
j=1

vjk(f (0)
n − f (j)

n ),
n∑

j=1

vjk(f (0)
∆ − f

(j)
∆ );

n∑
j=1

vjk(z(0) − z(j))

 .

By the root extraction property, we can open ck. We call the opening

(ak1, . . . , akn, ak∆, rk). Since cd = com(f (0)
1 , . . . , f

(0)
n , f

(0)
∆ ; z(0))

∏n
i=1 c

−t
(0)
i

i , hav-
ing openings of c1, . . . , cn means that we can find an opening (d1, . . . , dn, d∆, rd) of
cd.

The adversary, having noticeable probability of answering the challenge t1, . . . , tn,
is forced to use fj = dj +

∑n
i=1 aijti and f∆ = d∆ +

∑n
i=1 ai∆ti. The equation

f∆ =
∑n

j=1 f2
j −

∑n
i=1 t2i implies

n∑
i=1

ai∆ti + d∆ =
n∑

j=1

(
n∑

i=1

aijti + dj

)2

−
n∑

i=1

t2i



=
n∑

j=1

(
n∑

i=1

n∑
k=1

aijakjtitk + 2dj

n∑
i=1

aijti + d2
j

)
−

n∑
i=1

n∑
k=1

δiktitk

=
n∑

i=1

n∑
k=1

 n∑
j=1

aijakj − δik

 titk +
n∑

i=1

2
n∑

j=1

djaij

 ti +
n∑

j=1

d2
j .

With overwhelming probability over t1, . . . , tn this can only happen if
∑n

j=1 aijakj =
δik for all i, k. Let A be the matrix with entries aij . Then the equation corresponds to
saying AAT = I .

We also have

0 =
n∑

j=1

fj−
n∑

i=1

ti =
n∑

j=1

(
n∑

i=1

aijti + dj

)
−

n∑
i=1

ti =
n∑

i=1

 n∑
j=1

aij − 1

 ti+
n∑

j=1

dj .

With overwhelming probability over the ti’s this can only be the case if
∑n

j=1 aij = 1
for all i.

Lemma 1 tells us that A is a permutation matrix. This means, there exists a permu-
tation π so aπ(i)i = 1 and all other entries are 0.

Look now at the ciphertext equations,
∏n

i=1 E
f
(j)
i

i = ERE(0;Z(j))
∏n

i=1 e
t
(j)
i

i giv-
ing us

n∏
i=1

E
t
(0)
π(i)−t

(j)
π(i)

i =
n∏

i=1

E
f
(0)
i −f

(j)
i

i = E(0;Z(0) − Z(j))
n∏

i=1

e
t
(0)
i −t

(j)
i

i .

Since
∑n

j=1 tijvjk = |T |δik we have

(Eke−1
π(k))

|T | = (Eke−1
π(k))

Pn
j=1 tπ(k)jvjπ(k) =

n∏
i=1

(Eie
−1
π(i))

Pn
j=1 tπ(i)jvjπ(k)

=
n∏

j=1

(
n∏

i=1

(Eie
−1
π(i))

t
(0)
π(i)−t

(j)
π(i)

)vjπ(k)

=
n∏

j=1

(
n∏

i=1

E
t
(0)
π(i)−t

(j)
π(i)

i

n∏
i=1

e
t
(0)
i −t

(j)
i

i

)vjπ(k)

= E

0;
n∑

j=1

vjπ(k)(Z(0) − Z(j))

 .

By the root extraction property we can find an opening (0, Rk) of Eke−1
π(k). Do-

ing so for k = 1, . . . , n means we have found openings R1, . . . , Rn so E1 =
eπ(1)E(0;R1), . . . , En = eπ(n)E(0;Rn). �

4 Verifiable Secret Shuffle Based on Commitments Over Zq

The ideas presented above also apply to the case of homomorphic commitment schemes
over Zq. In this section, we suggest a SHVZK argument of knowledge of correctness of



a shuffle based on homomorphic commitments in Zq where q ≡ 2 mod 3. This shuffle
will be a slight modification of the one in the previous section to accommodate the
fact that Lemma 1 no longer applies in Zq. The scheme is more complicated, but the
advantage is that it may be easier to set up a scheme with prime order groups instead of
using composite order groups. In case of ElGamal encryption with the message space
being a small subgroup, the scheme is almost identical to Furukawa’s scheme [Fur05].
However, for large message spaces or large ciphertexts we gain much in comparison
with the state of the art.

The idea in the shuffle argument is similar to the preceding section. Let A have
entries aπ(i)i = 1 in Zq and all other entries 0. We commit to the rows of A, ci ←
com(ai1, . . . , ain) for i = 1, . . . , n. The verifier selects random challenges t1, . . . , tn
and we argue knowledge of the contents of

∏n
i=1c

ti
i . Just as before, we shall see this

implies knowledge of the contents of each commitment ci, i.e., knowledge of the matrix
A.

In the case of commitments in Zq we have a similar lemma (Theorem 2 [Fur05]) to
identify when a matrix is a permutation matrix. We show that

∑n
h=1(

∑n
i=1aihti)3 =∑n

i=1t
3
i . This gives us

0 =
n∑

h=1

(
n∑

i=1

aihti)3 −
n∑

i=1

t3i =
n∑

h=1

n∑
i=1

n∑
j=1

n∑
k=1

aihtiajhtjakhtk −
n∑

i=1

n∑
j=1

n∑
k=1

δijktitjtk

=
n∑

i=1

n∑
j=1

n∑
k=1

[(
n∑

h=1

aihajhakh

)
− δijk

]
titjtk.

Looking at coefficients of each triple titjtk we see that
∑n

h=1aihajhakh = δijk, where
δijk = 1 if i = j = k and 0 otherwise. Lemma 2 now shows that A is a permutation
matrix defining some permutation π.

Finally, we have to connect the matrix A with the ciphertexts. We use the values∑n
i=1aijti = tπ(j) that we have from the commitments. We show that

∏n
i=1E

tπ(i)
i =∏n

i=1e
ti
i E(0;

∑n
i=1tπ(i)Ri), i.e.,

∏n
i=1(Eie

−1
π(i))

tπ(i) = E(0;
∑n

i=1tπ(i)Ri). Since the
ti’s are chosen at random this indicates that Ei and eπ(i) have the same message for
any i. Just as before, we add blinding factors to these values to ensure zero-knowledge.
The resulting argument is described in Figure 2. If we let `s be an additional security
parameter, we need to choose the di’s from {0, 1}`t+`s . Because we are working with
large ciphertexts, yet are performing all of the operations modulo q, to ensure the check
on the ciphertexts still holds true we need to ensure that the equations fj = tπj + dj do
not overflow. For this reason we require that `t + `s < |q|. The remaining random vari-
ables are only for verifying the commitments modulo q. Therefore, all of the prover’s
random variables may be reduced modulo q.

Lemma 2 (Theorem 2 [Fur05]). Consider an n× n integer matrix A with entries aij

in Zq where q ≡ 2 mod 3. We have that
n∑

h=1

aihajhakh = δijk for all i, j, k (1)

if and only if A is a permutation matrix.



Proof. (⇐) is trivial.
(⇒): Let Ri denote the i-th row vector of A. First we show the matrix A has full

rank, i.e. the rows form a basis for Zn
q . If there is a linear combination 0 =

∑n
i=1biRi

we have that 0 =
∑n

i=1biaih for all h. Observe now that for any choice of j, we may
multiply ajhajh to each of these equations, so 0 =

∑n
i=1biaihajhajh. Summing over

all h we obtain 0 =
∑n

h=1

∑n
i=1biaihajhajh =

∑n
i=1bi

∑n
h=1aihajhajh which by

assumption is equal to
∑n

i=1biδijj = bj and hence bj = 0. This shows that the rows
are linearly independent in Zn

q and hence form a basis for Zn
q . Next, we show that there

is at most one non-zero entry in each column.
If v = (v1, . . . , vn) and w = (w1, . . . , wn) are vectors in Zn

q , define 〈v, w〉 =∑n
i=1viwi to be the dot product of v and w and define v � w = (v1w1, . . . , vnwn)

to be a vector resulting in the component-wise multiplication of v and w. Notice that
〈Ri �Rj , Rk〉 =

∑n
h=1aihajhakh which is equal to δijk by assumption. Observe that

if i 6= j then 〈Ri � Rj , Rk〉 = 0 for all k, and since the Rk’s span all of Zn
q , we have

that Ri�Rj = 0. Since the choice of i, j was arbitrary, this means between each pair of
entries in a column, at most one of them is non-zero; therefore at most one entry is non-
zero. The matrix is of full rank, so indeed there is exactly one non-zero entry in each
column (and hence in each row). This entry must be a cube root of 1, and q = 2 mod 3
implies there is a unique cube root, namely 1. Thus A is a permutation matrix over Zq.
�

Theorem 2. The protocol in Figure 2 is a 3-move public coin SHVZK argument of
knowledge of a correct shuffle. If the commitment scheme is statistically hiding, then
the argument is statistical SHVZK.

Proof. Completeness follows from direct algebraic manipulations. Left is to argue
SHVZK and soundness.
SHVZK. Given challenges t1, . . . , tn ∈ {0, 1}`t we have to simulate an argument.
The simulation will mimic the real argument and we will highlight the main differ-
ences with a bar over the variable. Simulation input: Challenges t1, . . . , tn. Ciphertexts
e1, . . . , en, E1, . . . , En and public keys.

Initial message: Pick r1, . . . , rn, f1, . . . , fn, F1, . . . , Fn, rd, rD, yd, yD, Z and fd

at random. Set fD :=
∑n

j=1 fj
3 −

∑n
i=1 t3i − fd. Using the challenges, com-

pute zd :=
∑n

j=1tjrj + rd and zD :=
∑n

j=1t
2
jrj + rD. Generate commit-

ments ci ← com(0, . . . , 0; ri) and cd ← com(f1, . . . , fn, yd, fd; zd)
∏n

i=1c
−ti
i and

cD ← com(F1, . . . , Fn, fD, yD; zD)
∏n

i=1c
−t2i
i .

Set ER := E(0;−Z)
∏n

i=1 Efi

i e−ti
i .

Write (c1, . . . , cn, cd, cD, ER) to the transcript.
Challenge: Write the t1, . . . , tn received as input to the transcript.
Answer: Everything we need has already computed in an earlier phase. Thus we can

immediately write (f1, . . . , fn, fd, yd, zd, F1, . . . , Fn, yD, zD, Z) to the transcript.

The simulated argument is

(c1, . . . , cn, cd, cD, ER, t1, . . . , tn, f1, . . . , fn, fd, yd, zd, F1, . . . , Fn, yD, zD, Z)



Shuffle Argument SHUFZq

Common input: Ciphertexts e1, . . . , en, E1, . . . , En and public keys.
Prover’s input: Permutation π ∈ Σn and randomizers R1, . . . , Rn so Ei = eπ(i)E(0; Ri).

Initial message (P −→ V): Choose randomness d1, . . . , dn ← {0, 1}`t+`s and r1, . . . , rn,
D1, . . . , Dn, rd, rD , sd, sD , ∆← Zq . Choose randomness
RR ← {0, 1}`R+log n+`t+`s . Set ER := E(0;−RR)

Qn
i=1E

di
i . Generate commitments

c1 ← com( 0 1π−1(1) 0 . . . 0, 3dπ−1(1), 3d2
π−1(1) ; r1)

c2 ← com( 0 0 0 . . . 1π−1(2), 3dπ−1(2), 3d2
π−1(2) ; r2)

...
cn ← com( 0 . . . 0 1π−1(n) 0, 3dπ−1(n), 3d2

π−1(n) ; rn)

and
cd ← com( d1, d2, . . . , dn−1, dn, sd,

Pn
j=1d

3
j −∆ ; rd)

cD ← com( D1, D2, . . . , Dn−1, Dn, ∆, sD ; rD)

Send (c1, . . . , cn, cd, cD, ER) to the verifier.
Challenge (P ←− V): t1, . . . , tn ← {0, 1}`t .
Answer (P −→ V): Set fj := tπ(j) + dj and Fj := t2π(j) + Dj for j = 1, . . . , n. Also set

fd := 3
Pn

j=1tjd
2
π−1(j) +

Pn
j=1d

3
j −∆

yd := 3
Pn

j=1tjdπ−1(j) + sd and yD := 3
Pn

j=1t
2
jd

2
π−1(j) + sD

zd :=
Pn

j=1tjrj + rd and zD :=
Pn

j=1t
2
jrj + rD

Set Z := RR +
Pn

i=1tπ(i)Ri.
Send (f1, . . . , fn, fd, yd, zd, F1, . . . , Fn, yD, zD, Z) to the verifier.

Verification: Check that c1, . . . , cn, cd, cD are valid commitments and ER is a valid
ciphertext and fj > 2`t for j = 1, . . . , n. Set fD :=

Pn
j=1f

3
j −

Pn
i=1t

3
i − fd. Verify

cd

Qn
i=1c

ti
i

?
= com(f1, . . . , fn, yd, fd; zd)

cD

Qn
i=1c

t2i
i

?
= com(F1, . . . , Fn, fD, yD; zD)Qn

i=1E
fi
i

?
= E(0; Z)ER

Qn
i=1e

ti
i

Fig. 2. SHVZK Argument of Correct Shuffle Based on Commitment over Zq .

To see that this is a good simulation, consider the following hybrid argument.
We proceed exactly as in the simulation except when forming c1, . . . , cn. Here we
solve for the valid d1, . . . , dn, i.e. set dj := fj − tπ(j). We similarly set the vari-
ables that differ between the simulation and the real argument, namely the appropri-
ate D1, . . . , Dn, sd, sD, RR and ∆. Observe that the relationship between the vari-
ables generated randomly in the simulation and the variables generated randomly in
the real argument are governed by linear equations; hence this endows the hybrid
argument with the same distribution of variables as a real argument. We generate
ci ← com(0, . . . , 0, 1π−1(i), 0, . . . , 0, 3dπ−1(i), 3d2

π−1(i); ri). Proceed with the rest of
simulation as described above.

The hybrid argument is statistically indistinguishable from a real argument. On the
other hand, the only thing that differs from the simulation is the way we form the ci’s.



The hiding property of the commitment scheme therefore gives us indistinguishability
between the hybrid argument and the simulated argument. If the commitment scheme
is statistically hiding, then we have statistical indistinguishability between the hybrid
argument and the simulated argument.
SOUNDNESS AND KNOWLEDGE. Consider an adversary that has already sent the initial
message (c1, . . . , cn, cd, cD, ER) to the verifier and has non-negligible probability ε of
answering the challenge. We store the state of this prover and now wish to extract a
witness for correctness of the shuffle.

We select at random challenges t1, . . . , tn and run the adversarial prover un-
til we have n + 1 acceptable answers. We use an expected number of (n + 1)/ε

tries to do this. Call the challenges t
(j)
1 , . . . , t

(j)
n for j = 0, . . . , n and the corre-

sponding answers f
(j)
1 , . . . , f

(j)
n , f

(j)
d , y

(j)
d , z

(j)
d , F

(j)
1 , . . . , F

(j)
n , y

(j)
D , z

(j)
D , Z(j). Since

cd

∏n
i=1c

t
(j)
i

i = com(f (j)
1 , . . . , f

(j)
n , y

(j)
d , f

(j)
d ; z(j)

d ) we have

n∏
i=1

c
t
(0)
i −t

(j)
i

i = com(f (0)
1 − f

(j)
1 , . . . , f (0)

n − f (j)
n , y

(0)
d − y

(j)
d , f

(0)
d − f

(j)
d ; z(0)

d − z
(j)
d ).

Consider the n × n matrix T with entries tij = t
(0)
i − t

(j)
i . With overwhelming

probability over the choices of t
(j)
i the columns are linearly independent. We can in

polynomial time find the inverse matrix T−1 so TT−1 = I .
Call the entries of T−1 as vjk, then we have

∑n
j=1tijvjk = δik. So

ck = c
Pn

j=1tkjvjk

k =
n∏

i=1

c
Pn

j=1tijvjk

i =
n∏

i=1

n∏
j=1

c
tijvjk

i =
n∏

j=1

(
n∏

i=1

c
t
(0)
i −t

(j)
i

i

)vjk

.

This means

ck = com(
n∑

j=1

vjk(f (0)
1 − f

(j)
1 ), . . . ,

n∑
j=1

vjk(f (0)
n − f (j)

n ),

n∑
j=1

vjk(y(0)
d − y

(j)
d ),

n∑
j=1

vjk(f (0)
d − f

(j)
d );

n∑
j=1

vjk(z(0)
d − z

(j)
d )).

By the root extraction property, we can open ck. We
call the opening (ak1, . . . , akn, akD, akd, rk). Since cd =

com(f (0)
1 , . . . , f

(0)
n , y

(0)
d , f

(0)
d ; z(0)

d )
∏n

i=1c
−t

(0)
i

i , having openings of c1, . . . , cn

means that we can find an opening (d1, . . . , dn, sd,∆d, rd) of cd. Similarly, we can
find an opening (D1, . . . , Dn, sD,∆D, rD) of cD.

The adversary, having noticeable probability of answering the challenge t1, . . . , tn,
is forced to use fj = dj +

∑n
i=1 aijti and fd = ∆d +

∑n
i=1aidti and fD = ∆D +∑n

i=1aiDti. The equation fD =
∑n

j=1f
3
j −

∑n
i=1t

3
i − fd implies

0 =
n∑

j=1

f3
j −

n∑
i=1

t3i − fd − fD =
n∑

j=1

f3
j −

n∑
i=1

t3i −∆d −
n∑

i=1

aidti −∆D −
n∑

i=1

aiDti



=
n∑

j=1

(dj +
n∑

i=1

aijti)3 −
n∑

i=1

t3i −∆d −
n∑

i=1

aidti −∆D −
n∑

i=1

aiDti

With overwhelming probability over t1, . . . , tn this can only happen if every coefficient
is zero (considering this as a multivariate polynomial in the ti’s). Indeed, the coefficient
for titjtk is

∑n
h=1aihajhakh − δijk for all i, j, k. Then lemma 2 tells us that A is a

permutation matrix. This means, there exists a permutation π so aπ(i)i = 1 and all
other entries are 0.

For the ciphertext equations, we make use of a cofactor matrix as in the proof of
the integer scheme. Because the fj’s are greater than 2`t , we know an overflow did
not occur modq and thus the equations fj = tπ(j) + dj hold over Z. Then the proof
proceeds the same way as in the integer case, and then by the root extraction property
we can find an opening (0, Rk) of Eke−1

π(k). Doing so for k = 1, . . . , n means we have
found openings R1, . . . , Rn so E1 = eπ(1)E(0;R1), . . . , En = eπ(n)E(0;Rn). �

5 Comparison

As we mentioned in the introduction, there are many efficient shuffle arguments on dif-
ferent encryption schemes. While our shuffle argument can be used with many different
homomorphic cryptosystems, its main advantage is when we look at cryptosystems
with large message spaces or large ciphertexts. It is therefore natural to compare it to
the shuffle arguments that have been proposed for Paillier encryption.

We compare the efficiency of our shuffle arguments with integer commitments
(SHUFZ) and with commitments over Zq (SHUFZq

) to those of Nguyen et. al.
[NSNK05], Peng et. al. [PBD05], and Wikström (Appendix G) [Wik05b]. We con-
sider all schemes running on a 1024-bit Paillier modulus (giving ciphertexts of size
|N2| = 2048 bits) and 80-bit challenges. The reader may download a spreadsheet
[GL07] to see compare the schemes for other parameter choices.

For the homomorphic integer commitment, we use a 1024-bit safe prime RSA-
modulus as in [DF02], which corresponds to the choice in [Wik05a]. Both his and our
scheme become faster if one uses the homomorphic integer commitment from [Gro05a].
Our choice of parameters for [Wik05b] (Appendix G) is K1 = 240,K2 = 1024,K3 =
K4 = K5 = 80, whereas for our scheme it is `t = 80, `s = 80, `r = 1024.

For our shuffle over Zq, we use Pedersen commitments with |q| = 240, |p| = 1024,
giving us parameters `t = 80, `s = 80, `r = 240.

For [NSNK05] we chose `η = 1022, `N = 1024, |N | = 1024, |M | = 592 in their
setup. This corresponds to working with a safe prime Paillier modulus. We do point out
that their scheme can also be used for a variant of Paillier encryption that uses a smaller
randomizer space. Both their scheme and our schemes are more efficient when used
with this variant of Paillier encryption.

The argument in [PBD05] (Protocol 1) relies on a non-standard assumption, the
linear ignorance assumption. They have a less efficient protocol 2 that does not rely
on this assumption. Other than that their scheme just relies on the semantic security of
Paillier encryption, and as in the other schemes we measure its performance on 80-bit
challenges (L=80).



The table 1 list the number of exponentiations required for the prover and the veri-
fier, the communication bits, the number of rounds, and the security assumptions. The
exponentiations listed are the number of full-length (2048-bit modulus, 1024-bit ex-
ponent) exponentiations where we scale for a factor of 3 for doubling the length of
the modulus and a factor of 2 for doubling the length of the exponent. We compare
all schemes without using multi-exponentiation techniques, since it is situation depen-
dent which techniques work best. Also, we compare all schemes for a deterministic
verifier. Using batching techniques it is possible to speed up the verification process in
all schemes. The table contains the cost of making the shuffle arguments, it does not
include the cost of the shuffle itself.

[NSNK05] [PBD05]4 SHUFZq [Wik05b] SHUFZ

Prover (expo.) 3.4n 5.5n 0.5n 2.3n 0.6n
Verifier (expo.) 5.4n 4.3n 0.4n 1.5n 0.3n
Communication (bits) 9376n 9376n 1504n 6080n 1264n
Rounds 3 4 3 5 3
Privacy Perm. Hiding Perm. Hiding SHVZK SHVZK SHVZK

Table 1. Comparison of shuffle arguments with Paillier encryption
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