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Abstract. For RSA, May showed a deterministic polynomial time equiv-
alence of computing d to factoring N(= pq). On the other hand, Takagi
showed a variant of RSA such that the decryption algorithm is faster
than the standard RSA, where N = prq while ed = 1 mod (p−1)(q−1).
In this paper, we show that a deterministic polynomial time equivalence
also holds in this variant. The coefficient matrix T to which LLL algo-
rithm is applied is no longer lower triangular, and hence we develop a
new technique to overcome this problem.
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1 Introduction

1.1 Background

Is the key-recovery attack on RSA equivalent to factoring? This is one of
the fundamental questions on RSA. Remember that in RSA, a public-key
is N(= pq) and e, where p and q are large primes, and the secret-key is d,
where ed = 1 mod (p− 1)(q − 1). Given (N, e), it is not easy to factor N
from d while computing d is easy if factoring N is easy. More specifically,
our problem is to find a deterministic polynomial time algorithm which
can factor N on input the RSA parameter (N, e, d).

For this problem, there exists a probabilistic polynomial time algo-
rithm [12] based on the work by Miller [10]. Miller further proved that
under the Extended Riemann’s Hypothesis, there exists a deterministic
polynomial time algorithm. However, it is a strong assumption.

At Crypto 2004, May showed the first deterministic polynomial time
algorithm for this problem [9] for ed ≤ N2 and |p| = |q|, where |x| denotes
the bit length of x. Coron and May extended this result to unbalanced
p and q [4]. These results mean that the key-recovery attack on RSA is
deterministically equivalent to factoring as far as ed ≤ N2.



On the other hand, Takagi proposed a variant of RSA [13] such that
N = prq while ed ≡ 1 mod (p−1)(q−1). He observed that the decryption
can be significantly faster in this variant. Hence it is important to study
if there exists a deterministic polynomial time equivalence even in this
variant.

1.2 Our Contributions

In this paper, we show a deterministic polynomial time equivalence be-
tween the key-recovery attack on Takagi’s variant of RSA and factoring.
More precisely, we show a deterministic polynomial time algorithm which
can factor N(= prq) from (N, e, d) such that ed ≡ 1 mod (p − 1)(q − 1)
if ed ≤ N

4
r+1 , |p| = |q| and r = O(log log N). It is interesting to see that

May’s result is obtained as a special case for r = 1. Hence, our result is a
natural generalization of May [9].

Lenstra et al. developed an efficient lattice reduction algorithm known
as LLL algorithm [8]. Based on it, Coppersmith showed a method of find-
ing small roots of univariate modular polynomials [3] which was simplified
by Howgrave-Graham [7].

May [9] and Coron and May [4] used the simplified version of Howgrave-
Graham [7] to show the deterministic polynomial time equivalence on
RSA. These methods first find a set of polynomials, and then apply the
lattice reduction algorithm to the coefficient matrix T . It works well be-
cause T is lower triangular and hence it is easy to compute det T .

We use the same approach. One of main issues of using Coron-May’s
strategy in the case of Takagi’s RSA is the fact that the matrix T is
not triangular, which makes computing the determinant a problem. We
overcome this problem by using another matrix M containing polynomials
g(x, y), whereas the matrix T contains the polynomials t(x, y) = g(x +
A, y + B). We prove that determinant of T is equal to that of M . We
develop a new technique to prove it and believe that our new technique
will be useful for many other lattice related problems.

1.3 Related Works

Boneh, Durfee and Howgrave-Graham studied how to factor N = prq by
using lattice reduction [2]. This type of composite N is very important
since it is used in EPOC [11] and ESIGN [6]3 in addition to Takagi’s

3 In EPOC and ESIGN, r is restricted in 2. And, our results give no influence to the
security of EPOC and ESIGN.



variant of RSA. They showed a deterministic algorithm of finding p in
time O(p

2
r+1 ). They also proved that p can be recovered in polynomial

time if we can find an integer P such that |P − p| < p
r−1
r+1 .

At Eurocrypt2005 [1], Blömer and May proposed a general method of
finding small roots of bivariate polynomials over integers, and improved
Boneh et al.’s result.

1.4 Organization

The rest of paper is organized as follows. The next section contains the
preliminaries. First, we review LLL algorithm and Howgrave-Graham’s
Lemma. Then we explain Takagi’s variant of RSA and describe the mo-
tivation of this research. In section 3, we introduce and prove our main
theorem. In particular, we show that the deterministic polynomial time
equivalence holds for ed ≤ N

4
r+1 and r = O(log log N). Finally, Section 4

concludes the paper.

2 Preliminaries

This section describes LLL algorithm, Howgrave-Graham’s lemma and
Takagi’s variant of RSA.

2.1 Notation

For a vector b, ||b|| denotes the Euclidean norm of b. For a bivariate
polynomial h(x, y) =

∑
hijx

iyj , define

||h(x, y)|| =
√∑

h2
ij .

That is, ||h(x, y)|| denotes the Euclidean norm of the vector which consists
of coefficients of h(x, y).

2.2 LLL Algorithm and Howgrave-Graham’s Lemma

Let M = {aij} be a nonsingular w × w matrix of integers. The rows
of M generate a lattice L, a collection of vectors closed under addition
and subtraction; in fact the rows forms a basis of L. The lattice L is
also represented as follows. Letting ai = (ai1, ai2, . . . , aiw), the lattice L



spanned by 〈a1, . . . ,aw〉 consists of all integral linear combinations of
a1, . . . ,aw, that is :

L =

{
w∑

i=1

niai|ni ∈ ZZ

}
. (1)

LLL algorithm outputs a short vector in the lattice L. This algorithm
works in deterministic polynomial time.

Proposition 1 (LLL [8]). Let M = {aij} be a nonsingular w×w matrix
of integers. The rows of M generate a lattice L. Given M , LLL algorithm
finds a vector b ∈ L such that

||b|| ≤ 2(w−1)/4(detM)1/w

in polynomial time in (w,B), where B = max log2 |aij |.

Lemma 1 (Howgrave-Graham [7]). Let h(x, y) ∈ ZZ[x, y] be a poly-
nomial, which is a sum of at most w monomials. Let m be an integer.
Suppose that

1. h(x0, y0) = 0 mod φm, where |x0| < X and |y0| < Y .
2. ||h(xX, yY )|| < φm/

√
w.

Then h(x0, y0) = 0 holds over integers.

2.3 Takagi’s Variant of RSA

Takagi proposed a variant of RSA such that N = prq and showed that
a faster decryption algorithm can be obtained [13, 14]. For example, for
r = 2, it is 42% faster than the original RSA decryption algorithm.

Key Generation Generate two distinct primes p and q. Let N = prq.
Find e and d such that

ed ≡ 1 mod (p− 1)(q − 1). (2)

Let dp = d mod p − 1 and dq = d mod q − 1. Then, e and N are the
encryption keys and dp, dq, p, q are the decryption keys.

Encryption For a plaintext M ∈ ZZ∗
N , the ciphertext is computed as

C = M e mod N. (3)

Decryption Given a ciphertext C, do:
1. Compute Mq = Cdq mod q, where Mq = M mod q.
2. Compute Mp = Cdp mod p, where Mp = M mod p.
3. Find M

(r)
p such that M

(r)
p = M mod pr by using Hensel lifting.

4. Compute M by applying Chinese remainder theorem to Mq and
M

(r)
p .



3 Deterministic Polynomial Time Equivalence in Takagi’s
RSA

In this section, we show a deterministic polynomial time equivalence be-
tween the key recovery attack on Takagi’s variant of RSA and factoring.

3.1 Main Theorem

We say that (r, N, e, d) is a Takagi’s RSA parameter4 if

N = prq, ed = 1 mod (p− 1)(q − 1) and |p| = |q|.

We then present a deterministic polynomial time algorithm which can
factor N = prq on input such a parameter.

Theorem 1. Suppose that a Takagi’s RSA parameter (r, N, e, d) is given
such that ed ≤ N

4
r+1 . Then we can factor N in deterministic polynomial

time in (log N, 2r).

Corollary 1. Suppose that a Takagi’s RSA parameter (r, N, e, d) is given
such that ed ≤ N

4
r+1 and r = O(log log N). Then we can factor N in

deterministic polynomial time in log N .

Proof (of Corollary 1). Since r = O(log log N), 2r < (log N)c for some
constant c. Then the running time of the factoring algorithm given by
Theorem 1 is bounded by a polynomial time in log N . ut

Remark 1. Let r = 1 in Theorem 1. Then we obtain the following corol-
lary: Given (N, e, d), N = pq can be factorized in deterministic polyno-
mial time in log N if ed ≤ N2. This corollary coincides with the result of
May [9] and Coron and May [4] for balanced p and q. Hence, our result
is a natural generalization of their result on RSA.

Remark 2. In Takagi’s variant of RSA, since ed = 1 mod (p − 1)(q − 1),
e and d are usually chosen in such a way that e < (p − 1)(q − 1) and
d < (p− 1)(q − 1). In this case, it holds that

ed < ((p− 1)(q − 1))2 ≤ (pq)2 ≈ N
4

r+1 .

Therefore, our bound is achieved for e and d that are chosen in the usual
way.
4 We omit the discussion of unbalanced prime factors due to limitations of space. We

can easily extend our analysis to unbalanced case as Coron-May’s paper [4]. In the
Takagi’s original paper[13], e and d are set as ed ≡ 1(mod lcm(p− 1, q− 1)). In this
case, we have the same result if gcd(p− 1, q − 1) is small or known.



Remark 3. The condition r < c log log N leads to another equivalent con-
dition: r < c′(log log p + log log log p) for some c′. On the other hand,
Boneh et al. proved that if r > c′′ log p, N can be factorized in determinis-
tic polynomial time of log N without the knowledge of d [2]. Consequently,
the computational cost is not known when c′(log log p + log log log p) <
r < c′′ log p. But, this is a purely mathematical interest.

3.2 Affine Transform Lemma

We now prove an elemental lemma which plays an important role in the
proof of Theorem 1. We believe that this lemma will be useful for many
other lattice related problems.

Lemma 2. Let g1(x), · · · gr(x) be r polynomials of degree r− 1. For each
gi(x), define ti(x) as

ti(x) = gi(x + α),

where α is an arbitrary constant. Let M = (gij) be the r × r coefficient
matrix of g1(x), · · · gr(x), where

gi(x) =
r∑

j=1

gijx
r−j ,

and let T = (tij) be the r × r coefficient matrix of t1(x), · · · tr(x), where

ti(x) =
r∑

j=1

tijx
r−j .

Then it holds that
det T = detM.

Proof. It holds that

ti(x) = gi(x + α) =
r∑

u=1

giu(x + α)r−u =
r∑

u=1

r−u∑
v=0

giu × r−uCvα
r−u−vxv

=
r∑

u=1

r∑
j=u

giu ×r−u Cj−uαj−uxr−j

Therefore, we obtain that

tij =
j∑

u=1

giu × r−uCj−uαj−u. (4)



Next, define an upper triangular r × r matrix A = (aij) as follows.

aij =

{
r−iCj−iα

j−i if i ≤ j
0 if i > j.

Then we can see that T = MA. Further, we have det A = 1 because
aii = r−iC0 × α0 = 1. Consequently we obtain that detT = detM ×
det A = detM . ut

3.3 Proof of Theorem 1

We will factor N by using the following strategy. Let X, Y,m, t be positive
integers which will be determined later.

Step 0 Let p = p0X + x0 and q = q0Y + y0, where x0 < X and y0 < Y .
Suppose that p0 and q0 are known, and we want to compute x0 and
y0.

Step 1 Construct a set of polynomials tijk(x, y) such that

tijk(x0, y0) ≡ 0 mod (((p− 1)(q − 1))m).

Step 2 Apply LLL algorithm to the coefficient matrix of {tijk(x, y)}
to obtain h(x, y), where h(x, y) is a non-zero integer combination of
tijk(x, y) with small coefficients.

Step 3 Let

h′(x) = h

(
x,

N

(p0X + x)r
− q0Y

)
Then x0 is a solution of h′(x) = 0.

We will find p0 and q0 by exhaustive search in Step 0. In what fol-
lows, we will show how to construct polynomials tijk, how to compute
the determinant of the coefficient matrix of {tijk} and how to determine
X, Y,m, t. It will be seen that the above algorithm runs in polynomial
time in (log N, 2r) if max(p/X, q/Y ) is polynomially bounded because
Step 1 ∼ Step 3 are computed in polynomial time and p0 and q0 are
bounded by max(p/X, q/Y ).

Remark 4. h′(x) is not identically zero since h(x, y)is not identically zero.



How to construct tijk. Let

f(x, y) = (x− 1)(y − 1).

Note that f(p, q) = (p− 1)(q − 1) is the modulus of Eq.(2). Let

U = ed− 1, S = (p− 1)(q − 1).

Define
gijk(x, y) = xiyjf(x, y)kUm−k.

Then it is easy to see that

gijk(p, q) = piqjf(p, q)kUm−k = 0 mod Sm

for any (i, j, k). In gijk(x, y), we will replace each occurrence of xry by
N because N = prq (based on the Durfee-Nguyen technique [5]). There-
fore, the resulting gijk(x, y) contains monomials of the form xa, yb and
xyc1 , x2yc2 , . . . , xr−1ycr−1 for some a, b, c1, . . . and cr−1.

Construct a list of polynomials G = (gijk) as follows, where s, t will
be determined later.

G← ∅
for k = 0, · · · ,m− 1, do;

append g0,0,k and g1,0,k into G in this order.
for i = r − 1, · · · , 1, do; append gi,1,k to G.

for i = 0, · · · , s, do; append gi,0,m to G.
for j = 1, · · · , t, do;

for i = r − 1, · · · , 0, do; append gi,j,m to G.
return G.

Express each gijk as follows, where the leading monomial appears
in the right most term of the right hand side. (For more details, see
Appendix A.)

g0,0,0(x, y) = Um

g1,0,0(x, y) = ∗ ∗ ∗+ xUm

gr−1,1,0(x, y) = ∗ ∗ ∗+ xr−1yUm

...

g1,1,0(x, y) = ∗ ∗ ∗+ xyUm

−−−−−−−−− −− −−−−−−−−−−−−−−−−−−−−−−
...



−−−−−−−−− −− −−−−−−−−−−−−−−−−−−−−−−
g0,0,m−1(x, y) = ∗ ∗ ∗+ ym−1U

g1,0,m−1(x, y) = ∗ ∗ ∗+ xmUXm

gr−1,1,m−1(x, y) = ∗ ∗ ∗+ xr−1ymU

...

g1,1,m−1(x, y) = ∗ ∗ ∗+ xymU

−−−−−−−−− −− −−−−−−−−−−−−−−−−−−−−−−
g0,0,m(x, y) = ∗ ∗ ∗+ ym

g1,0,m(x, y) = ∗ ∗ ∗+ xm+1

...

gs,0,m(x, y) = ∗ ∗ ∗+ xm+s

−−−−−−−−− −− −−−−−−−−−−−−−−−−−−−−−−
gr−1,1,m(x, y) = ∗ ∗ ∗+ xr−1ym+1

...

g0,1,m(x, y) = ∗ ∗ ∗+ ym+1

−−−−−−−−− −− −−−−−−−−−−−−−−−−−−−−−−
...

−−−−−−−−− −− −−−−−−−−−−−−−−−−−−−−−−
gr−1,t,m(x, y) = ∗ ∗ ∗+ xr−1ym+1

...

g0,t,m(x, y) = ∗ ∗ ∗+ ym+t

Next define
tijk(x, y) = gijk(p0X + x, q0Y + y). (5)

It is easy to see that

tijk(x0, y0) = gijk(p0X + x0, q0Y + y0) ≡ gijk(p, q) ≡ 0(modSm).

We have now finished Step 1.

How to compute det T . Let M be the coefficient matrix of {gijk(xX, yY )}
and T be the coefficient matrix of {tijk(xX, yY )}. Tables 1 and 2 show
small examples.

We want to apply Proposition 1 to T , where we need to know det T .
However, computing detT is not easy because T is not lower triangular.
(See from Table 1.) This is the big difference from the previous works [4,
9]. We prove the following lemma based on Lemma 2.



Table 1. Example of T for r = 2, m = 3, s = 2, t = 2.

1 x xy y x2 xy2 y2 x3 xy3 y3

t000(xX, yY ) U3

t100(xX, yY ) * U3X
t110(xX, yY ) * * U3XY U3XY p0

t001(xX, yY ) * * U2XY U2(p0X − 1)Y
t101(xX, yY ) * * * * −U2X2

t111(xX, yY ) * * * * * −U2XY 2 −U2XY 2p0

t002(xX, yY ) * * * * * −2UXY 2 UY 2(1− 2p0X)
t102(xX, yY ) * * * * * * * UX3

t112(xX, yY ) * * * * * * * * UXY 3 UXY 3p0

t003(xX, yY ) * * * * * * * * 3XY 3 Y 3(3p0X − 1)

1 · · · y3 x4 x5 xy4 y4 xy5 y5

t103(xX, yY ) * −X4

t203(xX, yY ) * * −X5

t113(xX, yY ) * * * −XY 4 −p0XY 4

t013(xX, yY ) * * * 3XY 4 (3p0X − 1)Y 4

t123(xX, yY ) * * * * * −XY 5 −p0XY 5

t023(xX, yY ) * * * * * −4XY 5 (1− 4p0X)Y 5

Table 2. Example of M for r = 2, m = 3, s = 2, t = 2.

1 x xy y x2 xy2 y2 x3 xy3 y3 x4 x5 xy4 y4 xy5 y5

g000(xX, yY ) U3

g100(xX, yY ) * U3X
g110(xX, yY ) * * U3XY
g001(xX, yY ) * * * −U2Y
g101(xX, yY ) * * * * −U2X2

g111(xX, yY ) * * * * * −U2XY 2

g002(xX, yY ) * * * * * * UY 2

g102(xX, yY ) * * * * * * * UX3

g112(xX, yY ) * * * * * * * * UXY 3

g003(xX, yY ) * * * * * * * * * −Y 3

g103(xX, yY ) * * * * * * * * * * −X4

g203(xX, yY ) * * * * * * * * * * * −X5

g113(xX, yY ) * * * * * * * * * * * * −XY 4

g013(xX, yY ) * * * * * * * * * * * * * −Y 4

g123(xX, yY ) * * * * * * * * * * * * * * −XY 5

g023(xX, yY ) * * * * * * * * * * * * * * * −Y 5



Lemma 3. It holds that

det T = detM. (6)

Proof. For 1 ≤ j ≤ m + t, define r polynomials f1,j , · · · , fr,j of degree
r − 1 as follows.

– For 1 ≤ j ≤ m,
• fa,j(x) is the coefficient of yj in gr−a,1,j−1(xX, yY ) for 1 ≤ a ≤

r − 1.
• fr,j(x) is the coefficient of yj in g0,0,j(xX, yY ).

– For m + 1 ≤ j ≤ m + t,
• fa,j(x) is the coefficient of yj in gr−a,j−m,m(xX, yY ) for 1 ≤ a ≤ r.

Similarly, define r polynomials e1,j , · · · , er,j of degree r − 1 as follows.

– For 1 ≤ j ≤ m,
• ea,j(x) is the coefficient of yj in tr−a,1,j−1(xX, yY ) for 1 ≤ a ≤

r − 1.
• er,j(x) is the coefficient of yj in t0,0,j(xX, yY ).

– For m + 1 ≤ j ≤ m + t,
• ea,j(x) is the coefficient of yj in tr−a,j−m,m(xX, yY ) for 1 ≤ a ≤ r.

Let Mj be the r× r coefficient matrix of f1,j , · · · , fr,j , and Tj be the r× r
coefficient matrix of e1,j , · · · , er,j .

For example, T1,M1, T2 and M2 of Table 1 and 2 are as follows.

T1 =

(
U3XY, U3XY p0

U2XY, U2Y (p0X − 1)

)
,M1 =

(
U3XY, 0
U2XY, −U2Y

)
.

T2 =

(
−U2XY 2, −U2XY 2p0

−2UXY 2, UY 2(1− 2p0X)

)
,M2 =

(
−U2XY, 0
−2UXY 2, UY 2

)
.

From Eq.(5), we obtain that

tijk(xX, yY ) = gijk(p0X + xX, q0Y + yY ) = gijk(X(x + p0), Y (y + q0)).

Hence, it is easy to see that ei,j(x) = fi,j(x + p0) because yj is the high-
est term in gr−a,1,j−1(xX, yY ), g0,0,j(xX, yY ) and gr−a,j−m,m(xX, yY ).
Therefore, from Lemma 2, we obtain that det Tj = detMj for 1 ≤ j ≤
m + t. Consequently, we can see that detT = detM . ut

Since M is a triangular matrix, we can compute det M easily as fol-
lows5.

det M = U (r+1)m(m+1)/2 ·X(m+s)(m+s+1)/2+r(r−1)(m+t)/2 · Y r(m+t)(m+t+1)/2

5 In what follows, we omit the sign of det M .



Applying LLL. Note that T and M are w × w matrices, where

w = (r + 1)m + (s + 1) + rt = (r + 1)m + s + rt + 1.

Now by applying LLL algorithm to T , we can obtain

h(x, y) =
∑

aijktijk(x, y)

such that
||h(xX, yY )|| ≤ 2(w−1)/4(detM)1/w

for some integers aijk. From the definition of tijk(x, y), it holds that

h(x0, y0) =
∑

aijktijk(x0, y0) = 0 mod Sm.

Therefore, if ||h(xX, yY )|| < Sm/
√

w, then from Howgrave-Graham’s
lemma, we have h(x0, y0) = 0 over integers. Therefore, it is sufficient
to show that

2(w−1)/4(detM)1/w <
Sm

√
w

. (7)

Since p and q are the same bit length, it satisfies that S = (p −
1)(q − 1) > pq/2 > max(p2, q2)/4 > N2/(r+1)/4. Using the inequality√

w ≤ 2(w−1)/2, we obtain the following sufficient condition:

det M < N
2mw
r+1 2−(2mw+ 3

4
w(w−1)). (8)

How to determine X and Y By setting X = Y and s = t, det M can
be simplified as

det M = U (r+1)m(m+1)/2 ·X(r+1)(m+s)(m+s+1)/2+r(r−1)(m+s)/2. (9)

The dimension of the lattice is given as w = (r + 1)(m + s) + 1.
Since it holds that U ≤ N

4
r+1 from our assumption, we obtain

det M ≤ N
(r+1)m(m+1)

2
· 4
r+1 ·X(r+1)(m+s)(m+s+1)/2+r(r−1)(m+s)/2

= N2m(m+1) ·X(r+1)(m+s)(m+s+1)/2+r(r−1)(m+s)/2. (10)

From inequalities (8) and (10) we obtain

N2m(m+1) ·X(r+1)(m+s)(m+s+1)/2+r(r−1)(m+s)/2 ≤ N2mw/(r+1) · 2−(2mw+ 3
4
w(w−1))

X(r+1)(m+s)(m+s+1)/2+r(r−1)(m+s)/2 ≤ N2m(s+ 1
r+1

−1)2−(2mw+ 3
4
w(w−1)).



The above inequality can be transformed into

X ≤ N
2m

s+1/(r+1)−1
(r+1)(m+s)(m+s+1)/2+r(r−1)(m+s)/2 · 2−

2mw+3w(w−1)/4
(r+1)(m+s)(m+s+1)/2+r(r−1)(m+s)/2 .

(11)
Letting

γ(m, s; r) = 2m
s + 1/(r + 1)− 1

(r + 1)(m + s)(m + s + 1)/2 + r(r − 1)(m + s)/2

and

δ(m, s; r) =
2mw + 3w(w − 1)/4

(r + 1)(m + s)(m + s + 1)/2 + r(r − 1)(m + s)/2
,

we can express inequality (11) as

X ≤ Nγ(m,s;r)2−δ(m,s;r). (12)

The next thing to do is to find s which maximize γ(m, s; r) for a fixed
m to maximize the bound X on x0. Such s is given by s = m. In this
setting, γ(m,m; r) is calculated as follows.

γ(m,m; r) = 2
m + 1/(r + 1)− 1
2(r + 1)m + r2 + 1

=
1

r + 1
− r + 1

2(r + 1)m + r2 + 1

δ(m,m; r) is calculated as

δ(m,m; r) =
2mw + 3w(w − 1)/4

(r + 1)(m + m)(m + m + 1)/2 + r(r − 1)(m + m)/2

=
(2(r + 1)m + 1)(3

2(r + 1) + 2)
2(r + 1)m + 1 + r2

<
1
2
(3r + 5).

From the above discussion, we obtain

X ≤ 2−
(3r+5)

2 N
1

r+1
− r+1

2(r+1)m+r2+1 . (13)

Total Computational time Taking the largest integer X of inequality
(13), we obtain

p

X
<

2N1/(r+1)

X
≤ N

r+1

2(r+1)m+r2+1 · 2
3r+7

2 . (14)

By setting m = blog Nc, we obtain

p

X
< O(1) · 2

3r+7
2 . (15)



Hence, the number of repetition for selection of p0 is upper bounded by
a polynomial of 2r.

The dimension of the lattice is given by w = (r + 1)m + s + rt + 1 =
2(r + 1)m + 1 = O(log N). The maximum entry of the lattice is given by
N

4m
r+1

+1. This implies that the logarithm of the maximum entry is given by
O(log N

4m
r+1 ) = O(m log N) = O((log N)2). Hence, the total computation

cost for the bivariate polynomial h(x, y) is given by the polynomial of
(log N, 2r). Note that LLL algorithm works deterministically.

The rest of our algorithm works in deterministic polynomial time of
log N . From the above discussion, N can be factorized in deterministic
polynomial time of log N and 2r. ut

4 Concluding Remarks

We used the same approach as Coron-May[4]. But, Theorem 1 cannot be
obtained trivially from[4]. We had to overcome the following two difficul-
ties in order to prove our theorem.

1. How should we arrange the order of polynomials gijk and monomials
so that M is triangular?

2. How should we calculate det T? Since T is not triangular, calculation
of determinant seems difficult.

First, we explain how to overcome the first difficulty. In the analysis
of standard RSA [4], each occurrence of xy is replaced by N because
N = pq. Hence only xa or yb appears in the resulting gi,j,k which makes
it easy to form a triangular matrix.

On the other hand, we replace each occurrence of xry by N because
N = prq in Takagi’s RSA. Then the resulting gijk(x, y) contains mono-
mials of the form xa, yb and xyc1 , x2yc2 , . . . , xr−1ycr−1 for some a, b, c1, . . .
and cr−1. A technical difficulty is how to make a triangular matrix M
from these gi,j,k. We have given an efficient solution for this problem.

Remark 5. We can apply Blömer-May’s method [1] to our problem. In
this method, however, the lattice is uniquely determined by the Newton
polygon of the target polynomial f(x, y), and hence there is no room for
replacing xry with N . Consequently we would get a smaller range of ed.

Next, we explain how to overcome the second difficulty. Since the only
monomials xa and yb appear in Coron-May’s gijk, the matrix generated
from tijk is naturally triangular. Hence, in Coron-May’s case, the deter-
minant of T can be easily obtained. However, in our polynomials gijk, the



monomial xiyj appears. Hence, our matrix T cannot be triangular (for
example, see Table 1). By showing Lemma 3 (that is det T = det M),
we overcome this problem. In the proof of Lemma 3, Lemma 2 plays an
important role. Note that in proof of lemma 3, we did not use the prop-
erty that M is triangular. We enjoy this property in calculating detM .
We believe that our new technique will be useful for many other lattice
related problems.
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A Our matrix M is triangular

In this section, we describe the matrix M of Sec.3.2 more formally, and
show that it is a lower triangular matrix.

We say that gi,j,k is the `th polynomial of G if it is the `th polynomial
that is appended to G by the algorithm of Sec.3.2. For a monomial xayb

which is included in the `th gi,j,k, we say that xayb appears here first if it
does not appear in the first (`−1) polynomials of G. Let dk = (k−1)(r+1).
(Note that each occurrence of xry is replaced by N .)

Lemma 4. g0,0,k is the (dk + 1)th polynomial of G, and yk appears here
first for 1 ≤ k ≤ m.

Lemma 5. g1,0,k is the (dk + 2)th polynomial of G, and xk+1 appears
here first for 0 ≤ k ≤ m.

Lemma 6. gr−i,1,k is the (dk + i + 2)th polynomial of G, and xr−iyk+1

appears here first for 1 ≤ i ≤ r − 1 and 0 ≤ k ≤ m− 1.

Lemma 7. gi,0,m is the (dm+i+1)th polynomial of G, and xi+m appears
here first for 1 ≤ i ≤ s.

Lemma 8. g0,j,m is the (dm+s+j)th polynomial of G, and xj+m appears
here first for 1 ≤ j ≤ t.

Consider an expression of gi,j,k as follows.

– The leading monomial of g0,0,k is yk for 1 ≤ k ≤ m.
– The leading monomial of g1,0,k is xk+1 for 0 ≤ k ≤ m.
– The leading monomial of gr−i,1,k is xr−iyk+1 for 1 ≤ i ≤ r − 1 and

0 ≤ k ≤ m− 1.
– The leading monomial of gi,0,m is xi+m for 1 ≤ i ≤ s.
– The leading monomial of g0,j,m is xj+m for 1 ≤ j ≤ t.

Lemma 9. In the `th gi,j.k, all the monomials other than the leading one
appears in some polynomial of G`−1.

Let M be a w×w matrix such that `th row consists of the coefficients
of the `th gi,j,k of G, where the leading monomial of each gi,j,k is given
as above. Then it is easy to see that M is a lower triangular matrix from
the above lemmas.

The proofs of the lemmas will be given in the full version.


