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Abstract. In this paper we survey the notion of Single-Database Private Infor-
mation Retrieval (PIR). The first Single-Database PIR was constructed in 1997 by
Kushilevitz and Ostrovsky and since then Single-Database PIR has emerged as an
important cryptographic primitive. For example, Single-Database PIR turned out
to be intimately connected to collision-resistant hash functions, oblivious trans-
fer and public-key encryptions with additional properties. In this survey, we give
an overview of many of the constructions for Single-Database PIR (including an
abstract construction based upon homomorphic encryption) and describe some of
the connections of PIR to other primitives.

1 Introduction

A Single-Database Private Information Retrieval (PIR) scheme is a game between two
players: a user and a database. The database holds some public data (for concreteness,
an n-bit string). The user wishes to retrieve some item from the database (such as the i-
th bit) without revealing to the database which item was queried (i.e., i remains hidden).
We stress that in this model the database data is public (such as stock quotes) but cen-
trally located; the user, without a local copy, must send a request to retrieve some part
of the central data1. A naive solution is to have the user download the entire database,
which of course preserves privacy. However, the total communication complexity in this
solution, measured as the number of bits transmitted between the user and the database
is n. Private Information Retrieval protocols allow the user to retrieve data from a public
database with communication strictly smaller than n, i.e., with smaller communication
then just downloading the entire database.

1.1 Single-Database PIR

PIR was introduced by Chor, Goldreich, Kushilevitz and Sudan [8] in 1995 in the set-
ting where there are many copies of the same database and none of the copies are
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allowed to communicate with each other. In the same paper, Chor at. al. [8] showed that
single-database PIR does not exist (in the information-theoretic sense.) Nevertheless,
two years later, (assuming a certain secure public-key encryption) Kushilevitz and Os-
trovsky [23] presented a method for constructing single-database PIR. The communica-
tion complexity of their solution is O(2

√
log n log log N ) which for any ε > 0 is less then

O(nε). Their result relies on the algebraic properties Goldwasser-Micali Public-Key
encryption scheme [17]. In 1999, Cachin, Micali and Stadler [7] demonstrated the first
single database PIR with polylogarithmic communication, under the so-called φ-hiding
number-theoretic assumption. Chang [6], and Lipmaa [25] showed O(log2 n) commu-
nication complexity PIR protocol (with a multiplicative security parameter factor), us-
ing a construction similar to the original [23] but replacing the Goldwasser-Micali ho-
momorphic encryption with the Damgård, M. Jurik variant of the Pailler homomorphic
encryption [10]. Gentry and Ramzan [15] also showed the current best bound for com-
munication complexity of O(log2 n) with an additional benefit that if one considers
retrieving more then one bit, and in particular many consecutive bits (which we call
blocks) then ratio of block size to communication is only a small constant. The scheme
of Lipmaa [25] has the property that when acting on blocks the ratio of block size to
communication actually approaches 1, yet the parameters must be quite large before
this scheme becomes an advantage over that of [15]. In general, the issue of amortizing
the cost of PIR protocol for many queries has received a lot of attention. We discuss it
separately in the next subsection.

All the works mentioned above exploit some sort of algebraic properties, often com-
ing from homomorphic public-key encryptions. In [24] work, Kushilevitz and Ostro-
vsky have shown how to construct Single Database PIR without the use of any algebraic
assumptions, and instead relying on the existence of one-way trapdoor permutations.
However, the use of the more general assumption comes with a performance cost: they
show how to achieve (n − O(n

k − k2)) communication complexity, and additionally,
the protocol requires more than one round of interaction.

In this survey, we give the main techniques and ideas behind all these constructions
(and in fact, show a generic construction from any homomorphic encryption scheme
with certain properties) and attempt to do so in a unified manner.

1.2 Amortizing database work in PIR

Instead of asking to retrieve blocks, one can ask what happens if one wants to retrieve k
out of n bits of the database (not necessarily consecutive). Indeed, this was considered
by Ishai, Kushilevitz, Ostrovsky and Sahai [20]. In this setting, in addition to communi-
cation complexity (of retrieving k out of n bits) there is another important consideration:
the total amount of computation needed to be performed by the database to compute all
k PIR answers. (Observe that for a single PIR query the amount of computation required
by the database must be linear: if this is not the case, the database will not touch at least
one bit, and hence the database can safely deduce that the ”untouched” bits are not the
ones being retrieved, violating user’s privacy.) Now, what is the total computation re-
quired to retrieve k different bits? A naive solution is to just run one of the PIR solutions
k times. It is easy to see that using hashing one can do better: The user, with indices
i1, . . . , ik, picks at random a hash function h that sends all n entries of the database to



k buckets and where the selection of h is made independently from i1, . . . , ik. The user
sends h to the database. Note that the expected size of each bucket is about n/k. The
database partitions its database into buckets according to h (that is gets from the user),
and treats every bucket as a new “tiny” database. For an appropriate choice of a hash
family, this ensures that with probability 1−2−Ω(σ), the number of items hashed to any
particular bucket is at most σ log k. Now the user can apply the standard PIR protocol
σ log k times to each bucket. Except for 2−Ω(σ) error probability, the user will be able
get all k items. Note that the cost is much smaller then the naive solution. In particular,
counting the length of all PIR invocations the total size of all databases on which we
run standard PIR is σ log k · n, instead of naive kn. This idea is developed further, and
in fact the error-probability is removed, and better performance is derived via explicit
batch codes [20] instead of hashing.

Note however, that this approach requires that it is the same user that is interested
in all k queries. What happens if the users are different? In this case, assuming the
existence of anonymous communication, nearly-optimal PIR in all parameters can be
achieved in the multi-user case [21].

1.3 Connections: Single Database PIR and OT

Single-database PIR has a close connection to the notion of Oblivious Transfer (OT),
introduced by Rabin [35]. A different variant of Oblivious Transfer, called 1-out-of-2
OT, was introduced by Even, Goldreich and Lempel [14] and, more generally, 1-out-
of-n OT was considered in Brassard, Crepeau and Robert [3]. Informally, 1-out-of-n
OT is a protocol for two players: A sender who initially has n secrets x1, . . . , xn and
a receiver who initially holds an index 1 ≤ i ≤ n. At the end of the protocol the
receiver knows xi but has no information about the other secrets, while the sender has
no information about the index i. Note that OT is different from PIR in that there is no
communication complexity requirement (beyond being polynomially bounded) but, on
the other hand, “secrecy” is required for both players, while for the PIR it is required
only for the user. All Oblivious Transfer definitions are shown to be equivalent [5]. As
mentioned, communication-efficient implementation of 1-out-of-nOT can be viewed as
a single-server PIR protocol with an additional guarantee that only one (out of n) secrets
is learned by the user and the remaining n−1 remain hidden. In [23], it is noted that their
protocol can also be made into a 1-out-of-n OT protocol2, showing the first 1-out-of-n
OT with sublinear communication complexity. Naor and Pinkas [27] have subsequently
shown how to turn any PIR protocol into 1-out-of-n protocol with one invocation of a
Single-Database PIR protocol and logarithmic number of invocations of 1-out-of-2 OT.
DiCresenzo, Malkin and Ostrovsky [12] showed that any single database PIR protocol
implies OT. In fact, their result holds even if PIR protocol allows the communcation
from database to the user to be as big as n − 1. Thus, [12] combined with [27] tells
us that any Single-Database PIR implies 1-out-of-n OT. In [24], it is shown how to

2 1-out-of-n OT in the setting of multiple copies of the database where none of the copies are
allowed to talk to each other was treated in [16] and renamed Symmetric Private Information
Retrieval (SPIR), though for Single-dabatase PIR, the defitnion SPIR is identical to the more
established notion of 1-out-of-n OT.



build 1-out-of-n OT based on any one-way trapdoor permutation with communication
complexity strictly less than n.

1.4 Connections: PIR and Collision-Resistant Hashing

Ishai, Kushilevitz and Ostrovsky [19] showed that any one-round Single-Databe PIR
protocol is also a collision-resistant hash function. Simply pick an index i for the PIR
query at random, and generate a PIR query. Such a PIR query is the description of the
hash function. The database contents serves as the input to the hash function and the
evaluation of the PIR query on the database is the output of the hash function. It is
easy to see that the PIR function is both length-decreasing and collision-resistant. It is
length-decreasing by the non-triviality of PIR protocol, since it must return the answer
with length which is less then the size of the database. Is it collision resistant since if the
adversary can find two different databases that produce the same PIR answer, then these
two databases must differ in at least one position, say j. Finding such a position tells us
that j 6= i, hence it reveals information about i. This violates the PIR requirement that
no information about i should be revealed.

1.5 Connections: PIR and Function-Hiding PKE

A classic view of a Public-Key Encryption/Decryption paradigm is that of an identity
map: it takes a plaintext message m and creates a ciphertext which can be decrypted
back tom. However, in many applications, instead of an identity map, there is a need for
a Public-Key Encryption to perform some secret computation during encryption. That
is, the key-generation algorithm takes as an additional input a function specification
f(·) ∈ F from some class F of functions and produces a Public Key. The resulting
Public-Key is not much bigger then the description of a typical f ′ ∈ F , yet the public-
key should not reveal which f from F have been used during the key-generation phase.
The encryption/decryption maps m to f(m). The definition becomes nontrivial (in the
sense that one can not push all the work of computing f(·) to the decryption phase)
when for all f ∈ F it holds that |f(m)| < |m|, and we insist that the cyphertext size
must be smaller than the size of m.

Any single-round PIR can be used to achieve this notion for the class of Encryption
functions that encrypt a single bit out of the message, hiding which bit they encrypt:
simply publish in your public key both the PIR query and an additional Public-Key
Encryption (with small ciphertext expansion, compared to the plaintext, such as [34,
10]). When encrypting the message, first compute PIR answer, and then encrypt the
resulting answer with the Public-Key Encryption. (Some specific PIR constructions do
not need this additional layer of encryption).

What makes the Function-Hiding PKE notion interesting, is that there are many
examples of functions beyond PIR-based projection map. For example, as was shown
by Ostrovsky and Skeith [31] that one can construct an encryption scheme which takes
multiple documents, and encrypts only a subset of these documents – only those that
contain a set of hidden keywords, where the public-key encryption function does not
reveal which keywords are used as selectors of the subset.



1.6 Connections: PIR and Complexity Theory

Dziembowski and Maurer have shown the danger of mixing computational and information-
theoretic assumptions in the bounded-storage model. The key tool to demonstrate an
attack was a computationally-private PIR protocol [13]. The compressibility of NP lan-
guages was shown by Harnick and Naor to be intimately connected to computational
PIR [22]. In particular, what they show that if certain NP language is compressible, then
one can construct a single-database PIR protocol (and a collision-resistant hash func-
tion) that can be built (in a non-black-box way) based on any one-way function. Naor
and Nissim [28] have shown how to use computational PIR (and Oblivious RAMs [18])
to construct communication-efficient secure function evaluation protocols.

There is an interesting connection between zero-knowledge arguments and Single-
Database PIR. In particular, Tauman-Kalai and Raz have shown (for a certain restricted
class) an extremely efficient zero-knowledge argument (with pre-processing) assuming
Single-Database PIR protocols [36].

Another framework of constructing efficient PIR protocols is with the help of ad-
ditional servers, such that even if some of the servers leak information to the database,
the overall privacy is maintained [11]. The technique of [11] is also used to achieve PIR
combiners [26], where given several PIR implementations, if some are faulty, they can
still be combined into one non-faulty PIR.

1.7 Public-Key Encryption that supports PIR Read & Write

Consider the following problem: Alice wishes to maintain her email using a storage-
provider Bob (such as Yahoo! or hotmail e-mail account). She publishes a public key
for a semantically-secure public-key Encryption scheme, and asks all people to send
their e-mails encrypted under her Public Key to the intermediary Bob. Bob (i.e. the
storage-provider) should allow Alice to collect, retrieve, search and delete emails at her
leisure. In known implementations of such services, either the content of the emails is
known to the storage-provider Bob (and then the privacy of both Alice and the senders
is lost) or the senders can encrypt their messages to Alice, in which case privacy is
maintained, but sophisticated services (such as search by keyword, and deletion) can-
not be easily performed by Bob. Recently, Boneh, Kushilevitz, Ostrovsky and Skeith
[2] (solving the open problem of [1]) have shown how to create a public key that allows
arbitrary senders to send Bob encrypted e-mail messages that support PIR queries over
these messages and the ability to modify (i.e. to do PIR writing) Bob’s database, both
with small communication complexity (approximately O(

√
n)). It may be interesting

to note, however, that manipulating the algebraic structures of currently available ho-
momorphic encryption schemes cannot achieve PIR writing with communication better
than Ω(

√
n), as shown in the recent work of Ostrovsky and Skeith [32].

1.8 Organization of the rest of the paper

In the rest of the paper we give an overview of the basic techniques of single database
PIR. It is by no means a complete account of all of the literature, but we hope that
it rather serves as an introduction, and a clear exposition of the techniques that have



proved themselves most useful. We begin with what we feel are the most natural and
intuitive settings, which are based upon homomorphic encryption, and we attempt to
give a fairly unified and clear account of this variety of PIR protocols. We then move
to PIR based on the Φ-Hiding assumption, and to a construction based upon one-way
trapdoor permutations. Throughout, our focus is primarily on the intuition behind these
schemes; for complete technical details, one can of course follow the references.

1.9 Balancing the Communication Between Sender and Receiver

Virtually every computationally private information retrieval protocol is somewhat com-
parable to every other in that they all:

– Adhere to a strict definition of privacy
– Necessarily haveΩ(n) computational complexity (where n is the size of the database).3

As such, it is the case that the primary metric of value or quality for a PIR protocol is the
total amount of communication required for its execution. Therefore, it may be useful to
examine a somewhat general technique for minimizing communication complexity in
certain types of protocols, which we’ll be able to apply to computational PIR. Suppose
that a protocol P is executed between a user U and a database DB, in which U should
privately learn some function f(X) whereX ∈ {0, 1}n is the collection of data held by
DB. By “privately”, we mean that DB should not gain information regarding certain
details of f . Let g(n) represent the communication from U to DB and h(n) be the
communication from DB to U involved in the execution of P . So, g, h : Z+ −→ Z+.
As a simplifying assumption to illustrate the idea, suppose that:

1. The function of the database f(X) that U wishes to compute via the protocol de-
pends only on a single bit of X .

2. g, h can be represented, or at least estimated by polynomial (or rational) functions
in n.

If all of these conditions are satisfied, then we’ll often have a convenient way to
take the protocol P , and derive a protocol P ′ with lower communication which will
just execute P as a subroutine. The idea is as follows: since the function of X we
are computing is highly local (it depends only on a single bit of X) we can define P ′
to be a protocol that breaks down the database X into y smaller pieces (of size n/y)
and executes P on each smaller piece. Then, the desired output will be obtained in
one of the y executions of P . Such a protocol will have total communication Tn(y) =
g(n/y) + yh(n/y). It may be the case that this will increase the communication of
U or DB, but will reduce the total communication involved. If indeed all functions
are differentiable as we’ve assumed, then we can use standard calculus techniques to
minimize this function (for any positive n) with respect to y. For example, suppose that
the user’s communication is linear, and the database’s communication is constant. For
example, let g(n) = rn + s and h(n) = c, so that Tn(y) = yc + s + rn

y . Solving the
equation d

dyTn(y) = 0 on (0,∞) gives

y =
√
crn

c
3 In order to preserve privacy, the database’s computation must involve every database element.



This value of y is easily verified to be a local minimum, and we see that by executing
the protocol O(

√
n) times on pieces of size O(

√
n) we can minimize the total commu-

nication.
More generally, similar techniques can of course be applied when the function f

depends on more than one bit ofX , as long as there is a uniform way (independent of f )
to break down the databaseX into pieces that contain the relevant bits. These techniques
can be applied to more general situations still, in which the function depends on many
database locations; however, in this case one will need a method of reconstructing the
output from the multiple protocol returns (in our simple example, the method is just
selecting the appropriate value from all the returns). Also, for this technique to be of
value in such a situation, it will generally be necessary to have a uniform way to describe
the problem on smaller database pieces.

2 PIR Based on Group-Homomorphic Encryption

The original work on computational PIR by Kushilevitz and Ostrovsky [23] presented a
private information retrieval protocol based upon homomorphic encryption. Such tech-
niques are often very natural ways to construct a variety of privacy-preserving proto-
cols. It is often the case with such protocols based upon homomorphic encryption, that
although the protocol is designed with a specific cryptosystem, there is a more funda-
mental, underlying design that could be instantiated with many different cryptosystems
in place of the original, and furthermore this choice of cryptosystem can have a very
non-trivial impact on performance. For example, the work of [23] used the homomor-
phic cryptosystem of Goldwasser and Micali [17] to create a PIR protocol, and in the
following years, many other similar protocols were developed based upon other cryp-
tosystems, e.g., the work of Chang [6] which is based upon the cryptosystem of Paillier
[34], and also the work of Lipmaa [25]. However, the method of [23] was actually quite
generic, although it was not originally stated in generality. In this section, we’ll present
an abstract construction based upon any group homomorphic encryption scheme which
has [23] and [6] as special cases, as well as capturing the work of [25]. Hopefully, this
section will provide the reader with general intuition regarding private information re-
trieval, as well as a pleasant way to understand the basics of a moderate amount of the
literature in computational PIR.

2.1 Homomorphic Encryption Schemes

Let (K, E ,D) be a cryptosystem, the symbols representing the key generation, encryp-
tion, and decryption algorithms respectively. Generally, we say that such a cryptosystem
is secure if it is secure against a chosen plaintext attack, i.e., if E produces distributions
that are computationally indistinguishable, regardless of the input. Roughly speaking,
this means that it is not feasible to extract any information from the output of E . For
example, even if a (computationally bounded) adversary knows that there are only two
possible messages a and b, he still cannot tell E(a) apart from E(b), even if he repeat-
edly executes the (randomized) algorithm E on inputs of his choice.



To construct our PIR protocol, we only need a secure cryptosystem that is homo-
morphic over an abelian group, G. I.e., if the cryptosystem (K, E ,D) has plaintext set
G, and ciphertext set G′, where G,G′ are groups, then we have that

D(E(a) ? E(b)) = a ∗ b

where a, b ∈ G, and ∗, ? represent the group operations of G,G′ respectively. So, the
cryptosystem allows for oblivious distributed computation of the group operation of G.
(Note that we reduce the equivalence to hold modulo decryption since the encryption
algorithm E must be probabilistic in order to satisfy our requirements for security.)

For such a cryptosystem to be of any conceivable use, we of course have that |G| >
1. Hence, there is at least one element g ∈ G of order greater than 1. Suppose that
ord(g) = m. If the discrete log problem4 in G is easy (as will often be the case e.g.,
when G is an additive group of integers) then we can represent our database as X =
{xi}n

i=1 where each xi ∈ {0, ...,m − 1}. Otherwise, we will just restrict the values
of our database to be binary, which is the traditional setting for PIR. I.e., xi ∈ {0, 1}
for all i ∈ [n]. As it turns out, a homomorphic encryption protocol alone is enough to
create a PIR protocol.

2.2 Basic Protocols From Homomorphic Encryption

In what follows, we will provide a sequence of examples of PIR from homomorphic
encryption, each becoming slightly more refined and efficient. Let us suppose that the
i∗ position of the database is desired by a user U . Keeping the notation established
above, let G,G′ be groups which correspond to the plaintext and ciphertext of our
homomorphic cryptosystem (resp.) and let g ∈ G be a non-identity element. As a first
attempt at a PIR protocol, a user U could send queries of the form Q = {qi}n

i=1 where
each qi ∈ G′ such that

D(qi) =
{
g if i = i∗

idG otherwise

Then, the database can respond with

R =
n∑

i=1

xi · qi

using additive notation for the operation of G′ (and of G from this point forward) and
using · to represent the Z-module action. Now U can recover the desired database bit as
follows, computing

D(R) = D

(
n∑

i=1

xi · qi

)
=

n∑
i=1

xi · D(qi) = xi∗ · D(qi∗) = xi∗ · g

and hence U determines xi∗ = 1 if and only if D(R) = g. Or, in the case where the
discrete log is easy in G, U would compute xi∗ as the log ofD(R) to the base g (just by

4 We will refer to the problem of inverting the Z-module action on an abelian group G as the
“discrete log problem in G”.



division, in the case of an additive group of integers). This protocol is clearly correct,
but it is also easily seen to be private. The only information received by DB during the
protocol was an array of ciphertexts, which by our assumptions on the cryptosystem,
each come from (computationally) indistinguishable distributions, and hence contain
no information that can be efficiently extracted. For a formal proof, one can apply a
standard hybrid argument.

However, although our protocol is both correct and private, it unfortunately requires
the communication of information proportional in size to the entire database in order to
retrieve a single database element. This could have just as easily been done by sending
the entire database to the user, which would also maintain the user’s privacy. Setting k =
log |G′| as a security parameter, the user must communicate O(nk) bits. Fortunately,
this can be modified into a more communication-efficient protocol without much effort.
To begin, one can organize the database as a square, X = {xij}

√
n

i,j=1, and if the (i∗, j∗)

position of the database is desired, the user can send a query of the form Q = {qi}
√

n
i=1

defined just as before (we will ignore the j∗ index for reasons that will become clear
shortly). Then, the database can compute Rj =

∑√
n

i=1 xij · qi for each j and send
{Rj}

√
n

j=1 back to the user as the query response. Now as we’ve seen, fromD(Rj), U can

recover {xi∗j}
√

n
j=1 just as before. In particular, U can compute xi∗j∗ (even though much

more information is actually received). Note that the total communication involved in
the protocol has now become non-trivially small: it is now proportional to

√
n for each

party as opposed to the O(n) communication required by our original proposal and the
trivial solution of communicating the entire database to U .

However, we can make further improvements still. Let

φ : G′ ↪→ Zl

be an injective map such that for all y ∈ G′, each component of φ(y) is less than ord(g).
I.e., one can think of the map as φ : G′ ↪→ Zl

ord(g). Any such map with do- we only
require that both φ and φ−1 are efficiently, publicly computable. Note that in general,
we will always have l > 1 since ord(g) ≤ |G| and |G| < |G′|, the latter inequality
following from the fact that the encryption scheme is always probabilistic (D is never
injective, but of course is always surjective). Again, note that we do not ask for any
algebraic conditions from the map φ; it can be any easily computed injective set map.
(For example, we could just break down a binary representation of elements of G′ into
sufficiently small blocks of bits to obtain the map φ.) Now, we can refine our query,
and send Q =

[
{qi}

√
n

i=1, {pj}
√

n
j=1

]
where qi∗ and pj∗ are set to encryptions of g, but all

others encrypt idG. Then, the database will initially proceed as before, computing

Rj =

√
n∑

i=1

xij · qi

but then further computing

Rt =
n∑

j=1

φ(Rj)t · pj



where φ(Rj)t represents the t-th component of φ(Rj). This is sent as the query re-
sponse to U . To recover the desired data, U computes for every t ∈ [l]

D(Rt) = φ(Rj∗)t · g

from which φ(Rj∗) can be computed. Then since φ−1 is efficiently computable, U can
recover Rj∗ =

∑√
n

i=1 xij∗ · qi, and as we have seen xi∗j∗ is easily recovered from
D(Rj∗).

So now what amount of communication is required by the parties? The database
sendsO(l log(|G′|)) = O(lk) bits of information, meanwhile the user U sendsO(2k

√
n)

bits of information which will generally be a large improvement on the database side.
We can naturally extend this idea to higher dimensional analogs. Representing the
database as a d-dimensional cube (we have just seen the construction for d = 1, 2), we
accomplish the following communication complexity: O(kd d

√
n) for the user’s query,

and O(ld−1k) communication for the database’s response.

The preceding construction is essentially that of [23] and of [6]. Both are simply
special cases of what has been described above:

The work of [23] is based upon the cryptosystem of [17], which is homomorphic
over the group Z2, having ciphertext group ZN for a large composite N . In this case,
it is simply the binary representation of a group element that plays the role of the map
φ : G ↪→ Zl. I.e., we have l = k, the security parameter, and φ : ZN ↪→ Zk takes an
element h ∈ ZN and maps it to a sequence of k integers, each in {0, 1} corresponding
to a binary representation of h.

The work of [6] is also a special case of this construction. Here, the protocol is based
upon the cryptosystem of [34], and we have G = ZN and G′ = Z∗N2 , hence we can
greatly reduce the parameter l in comparison to the work of [23]. In this case, it is easy to
see that we only need l = 2, which is in fact minimal, as we have discussed before. The
author of [6] uses the map φ : Z∗N2 ↪→ ZN defined by the division algorithm, dividing
by N to obtain a quotient and remainder of appropriate size. Roughly speaking, (and
using C-programming notation) he uses the map x 7→ (x/N, x%N). However, as we
have seen before, this is not necessary- any map could have been used (appropriately
partitioning bits, etc.). Note also that since the discrete log in G is not hard (as we have
defined it) we do not need to restrict our database to storing bits. Database elements
could be any numbers in ZN .

These quite generic methods also capture the work of [25], as long as the appropriate
cryptosystem is in place.

Consider a “length-flexible” cryptosystem, for example, that of Damgård and Jurik
[10]. Such a cryptosystem has the property that given a message of arbitrary length, and
given a fixed public key, one can choose a cryptosystem from a family of systems based
on that key, so that the message fits in one ciphertext block regardless of the key and the
message length. Using this, we can further reduce the database’s communication in our
PIR protocol, using essentially the very same generic technique described above. We’ll
demonstrate the following:

Theorem 1. For all d ∈ Z+ there exists a PIR protocol based on the homomor-
phic cryptosystem of Damgård and Jurik with user communication of O(kd2 d

√
n) and



database communication ofO(kd) where k is a security parameter and n is the database
size.

What the Damgård and Jurik system affords us is the following: instead of having
only one plaintext and ciphertext group G,G′, we now have a countable family at our
disposal:

{Gi, G
′
i}∞i=1

all of which correspond to a single public key. These groups are realized by Gi '
ZNi , G′i ' Z∗Ni+1 , and hence we have natural inclusion maps of G′i ↪→ Gi+1. This,
along with the observation that Gi is cyclic for all i, are essentially the only important
facts regarding this system that we’ll utilize. So, Gi is always cyclic, and we have a
natural (although not algebraic) map

ψi : G′i ↪→ Gi+1

This is all we need to modify our generic method. We will just replace the map φ with
the maps ψi, and accordingly, we will modify our query so that the vector for the i-th
dimension encrypts idGi

in all positions except for the index of interest, which will en-
crypt a generator ofGi. With only these minor substitutions to the abstract construction,
the protocol will follow exactly as before. This will give us a protocol with communi-
cation complexity for the user U of

d∑
i=1

ik d
√
n = O(kd2 d

√
n)

and for the database, we require only

O(kd)

as opposed to the previous exponential dependence on the dimension d of the cube used!
Optimizing the parameters, setting d = log(n)

2 , we have O(k log2(n)) communication
for the user and O(k log(n)) for the database. So, as one can see, even a completely
generic method can be quite useful, producing a near optimal, poly-logarithmic proto-
col.

3 PIR Based on the Φ-Hiding Assumption

Cachin, Micali, and Stadler recently developed a new cryptographic assumption called
the Φ-Hiding Assumption, and successfully used this assumption to build a PIR pro-
tocol with logarithmic communication. Roughly, this assumption states that given two
primes p0, p1 and a composite m = pq such that either p0|φ(m) or p1|φ(m), it is hard
to distinguish between the two primes. (Here, φ(m) is the Euler-φ function, so that
φ(m) = (p− 1)(q− 1).) The assumption also of course states that given a small prime
p, it is computationally feasible to find a composite m such that p|φ(m). Such an m
is said to φ-hide p. A query for the i-th bit of the database essentially contains input
to a prime sequence generator, a composite m that φ-hides pi (the i-th prime in the
sequence) and a random r ∈ Z∗m. The database algorithm returns a value R ∈ Z∗m
such that with very high probability, R has pi-th roots if and only if the database bit at
location i was 1.



3.1 Preliminaries

To understand the protocol, let us start with some very basic algebraic observations. Let
G be a finite abelian group, and let k ∈ Z+. Consider the following map:

ϕk : G→ G defined by x 7→ xk

Since G is abelian, it is clear that ϕk is a homomorphism for all k ∈ Z+. What is
ϕk(G)? Clearly it is precisely the set of all elements in G that posses a k-th root in G.
I.e.,

Im(ϕk) = {x ∈ G | ∃y ∈ G � x = yk}
We will denote this set by Hk = Im(ϕk). Clearly it is a subgroup since it is the

homomorphic image of a group. The size of this subgroup of course depends on k
and G. If, for example, (k, |G|) = 1, then it is easy to see that ϕk(G) = G, since
if Ker(ϕk) 6= {e} then there are non-identity elements of order dividing k, which is
clearly impossible. In the case that (k, |G|) > 1, how big is Ker(ϕk)? It is at least as
big as the largest prime divisor of (k, |G|) > 1, by Cauchy’s theorem if you like. For
example, if k is a prime such that k | |G|, then the map ϕk is at least a k to 1 map.

Finally, let’s take a look at the subgroups Hk = ϕk(G) = Im(ϕk). We will just
need the following observation:

∀k ∈ Z Hk CC G

Here the symbol Hk CC G signifies that Hk is a characteristic subgroup of G, which
is to say that the subgroups Hk are fixed by every automorphism of G. (Compare with
normal subgroups which are those fixed by every inner automorphism of G.) Note that
for any finite G, if H CC G and ϕ ∈ Aut(G) then ϕ(x) ∈ H ⇐⇒ x ∈ H for all
x ∈ G.

Let us summarize the few facts that will be of importance to us, and also narrow our
view to correspond more directly to what we will need. Suppose that p ∈ Z is a prime,
and define the maps ϕp as before. Then,

1. ϕp ∈ Aut(G) ⇐⇒ p - |G|
2. ϕp is at least a p to 1 map if p | |G|.
3. ∀p, Hp CC G (although this is trivial in the case that p - |G| and henceHp = G).

So for any ϕ ∈ Aut(G) and x ∈ G we have ϕ(x) ∈ Hp ⇐⇒ x ∈ Hp.

3.2 A Brief Description of the Protocol

We now have enough information for a basic understanding of how and why the PIR
protocol of [7] works. First, we will begin with the “how”. Continuing with our preced-
ing notation, suppose that X = {xi}n

i=1 is our database, with each xi ∈ {0, 1}, and
again, suppose that the index of interest to U is i∗. The protocol executes the following
steps, involving a database DB and a user U .

1. U sends a random seed for a publicly known prime sequence generator to DB, the
primes being of intermediate size5.

5 Revealing a large prime dividing φ(m), (p > 4
√

m) enables one to factor m, so the primes
must be chosen to be small.



2. U computes pi∗ , the i∗-th prime in the sequence based on the random seed.
3. U finds a composite number m that φ-hides pi∗ , and sends m to DB. In particular,

we have that pi∗ | φ(m). Recall that φ(m) = |Z∗m|.
4. DB selects r ∈ Z∗m at random, and computes R ∈ Z∗m as follows:

R = ϕpxn
n
◦ ϕ

p
xn−1
n−1

◦ · · · ◦ ϕp
x1
1

(r)

= r
Qn

i=1 p
xi
i mod m

5. U receives R from DB as the response, and determines that xi∗ = 1 if and only if
R ∈ Hpi∗ .

These steps are essentially the entire protocol at a high level. However, it may not
be immediately obvious that the statementR ∈ Hpi∗ has much to do with the statement
xi∗ = 1. But using the 3 facts we established early on, it isn’t too hard to see that these
are in fact equivalent with very high probability.

¿From our first fact, we know that ϕpi
∈ Aut(G) whenever i 6= i∗ with overwhelm-

ing probability, since the only way for this to not be the case is if pi | φ(m). However,
due to the fact that there are at most only a logarithmic number of prime divisors of
φ(m) out of many choices, this event will be extremely unlikely6. So, all of the ϕpi

are
automorphisms, except for ϕpi∗ .

¿From our next fact, we know that with very high probability r 6∈ Hpi∗ , where
r ∈ Z∗m was the element randomly chosen byDB. Since the map is at least pi∗ to 1, the
entire group is at least pi∗ times the size of Hpi∗ . So, if we were to pick an element at
random from Z∗m, there is at best a 1

pi∗
chance that it will be in Hpi∗ . So, in the length

of our primes pi, there is an exponentially small probability that a random r will be in
Hpi∗ .

Finally, we noted that the subgroups Hpi
are characteristic subgroups, and hence

our fixed by every automorphism of Z∗m. In particular, Hpi∗ CC Z∗m. So, all of the
automorphisms {ϕpi}i 6=i∗ will preserve this group: things outside will stay outside,
and things inside will stay inside, and of course ϕpi∗ moves every element into Hpi∗ .
I.e.,

ϕpi∗ (x) ∈ Hpi∗ ∀x

and if i 6= i∗, then
ϕpi

(x) ∈ Hpi∗ ⇐⇒ x ∈ Hpi∗

We can trace the path that r takes to become R and see what happens: We have that
the element r begins outside of the subgroup Hpi∗ and then r is moved by many maps,
all of which come from the set

{ϕ1, ...ϕi∗−1} ∪ {Id}

6 According to the prime number theorem, there are approximately N
2 log N

primes of bit length
equal to that of N . Our chances of picking m such that another pi inadvertently divides φ(m)

are approximately polylog(m)
m

which is negligibly small as the length of m in bits (i.e., log m,
the security parameter) increases.



depending on whether or not xi = 1. But what is important is that all of these maps
are automorphisms, which therefore fix Hpi∗ . So, no matter what the configuration of
the first i∗ − 1 elements of the database, r will have not moved into Hpi∗ at this point.
Next, we conditionally apply the map ϕpi∗ depending on whether or not xi∗ = 1, which
conditionally moves our element into Hpi∗ . This is followed by the application of more
automorphisms, which as we have seen have no effect on whether or not the response
R will be in Hpi∗ . So, since Hpi∗ is fixed by every automorphism, the only chance that
r has to move from outside Hpi∗ to inside Hpi∗ is if the map ϕpi∗ is applied, which
happens if and only if xi∗ = 1. Hence, we have that (with overwhelming probability)
R ∈ Hpi∗ if and only if xi∗ = 1.

The privacy this protocol can be proved directly from the Φ-Hiding assumption,
although it may be more pleasant to think of this in terms of the indistinguishability
of the subgroup Hpi to a party not knowing the factorization of m. Now, let us take a
look back and examine the communication to see why this was useful. The challenge
of creating PIR protocols is usually to minimize the amount of communication. A PIR
protocol with linear communication is quite trivial to construct: just transfer the entire
database. This is of course not very useful. The PIR protocol we have described above,
however, has nearly optimal communication. The database’s response is a single ele-
ment R ∈ Z∗m which has size proportional to the security parameter alone (which must
be at least logarithmic in n), and the user’s query has the size of the security parameter,
and the random input to a prime sequence generator, which could also be as small as
logarithmic in n. So, we have constructed a PIR protocol with only logarithmic commu-
nication, which is of course optimal: If DB wants to avoid sending information propor-
tional to the size of the database, then U must somehow communicate information about
what index is desired, which requires at least a logarithmic amount of communication.
However, with the recommended parameters for security, the total communication is
approximately O(log8 n).

3.3 Generalizations: Smooth Subgroups

More recently, Gentry and Ramzan [15] have generalized some of the fundamental
ideas behind these methods, creating protocols based on smooth subgroups, which are
those that have many small primes dividing their order. Somewhat similar to CMS [7],
a list of primes is chosen corresponding to the positions of the database, and a query
for position i essentially consists of a description of a group G such that |G| is divisible
by pi. However, the work of [15] is designed to retrieve blocks of data at a single time
(CMS [7] must be repeatedly executed to accomplish this functionality). Rather than
repeatedly exponentiating by all of the primes, the database is represented as an integer
e such that when reduced mod pi, the value is the i-th block of the database (such an
integer always exists of course by the Chinese Remainder Theorem). Now to recover
the data (which is just e mod pi), a discrete log computation can be made in the (small)
subgroup of order pi.



4 PIR From any Trapdoor Permutation

In 2000, Kushilevitz and Ostrovsky [24] demonstrated that the existence of one-way
trapdoor permutations suffices to create a non-trivial PIR, where non-trivial simply
means that the total communication between the parties is strictly smaller than the size
of the database. Although the protocol requires multiple rounds of interaction, the basic
construction remains fairly simple in the case of an honest but curious server. In case
of a malicious server the construction is more complicated and the reader is referred to
the original paper for details. Here, we only illustrate the basic idea of the honest-but-
curious case.

4.1 Preliminaries

For this construction, the existence of one way trapdoor permutations (f, f−1) is as-
sumed, as well as Goldreich-Levin hard core bits.

Another tool (used in the honest-but-curious case) is the universal one way hashing
of Naor and Yung [29]. For the dishonest case, universal way-way hash functions are
replaced with an interactive hashing protocol [33], and on top of that some additional
machinery is needed. However, for the honest but curious case the proof is far more
simple. Recall that universal one way hash functions satisfy a slightly weaker type of
collision-resistance. Basically, if one first picks any input x from the domain, and a then
independently a hash function h from a universal one way family, it is computationally
infeasible to find x′ 6= x ∈ h−1(h(x)).

The PIR protocol we’ll discuss here uses universal one way hash functions which
are 2 to 1 (i.e., for all y in the codomain, |h−1(y)| = 2) and each function will map
{0, 1}k −→ {0, 1}k−1 for some integer k.

4.2 Outline of the Protocol

At a very high level, the protocol revolves around the following idea: The server takes
an n bit database and partitions it into consecutive blocks of length k (k will be the
input length to a trapdoor permutation f ). It collapses every block of the database by
one bit, and sends this (slightly) reduced-size database back to the user. The user then
selects and sends to the server some information that will allow him to determine the
one missing bit of information for the block in which he or she is interested. Now, using
communication balancing techniques similar to what we’ve described in the introduc-
tion, we can hold on to the constant advantage (below n) given to us by the server
collapsing the one bit of every database block. The trick, of course, is to avoid reveal-
ing information about which block the user is interested in when recovering this last bit.
The solution is quite simple. As mentioned, the database collapses a bit of each database
block before sending this information to the user. There are many obvious ways to do
this, for example just sending all but one bit of each block. However, in these situations,
the database knows exactly the two possibilities that arise from the collapsed data sent
to the user, as well as knowing the actual value in the database. This would seemingly
make it quite difficult for the user to determine which of the two possibilities exist in the
database without the database gaining information. So instead, a method is devised in



which the database collapses a bit of each block without knowing the other possibility.
This will enable the user to determine which possibility exists for a given block without
revealing what block he or she is interested in.

4.3 Sketch of Protocol Details

As we alluded to in the outline, we need to provide a way for the database to collapse
a bit of each block, but without knowing the other possibility. This is accomplished
precisely via a family F of universal one way hash functions, and in fact, the orginal
construction of such a family by Naor and Yung [29] is used. The important point, is
that the only assumption needed to build this family of universal one way hash func-
tions was the existence of one-way permutations, and furthermore, because they were
constructed via one-way permutations, a party holding the trapdoor can find collisions.
To summarize, here are the important properties we need from the family F :

1. Each function of F is efficiently computable.
2. Each function has the property of being 2 to 1.
3. Given only x, f(x) for f ∈ F , it is computationally infeasible to find x′ 6= x ∈
f−1(f(x)) without trapdoor information.

4. With trapdoor information, it is feasible to find collisions in every function f ∈ F .

The protocol proceeds as follows:

The database is divided into blocks of size K, one of which the user is interested
in. Furthermore, the database is organized into pairs of blocks, denote them by zi,L

and zi,R (L,R standing for “left” and “right”). A query consists of two descriptions of
universal one way hash functions, fL, fR, to which the user has the trapdoors. Upon re-
ceipt of the query, the database computes the values of fL(zi,L) and fR(zi,R) for each
block of the database, and returns these values to the user. The user, who has trapdoors,
can compute both possible pre-images (z, z′) that may correspond to the block of the
database of interest. It only remains to have the database communicate which one, while
maintaining privacy. This is accomplished via hardcore predicates. Without loss of gen-
erality, suppose the user wishes to retrieve the left block, say zs,L. Then, the user selects
two hardcore predicates, rL, rR according to the conditions that rL(zs,L) 6= rL(z′s,L),
yet rR(zs,R) = rR(z′s,R). These predicates are sent to the database, who responds with
rL(zi,L)⊕ rR(zi,R) for every pair of blocks. Now, regardless of the possibilities of the
right block, the hardcore predicates will be the same, hence the user can solve for the
left hardcore predicate, and hence the left block, as we assumed the predicates evaluated
on the two choices to be distinct. This completes a basic description of the protocol.

The descriptions of fL, fR, rL, rR are all O(K), which is the only communication
from the user to the database. The communication from the database to the user is eas-
ily seen to be n − n

2K bits in the initial round, and one more bit in the final response.
Hence, the protocol does achieve smaller than n communication, for n > O(k2). Next
we argue that the protocol is also secure. The only information sent to the database
which contains any information about what block the user is interested in, is that of the



hardcore predicates, rL, rR. The value of the hardcore predicates on the two possible
pre-images of a hash value is exactly what gives us the information regarding the user’s
selection. We only need to show that given such predicates, they do not reveal informa-
tion about the selected block. Informally, this is the right approach, as the definition of
hardcore predicate states that the outcomes are hard to predict better than random when
only given the output of a function. Indeed, as fairly straightforward hybrid argument
shows, this is the case.

5 Conclusions

In this paper, we have given a general survey of Single-Database PIR and it’s many
connections to other cryptographic primitives. We also discussed several implementa-
tions of single-database PIR, including a very generic construction from homomorphic
encryption. As well-studied as single database PIR seems to be, many open problems
remain. For example, reducing the communication complexity of a PIR protocol based
on general trapdoor permutations, as well as exploring the connections PIR has to other
communication-efficient protocols both in cryptography and complexity theory.
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