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Abstract. Non-transferability of digital signatures is an important se-
curity concern, traditionally achieved via interactive verification proto-
cols. Such protocols, however, are vulnerable to “online transfer attacks”
—i.e., attacks mounted during the protocols’ executions.

In this paper, we show how to guarantee online untransferability of sig-
natures, via a reasonable public-key infrastructure and general assump-
tions, without random oracles. Our untransferable signatures are as effi-
cient as prior ones that provably provide weaker types of untransferabil-

ity.

1 Introduction

Berkeley wishes to make a signed job offer to Alice. In this scenario, the ability of
Alice to show the signature to others is a negative for Berkeley: for instance, Alice
could use that ability to leverage a better offer from another university (e.g.,
Stanford). The transferability of digital signatures is indeed a well recognized
concern. The focus of this paper is to make digital signatures as untransferable
as possible. Let us start by recalling prior solutions to this problem.

A first solution to the problem of transferability in signatures was offered
by Chaum and Van Antwerpen[10]. Their “undeniable signatures” cannot ever
be verified without the signer’s cooperation. The idea, therefore, is that the
signature recipient should be unable to transfer a signature to a third party,
because the signer would refuse to interact with that party.

Undeniable signatures, however, suffer from another drawback: the signer can
effectively repudiate even a valid signature by refusing to cooperate. In the job
offer scenario, this allows Berkeley to escape from the contract, leaving Alice no
recourse.

Jakobsson, Sako, and Impagliazzo proposed designated verifier signatures
[19], in which only a particular party, chosen by the signer, can verify without
the signer’s help. The untransferability of this solution is effectively the same
as in undeniable signatures. Recent extensions allow a signature holder other



than the original signer to designate a separate verifier [26,1]. However, this
still falls short of the solution we need for the job offer scenario: the designated
verifier will have to be the recipient, since she must be convinced of the validity
of the signature, but this implies that the recipient will be unable to establish
its validity in court, should the signer be uncooperative.

Designated Confirmer Signatures. A solution to these repudiation problems has
been provided by Chaum [9]. In a designated confirmer signature scheme (or
DCS scheme for short), there are three parties: the signer, the recipient, and a
trusted party called the designated confirmer. The idea is that the signer will
produce a signature of an arbitrary message m in a way such that the recipient
can be convinced of the validity of the signature in an interactive protocol.
If such a signature of m is valid then either the confirmer or the signer will
be able to prove its validity with respect to m, and will also be able to deny
its validity with respect to any other message. Further, the confirmer and the
signer should each be able to transform a valid signature of a message m into a
traditional signature of m that can be verified by (and transferred to) anyone.
Valuable variants of DCS schemes have been provided by Okamoto [22], Michels
and Stadler [20], Camenisch and Michels [5], Goldwasser and Waisbard [16],
Monnerat and Vaudenay [21], and Gentry, Molnar, and Ramzan [15].

The problem of online transferability. In prior solutions, the key to achiev-
ing untransferability is to make signature verification an interactive process be-
tween the sender and the receiver. Such untransferability, however, is guaranteed
only after a certain time, namely, when the protocol completes. When Berke-
ley uses a DCS scheme to sign Alice’s job offer, she will be unable to convince
Stanford that the DCS signature she received was valid, but assuming that Alice
attempts to convince Stanford of the validity of the signature only after com-
pleting the verification protocol. We call such an attack an offline transfer. On
the other hand, Alice and Stanford could be actively communicating during the
protocol Alice engages in with Berkeley, in which case, Alice may attempt to
convince Stanford interactively of the validity of the signature. We call such an
attack an online transfer.

All prior solutions to the problem of preventing transfer of signatures are
vulnerable to online transfer.! Consider the following common paradigm to guar-
antee untransferability. The sender produces a signature o of the message m
and encrypts o under a public encryption key to obtain a ciphertext c¢. Then,
to prove that the signature is valid, the sender provides a zero-knowledge proof
that ¢ is an encryption of a valid signature of m. Here, it is then apparent
that if Alice merely acts as a passive conduit for a conversation that is really
taking place between Berkeley and Stanford, Stanford necessarily will be con-
vinced that the job offer is genuine, because the legitimate recipient ought to

1 Steinfeld et al. [26] show how to prevent the transfer of a proof of ownership of a
signature in a way that is online-untransferable. However, there is no confirmer, so
the recipient of such a proof cannot trust that it will not be repudiated.



be convinced, and there is no difference between a transferee and the legitimate
recipient in this attack. Notice that even replacing the general zero-knowledge
proof with a stronger form of zero-knowledge (e.g. nonmalleable [14] or reset-
table zero-knowledge proofs [8]) does not appear to help. Whether relying on
zero-knowledge proofs, or using some other type of protocol, if the (illegitimate)
transferee and the (legitimate) recipient of the signature cannot be meaningfully
distinguished, this attack remains viable.

Our model. In our job offer example, Alice is merely an entity who makes some
random choices in order to be convinced by Berkeley that the signature is valid.
To prevent online transferability, therefore, we put forward a reasonable model
that ensures some kind of distinction between Alice and Stanford.

The distinction we propose to build upon is this: although Alice and Stanford
may be colluding at present, if they are separate entities at all, Alice and Stanford
will not have been colluding at some point in the past. We thus plan to solve
the online untransferability problem via a model that in essence forces part of
the signature process to take place when Alice and Stanford are not colluding.

Our model is very simple. It consists of a public-key infrastructure (PKI) in
which not only signers and confirmers have registered public keys, but signature
verifiers have them as well. In a variant of our model—guaranteeing a stronger
version of online untransferability— verifiers can register their public keys only
after providing a proof of knowledge of their corresponding secret keys.

First of all, our basic model is very reasonable: in fact, some form of PKI is
necessary for signatures to be meaningful. In addition, even our variant model
is realistic. Indeed, PKI requiring proofs of knowledge of secret keys have been
considered in the past and proved to possess many attractive properties. In
particular, plaintext-aware encryption can be realized without random oracles
[17] in this model, resettable zero-knowledge can be achieved [8], and this model
is favorable for universally composable security [2]. In addition, Steinfeld et al.
rely on this same model in order to establish proofs of signature knowledge that
cannot be transferred. Thus, not only are such PKIs feasibly implemented, but
actually have many independent and valid reasons to be used.

There must be a crucial point in time in the past at which Alice was honest
(or at least, that she was not colluding with Stanford). It is by leveraging this
past point that online untransferability can be guaranteed in the present. Our
model assumes that the time at which Alice registers her key is such a time in
the past. This provides a meaningful version of online untransferability.

Our solution. Our model provides only a framework in which online untrans-
ferability is plausible. It is, however, quite far from guaranteeing the existence of
a solution, let alone a reasonably efficient solution.

The high-level structure of our solution (like that of Gentry et al. [15]) is
that the signer produces (1) an encryption ¢ that specifies the message m, (2) a
zero-knowledge proof that ¢ specifies m appropriately, and (3) a signature of ¢,
along with certain elements of the proof transcript.



It is a crucial property for the security of our solution that the proof in
point 2 is a full-fledged zero-knowledge proof, and that can be simulated without
rewinding. Due to the result of [8], this guarantees that this proof is concurrently
zero-knowledge. While this does not in itself imply online untransferability, it
will imply that we do not need to worry whether our separately proven online
untransferability will apply in a concurrent setting. (The concurrent setting is
very natural, where we may imagine multiple verifiers, multiple third parties, et
cetera.)

Most prior protocols for achieving (just) offline untransferability achieved
a reasonable level of efficiency by either relying on unusually strong assump-
tions (e.g. the random oracle assumption) [5,20], or provided weaker security
by relying on protocols that are not fully zero-knowledge (e.g. the solution of
Goldwasser and Waisbard [16] at TCC 2004). A second crucial property of our
solution is that it be reasonably efficient for the provable security it delivers, and
does not rely on the random oracle assumption.

Most known constructions of DCS schemes fall under the following paradigm.
To create a confirmer signature, the signer creates a traditional signature o, and
encrypts it under the confirmer’s public encryption key to produce c. Thus, the
extraction requirement is guaranteed by the fact that both the signer and the
confirmer can produce o. To verify that ¢ is a designated confirmer signature
of m, one proves in zero-knowledge that ¢ is indeed an encryption of a valid
traditional signature of m relative to the proper public keys. Similarly, zero-
knowledge proofs are used to disavow invalid signatures.

Goldwasser and Waisbard [16] were the first to give practical and efficient
schemes in the plain model by using strong witness-hiding proofs instead of fully
zero-knowledge ones. This achieves a weaker, but reasonable, level of security: in
their scheme, transfer is only prevented when the transferee is honest. Gentry,
Molnar, and Ramzan [15] give a practical and efficient scheme based on the
Paillier cryptosystem [23], and their proofs of confirmation and disavowal are
fully zero-knowledge, so they prevent all offline transfer.

One drawback of our solution is that, in order to prevent the transfer of
signatures, the signer must be willing to issue invalid signatures to anyone. This
is, however, in the signer’s interest as the signer is the one being protected by
the untransferability properties.

Our results. We give a secure and efficient scheme similar to a designated
confirmer signature scheme under general assumptions, without random oracles
or general zero-knowledge proofs for secure designated confirmer signatures. If
we assume the recipient and the third party (the transferee) were not conspiring
at the time the recipient registers his or her public key, even online transfer
cannot occur in our scheme. However this assumption is not critical in any other
way; all other properties can be proven without it, including the impossibility of
offline transfer.



2 Definitions

2.1 Intuitive description

There are three players, the signer S, the confirmer C, and the recipient R.
Before any signatures are issued, there is a setup phase in which all three parties
generate public keys, PKg, PKc and PKp respectively, that are assumed to
be known to all parties (or are certified by a PKI). Each party also generates a
secret key: SKg, SK¢, and SKg, respectively.

It is assumed that in any algorithm or protocol, each party has their own
secret key and all public keys as inputs. It is further assumed that 1% is an input
to all parties in all algorithms or protocols, where k is a system-wide security
parameter.

An online-untransferable signature scheme with confirmer consists of the fol-
lowing protocols:

— KeyGeng, KeyGen, KeyGeny are algorithms for generating the public and
private keys of each party.

— Setup. This is an algorithm run by the confirmer, once per signer, in which
the confirmer produces an additional public key PK¢ ¢ which is to be used
by the signer S in creating designated confirmer signatures for confirmer C,
and a secret key SK¢ s which the confirmer remembers for use later.2

— Sign. This is an interactive protocol between the signer and the recipient
on common input a message m. At the end of the protocol, the recipient
outputs an online-untransferable signature ¢ and either accepts or rejects,
while the signer outputs an online-untransferable signature o’.

— Disavow. This in an interactive protocol between the confirmer and the re-
cipient, in which the confirmer proves that the given signature ¢ is not a
valid one.

— Extracte, Extractg. This is a non-interactive algorithm in which the confirmer
or signer, respectively, on input an online-untransferable signature o, outputs
an extracted signature o*.

— ExVerify. This is a non-interactive algorithm that can be performed by any
party, given the public keys, on input an extracted signature o* that either
accepts or rejects that signature.

— FakeSign. In order to prove the impossibility of online transfer, the simulator
will need an invalid but valid-looking signature from the signer; that created
and given to the simulator in this protocol.? At the end of the protocol,

2 This algorithm is not one included traditionally, but its addition is reasonable: we
expect that it will be performed offline, just after key generation. We can avoid
having this additional setup step if we make the stronger assumption that identity-
based encryption [3] exists.

3 It may seem strange to describe this algorithm as part of the scheme: it is only
to be used in the proofs of non-transferability, and need never be run in practice.
However, it is important that the signer be willing to engage in it, because the third
party must believe that the signer would. Because of this, it is important to include
it in the description of the scheme, because the signer’s willingness to engage in this
protocol should not affect any other security properties of the scheme.



the signer outputs an online untransferable signature ¢, and the simulator
outputs an online-untransferable signature o’.

The security requirements, informally, are the following:

Completeness: When all players are honest, the online untransferable sig-
nature produced by the recipient in Sign will be valid (that is, a valid extracted
signature can be extracted from it). Also, the signatures produced by the signer
in FakeSign will not be valid, and the recipient will accept in Disavow on such a
signature.

Soundness: No dishonest signer can succeed in making the honest recipient
accept in Sign unless the resulting designated confirmer signature is valid (that
is, can be successfully extracted by the designated confirmer.)

Non-repudiation: No dishonest confirmer can succeed in making the honest
recipient accept in Disavow on a valid (extractable) signature.

Unforgeability: No adversary with the ability to engage in any of the
above protocols with the honest confirmer and the honest signer (including
FakeSign) in any role and on any common input, can produce either a valid
online-untransferable signature ¢’ on a message the adversary never requested
a signature of, nor a valid extracted signature o*’, on a message the adversary
didn’t first request a signature, and later request extraction.

Online untransferability: Sign can be simulated in such a way that is
indistinguishable from a real interaction to any distinguisher, so long as the
adversary does not request an extraction of that signature. The simulator is
assumed to have access to the secret key of the recipient, and may engage in
FakeSign with the signer, but must engage in the Sign protocol interactively
with the distinguisher.

Offline untransferability: There is a simulator that can produce a view
indistinguishable from that of the dishonest recipient in the Sign protocol with
the real signer, so long as the adversary never requests an extraction of the result
of that protocol. The simulator is assumed to be able to engage in the FakeSign
protocol with the signer.

2.2 Notation

When S is a finite set, the notation = « S refers to x being chosen uniformly
at random from S. When M denotes a randomized algorithm, x «— M (i) refers
to x being determined by a random execution of M on input ¢. When we write
x1 «— Diy;x9 — Do(21);..., 2, < Dy(x1,...,2,-1) we refer to the probability
distribution on {z1,...,z,} determined by first assigning x; according to Dj,
then assigning zs according to D, on input z1, et cetera.

When M is a two-party protocol, (z4,zp) <« MAB(ia;ip;i) refers to an
assignment where M is executed between parties A and B, where A’s private
input is 74, B’s private input is ip, and 7 is the common input, and where
x4 becomes the output of A, and xp becomes the output of B. We omit the
inclusion of A’s secret key in i4, B’s secret key in ig, and all public keys in i;
we write only M“5 (i) to indicate that no unusual secret inputs are required.



We use x <, MAB(iq;ip;4) to refer to an assignment where = becomes x4 if
b =1 and = becomes xp if b = 2; that is, b specifies which party’s output is to
be denoted by z.

When M is a two-party protocol, and P is one of the parties that participates
in M, the notation M or M*F refers to the set of interactive Turing machines
run by the honest party P in their execution of M. Thus, when an adversary is
said to have oracle access to M T, this means the adversary has oracle access to
all the Turing machines used by P during honest execution of M, where P has
all ordinary inputs (the public keys of all parties, the security parameter 1%, and
P’s own private keys), however, the adversary has control of all other inputs.

Similarly, when M is an algorithm, M (where P is the party that runs
algorithm M) is that algorithm with the standard inputs of P specified, that is,
all public keys, the security parameter, and P’s own secret key. When M is an
algorithm, we denote by M (i;7) that we run M on input ¢ with randomness r.
When r is not previously specified, it is assumed to be chosen at random and
remembered.

Honest parties are assumed to be state-preserving interactive Turing ma-
chines. Adversaries are assumed to be state-preserving oracle Turing machines.
We write O = {Oy,...,0,} to indicate a single oracle that can be used to query
any of the sub-oracles Oq,...,O,.

We use the symbol v to designate a negligible function. A function is negligible
if, for any ¢ > 0, v(k) < k¢ for all sufficiently large k.

2.3 Formal definitions

Online-untransferable signatures. An online untransferable signature scheme
is a tuple of several algorithms and two-party protocols:

1. KeyGeng, KeyGeng, KeyGen, Setup, ExVerify, Extractg, and Extractc are al-
gorithms,

2. Sign and FakeSign are two-party protocols run between the signer (the first
party) and a recipient (second party).

3. Disavow is a two-party protocol run between the confirmer (first party) and
a recipient (second party).

Such algorithms and two-party protocols constitute a secure online-untrans-
ferable signature scheme if the following properties hold:

Efficiency: All algorithms, and all defined behavior for honest parties in two-
party protocols, are probabilistic polynomial-time.

Completeness: If keys are generated honestly and setup is performed honestly,
and the signing protocol is performed between honest parties, the result will
be an online-untransferable signature that produces a valid extracted signature
under both Extract® and Extract®. If the FakeSign protocol is performed between
an honest S and an honest R, the result is an online-untransferable signature
that will be disavowed by Disavow. Formally,



Ym,

Pr| (PKs,SKs) < KeyGeng(1%); (PKr, SKR) < KeyGenp(1%);
(PK¢,SKc) — KeyGeng(1%); (PKs,0, SKs,0) — Setup® (PKs);
() 2 Sign®™(m);
o' — FakeSign®®(m);

y < ExVerify(Extracts(o)); z < ExVerify(Extractc(0));
w — Disavow®(0") :
x=y=z=w=accept] =1

Soundness: For all S’ with oracle access to all of the algorithms and two party
protocols run by parties C' and R, and for all o, if PKc and PKg are generated
according to KeyGen and KeyGeny, the probability that o is not a valid signa-
ture, but S’ succeeds in making the recipient accept and output o in Sign is neg-
ligible. Formally, let O = {Sign"R,SetupC, Disavow ', FakeSign~%, Disavow®",
ExtractS}. Then,

VA oracle PPT, dv Vk
Pr[ (PKgr,SKRg) < KeyGeny(1%); (PK¢,SKc) «— KeyGen (1%);
PKg «— A°(PKg, PKc,1%); (PKs. o, SKs.c) « Setup® (PKs);
A® R
(m)

m — A% (0, ) < Sign ;
z — ExVerify(Extract& (o), m) :

x = accept Az # accept | < v(k)

Non-Repudiation: The weakest possible notion here is that it should be hard for
a dishonest signer and a dishonest confirmer to conspire to create a valid online-
untransferable signature that could be successfully disavowed. We will use a
stronger formulation, namely, that no such signatures exist for validly generated
keys.

VC' PPT adversary, V(PK¢c, SK¢) € KeyGen, (PKg,SKs) € KeyGeng,
(Pqu, SKcﬁ) € Setup, m, o,
Pr[ x« ExVerify(Extractg(a),m);y s Disavowcl’R(SKc, SKg,SKc,s;;0):
x =y = accept] =0

Unforgeability: For all adversaries with oracle access to all algorithms run by
all honest parties, if keys are generated honestly, cannot succeed in either (1)
producing a valid signature o on a message he never requested a signature of, or
(2) producing a valid extracted signature c* on a message he never requested a
signature of and then later requested extraction of. Formally, let O = {Sign"R ,
FakeSign~®, FakeSign®", Disavow"?, Extractg, Extractc, Setupc}. Then

VA oracle PPT, Vp dv Vk
Pr[ (PKg,SKs) « KeyGeng(1¥); (PKr, SKR) « KeyGen(1%);
(PKc,SKc) « KeyGeng (1%); (PKs.c, SKs.c) < Setup’ (PK);



my — A(PKs, PKc, PKg, PKsc); (01,w1) < Sign®A" (m1);...;

M) — A (0p(1)—1); (Tp(a), (i) — Sign™” (i)

(m, o) — A®(op));y — ExVerify(ExtractS, (o), m); z — ExVerify(o, m) :
z = accept, and if m = m; then A did not query Extract on o;, or

y = accept, but m & {m1,...,myu} <v(k)

Online Untransferability: For all adversaries with oracle access to all algorithms
run by all honest parties, if keys for C, .S, and R are generated honestly, then
the adversary cannot distinguish between interacting with the real signer in Sign
about a chosen message m and interacting with a simulator with access only to
FakeSign on m, so long as the adversary never requests Extract or Disavow be run
on the resulting signature. Let O = {Sign"R7 Sign®", FakeSign¥, FakeSign®",
Extractg, Disavow "', Disavow®", Extractg7 Setupc}, and let O, be O except
where the Disavow, Extracts, Extractg oracles will not operate if given o as
input. Then:

VA oracle PPT, 4Sim Jv Vk

| Pr[ (PKgs,SKg) < KeyGeng(1%); (PKg, SKR) «— KeyGenp(1%);
(PK¢,SK¢) — KeyGeng(1%); (PKs.c, SKs.c) «— Setup® (PKs);
m — A9(PKg, PKg, PK¢, PKs.c, SKR); (0,w) — Sign®%(m);
be A% b =1]-

Pr| (PKg,SKgs) «— KeyGeng(1%); (PKr, SKR) < KeyGenp(1*);
(PKc,SKc) — KeyGeng(1%); (PKs 0, SKs.¢) — Setup® (PKs);
m «— AO(PKS,PKR,PKc,PKsyc,SKR);

H akeSignS
(o,w) < Signs'kasg A(SKg;—m);b— A% b =1]| < v(k)

Offline Untransferability: For all dishonest recipients R’ and for all adversaries
with oracle access to all algorithms run by all honest parties, there is a simulator
Sim such that if keys for C' and S are generated honestly, the adversary cannot
distinguish between R’ after interacting with the signer in Sign and Sim after
interacting only with the signer in FakeSign. Let O and O, be as in the online
untransferability definition. Then:

VA oracle PPT, VR’ PPT 3Sim oracle PPT 3v Vk
Pr| (PKgs,SKgs) «— KeyGeng(1%); (PKc, SK¢c) « KeyGeng (1F);
(PKsyc, SKS,C) — SetupC(PKS);
(m, PKRr,a) « A®:zq SignS’Rl(S’Ks;a;m);
1 — Sim{R,’FakeSig"S}(mm); b+—{0,1}
Y A% (op,wp) 1 b =b] < 1/2 4+ v(k)

There are two main differences between the online and offline definitions for
untransferability. First, in the online untransferability definition, there is only
the simulator Sim and the adversary A; the adversary in this case is meant to
model both the recipient and the third party. In the offline untransferability



definition, there are two adversaries: the dishonest recipient R’ and the third
party, represented by A. A receives output either from the real signing proto-
col or from the simulator, but cannot interact in those protocols directly. The
second difference is that in the online untransferability definition, the simulator
knows the receiver’s secret key SKpg (this models the notion that the recipient
is aware of his own key), whereas the simulator is not given this information in
the offline definition. Naturally, if the recipient is required to perform a proof of
knowledge of SKpr during key registration, then online untransferability implies
offline untransferability.

3 Our construction

Our construction is fairly complex, so to help the reader understand it, we present
our ideas incrementally.

As a first idea, we imagine that to make a designated confirmer signature
on message m, the signer will create k random pairs of strings «;, 3; such that
a; ® B; = m, and encrypt these values in the confirmer’s encryption key to
obtain a; = Epk.(a;) and b; = Epg,(0;). The signer will then sign m along
with a1, b1, ..., ax, br; the signature is considered valid so long as ¢ is valid, and
some pair a;, b; decrypt to values that XOR to m.

The recipient can verify on his own that o is valid, but the signer and recipient
must engage in a protocol for the recipient to be convinced that some pair
decrypts to values that XOR to m. In order to accomplish this, the recipient
first sends a commitment to a challenge string C'H. The signer responds with
(0,a1,...,bx). The recipient checks o and responds by opening C H. The signer
then “opens” the encryption of a; or b;, depending on the ith bit of CH. Note
that if none of the pairs actually decrypt to a pair that XOR to m, the probability
that the signer will be able to succeed is 27%.

To extract a (valid) signature, the signer can simply decommit some pair of
encryptions; this, along with the signature and the «; value, is proof to anyone
that the signature is valid.

Offline untransferability. In order to provide deniability, the signer must
be willing to freely give out signatures that are valid in format but not valid in
content. That is, the signer should provide a signature to any recipient on any m
and any sequence of pairs ay, by, ..., a,b; so long as (1) the signer obtains the
decommitments of each a; and b;, and (2) the decryptions of each pair actually do
not XOR to m. Thus, the mere signature of the signer proves nothing. Given this,
a simulator can be constructed for the proof system: this fake signature service
can be used to make the recipient reveal C H; once it is revealed, the simulator
can rewind and use the fake signature service again to obtain an invalid signature
for which the challenge C'H can be answered.

Confirmer extractability. Another issue we must resolve is how the con-
firmer will actually extract plain signatures. In the current scheme, the confirmer
will be able to decrypt all the pairs, but this does not necessarily imply that the
confirmer will be able to decommit them.



In order to handle this, we modify our scheme. We ask that the signer assist
the confirmer by encrypting the randomness used in producing a;, b; and includ-
ing this in the signature. Now, if the signer is honest, the confirmer will be able
to give the same decommitment information the signer would. If the signer is
not honest, and does not properly include the decommitment information, the
confirmer can always reveal his decryption secret key as an alternative form of
decommitment. However, this is obviously not an ideal solution since it ruins
the confirmer’s keys. To fix this problem, we modify the setting so that the con-
firmer’s true public key is a signing key, and the confirmer creates a different
encryption key pair for each signer, and signs the public encryption key along
with the signer’s public key. The signature assures the recipient that the signer
is using the correct key. Now, if the signer doesn’t help the confirmer extract
signatures in the normal way, C' can reveal this secret encryption key: in effect,
C is still able to extract signatures, but S’s assurance that signatures cannot be
transferred is lost. Of course, S has no one else to blame, since S was the one
who was dishonest.

This mechanism allows the confirmer not only to extract, but also to disavow
signatures (disavowal is necessary because of the FakeSign protocol the signer
provides) by decrypting all the pairs, or by revealing the secret key.

Reconfirmation. In designated confirmer signature schemes, a Verify proto-
col and a Disavow is typically provided both for the signer and for the confirmer,
in order to prove the validity or invalidity of a designated confirmer signature to
the recipient. Verify is often given as a separate protocol from Sign, in order to
establish, initially, the validity of a signature. Here, though, the proof of validity
is part of the Sign protocol, so Verify would be unneeded initially, and later,
there would be no need for the recipient to reconfirm the validity of a signature
already established as valid. We insist that the recipient sign the messages they
send during the initial proof of validity, so that it will be clear that a given
online-untransferable signature was produced after a proof was provided to the
recipient.

Online untransferability. The difference between online untransferability
and offline is that in an attempt at online transfer, the dishonest recipient inter-
acts concurrently with both the signer and some third party. To prevent online
transfer, we will need to assume that the recipient knows their secret key. As
part of key generation for a recipient, the recipient generates an encryption key
pair, that will be used for the initial commitment to C H. If we assume that the
simulator knows the corresponding secret key, the simulator can determine C' H
without rewinding, which is what allows us to simulate signing in the presence
of an actively interacting adversary.



3.1 The scheme

Now, we will give the full specification of our scheme. We assume the existence
of a secure (IND-CPA), perfectly-faithful?, checkable® public-key cryptosystem
(G, E, D) and a secure (CMA) signature scheme (KeyGen, Sig, Ver).

The specification of the algorithms and protocols for our scheme are as fol-
lows:

— KeyGeng: Generate a signature key pair (PKg, SKg) using KeyGen.

— KeyGeng: Generate a signature key pair (PK¢, SK¢) using KeyGen.

— KeyGeny: The recipient uses G to generate a key pair (PKE,SKE), and
uses KeyGen to generate a signature pair PK }?g ,SK f;g . The recipient’s pub-
lic key PKr = (PK{%,PK}?Q) and the recipient’s secret key is SKr =
(SKE,SK}9).

— Setup: The confirmer generates an encryption key pair (PK, g 59K g g) from
G, and creates a signature oy on the pair (PKS,PKgS) using SK¢o. The
key PKc,s consists of the triple (00, PKg, PK{ ), while SK¢ 5 = SKE .
Sign: The protocol runs in the following steps:

1. The recipient generates a uniform random string C'H of length k& and
sends € = Epps(CH;r) to the signer and remembers r for later use.

2. The signer generates k uniform random strings aq,...,a, each of the
same length as the message m. The signer produces 3k encryptions under
the encryption key of PK¢ g: a; = Eng,S(Oéi;’/‘,?), b; = EPngs(Oéi P
m;r}), and ¢; = EPKgS(r?Hril). The signer then sends the public key
PKc, g, and for each ¢, di, a;, bi, c; to the recipient. The signer remembers

r9 7l for later use.

3. The recipient checks that PK¢ g contains a valid signature oy; if not,
the recipient rejects. Otherwise, the recipient sends CH and r, as well
as a signature o on the tuple (m, CH, PKc g, 1, ..., c;) under SK 9.

4. The signer checks validity of the signature op, and checks that e =
Epke (CH;r); if either check fails, the signer aborts. The signer then

sends riCH" for each bit C'H; of the challenge string, to the recipient,
along with a signature o on (m,CH,PK¢ s, PKpg, 01,...,Ck,0R).

5. The recipient checks, for each i such that C H; = 0, that r{ provided by S,
used to encrypt o; under PK¢ g, gives a;. The recipient then checks, for
each i such that CH; = 1, that r} provided by S, used to encrypt a; ©m
under PK¢ g, gives b;. The recipient then checks that the signature o is
a valid one. If all these checks are successful, the recipient accepts and
outputs ¢ along with (m,CH,PK¢,s, PKg, a1, ...,c, 0R), otherwise
the recipient rejects.

4 That is, decryption inverts encryption with probability 1.

® That is, there is a simple check given PK and SK to determine whether SK could
be generated along with PK. It is easy to make any cryptosystem checkable, by
simply including the randomness used in key generation in the secret key.



At this point we pause to make a couple of remarks, which simplify the
task of describing the remaining parts of the scheme. In our scheme, an online-
untransferable signature is a signature ¢ on m, = (m,CH, PK¢c g, PKg, a1,
...,Ck, or). Three things can be checked about ¢ and m, based only on public
information, namely:

1. o should be a valid signature under PKg, and PKg should be specified as
part of the signature o in PK¢ g.

2. The signature o¢ in PK¢ s should be valid.

3. The signature og should be a valid on (m,CH, PK¢ g,04,...,c¢k), checked

with the verifying key PK 5 of PKp.

For simplicity, we say that an online-untransferable signature o is format-
valid if all these checks are passed, and we assume that any of the below methods
halt with an error if given a format-invalid online-untransferable signature.

— Extractg: On input a valid online-untransferable signature o, m, the signer
reveals o* = (a,i,r?,r},e) for an arbitrary i.° Given an invalid online-
untransferable signature, the signer rejects.

— Extracte: On input a format-valid online-untransferable signature o, m,,, the
confirmer decrypts ai,by,...,ax, by under SK¢ g, and finds some 4 such

that Dggre (ai) ® Dgge (bi) = m, and rejects if there is no such i. The
confirmer then finds r{ and 7! by computing Dg Kgs(ci)’ and checks to
see if EPKES(O‘“T?) = a; and EPKg,S(CKi ® m;r}) = b;. If so, the con-
firmer publishes o* = (0,m,,i,rY,r} €). If not, the confirmer publishes
o* = (0,mg,1,€,¢6,SKc g).

— ExVerify: On input a quadruple (o,i,7° 71, SK), we first check that o is
format-valid, and then check that either Epg. ¢ (i;7°) = a; and Epg. o (i
m;rl) = b; or that if this is not the case, that SK is the secret key associated
with PKc s and that DSK(CLZ') &) DSK(bz’) =m.7

— Disavow: On input ¢ an invalid but format-valid untransferable signature,
the confirmer decrypts each ¢; to obtain r? 7!, and checks that for all i,
EPKgﬁs(DSKg)S(ai));r?) =a; and Epgp (DSK(I;:YS (b;));r}) = b;. If so, the

0

confirmer reveals DSKgS(ai)7D§KC (bi),r), and r{ for each 4. If not, but

Dgge (ai) ® Dgge (b;) # m for any i, the confirmer reveals SKE 4. The
recipiént checks that no pair XORs to make m. Then, in the former case, the

recipient checks that the r values properly decommit all of the a; and b;s; in
the latter case, the recipient checks that SKg g is the secret key relating to

PKEg.

5 In order to perform this function, the signer will need to be able to remember, for
each online untransferable signature it issues, what the random strings 79 and r} are
that it used. This can be simplified by generating r? according to a pseudorandom
function with fixed seed and input, say, c.

" For simplicity, we imagine that the decryption key SKc,s includes the randomness
used to generate the key pair (PKc,s, SKc,s), so checking that SK is the secret key
associated with PK¢,s involves regenerating the key pair from the same randomness.



— FakeSign: The recipient first asks the signer to provide PK¢ g, and then

1. Chooses any a1, 1, . .., ak, Bk,

2. Chooses random strings 7,7}, r2 for each 1 <14 < k,

3. Computes a; = Epg, s(i;77), bi = Echys(ﬂ,;;ril), and ¢; = Epk, g

(r¥||r}; r?) for each i,

4. Computes or = Sigg, (m, CH, PK¢ s, 1,a1,b1,c1, ..., a, ax, by, cx),
and sends m, CH, PK¢, s, PKg,or and for each i, oy, 3, a;,b;, ci,r?, 7}, and
72 to the signer. The signer then checks that r?, 7! and r? properly decommit
a;, b, c; to ay, B, and r||r}, respectively, and that for each i, o; ® 3; # m. If
so, the signer produces a signature of (m,CH, PK¢ s, PKgr,o1,...,C;,0R)

and if it is format-valid, sends it to the recipient.
‘We can now state our main result.

Theorem 1. (KeyGeng, KeyGen, KeyGen, Setup, ExVerify, Extractg, Extractc,
Sign, FakeSign, Disavow) is an online-untransferable signature scheme.

Proof. It should be clear that all the algorithms involved in our construction
are efficient, and that our scheme satisfies completeness and non-repudiation.

Soundness: In order for adversary to succeed, the adversary must be able, with
non-negligible probability, make the recipient accept in Sign but output a result
that is not confirmed as valid by the confirmer. Such an adversary must either
make the recipient accept with a oy not produced by the confirmer, or make the
recipient accept with a oy produced by the confirmer, for an invalid signature.
If the former occurs with non-negligible probability, the adversary can be used
in a simple reduction to forge signatures relative to PK¢.

Otherwise, the adversary can make the recipient accept an invalid signature
but with a oo produced by the confirmer, with non-negligible probability.® If
this is the case, note that if the signer sends encrypted pairs for an invalid
signature, there is at most one string CH for which the adversary can send a
satisfactory response in step 4. When the adversary sends its step 2 message,
however, C'H has not yet been revealed. We can therefore use the adversary’s
choice of encrypted pairs to break the security of encryption under PKE.

The reduction is simple: we choose two random messages to distinguish, CH
and CH', and obtain the encryption of one or the other under the key we are to
break. We run the adversary in its attack, using this key as PK 1’% , and generating
all other keys normally. In the sign protocol, we send the challenge ciphertext in
step 1. In step 2, if the adversary responds with PK¢ s that was produced by
the confirmer (so we are aware of SK, g 5); we decrypt all the pairs and determine
if the ultimate signature would be invalid. If the adversary uses an unexpected
PKc g, or if the ultimate signature would be valid, we flip a coin. Otherwise,
we determine if there exists a challenge string CH” for which the adversary
could give an answer in step 4; if so, and CH” = CH, we output 0, otherwise,
we output a random bit. It can be readily verified that a successful adversary
results in a successful attack against PKE.

8 Note that in this case the pairs must be invalid: otherwise, the confirmer would
succeed in extracting a signature, since the confirmer knows SKg, 5-



Unforgeability: Note that any valid untransferable signature or extracted sig-
nature must first be a format-valid signature, and thus, a signature under the
signer’s key. The adversary cannot produce a forgery with an original signature
(i.e. not issued by the signer) except with negligible probability, by the existen-
tial unforgeability of the signature scheme. Similarly, the adversary cannot reuse
a signature issued in FakeSign because such a signature will never be valid. The
remaining case is where the adversary is able to extract a signature obtained via
Sign.

There are two ways this can happen: either the adversary produces and re-
veals SK, g g or it can demonstrate the decryption for both parts of one of the
pairs. If the former happens with non-negligible probability, there are two sub-
cases: either the adversary manages to query Extractc on an input that will
cause SKg’ ¢ to be revealed, or the adversary produces SKg’ g without that
information.

Note that any signature produced by the signer in Sign will not result in the
key being revealed by Extractc. Similarly, a signature produced in FakeSign will
not result in any answer from Extracte since the signature will be invalid. Thus,
if the adversary obtains SK, g g from Extractc, the adversary must have pro-
duced a signature never created by the signer. If this happens with non-negligible
probability, a simple reduction shows that the existential unforgeability of the
signature scheme is violated.

If the adversary outputs SKE g but not via Extractc, we can attack the
encryption scheme under key PKgﬁ g- We can run the adversary in its attack
without knowing SKE g ourselves (and, without ever needing to decrypt with
it); if the adversary can determine the correct SKg’ g in such a circumstance,
we can easily decipher messages.

If the adversary reveals both parts of one of the pairs, we can make a re-
duction to break the security of the encryption scheme. The proof is a hybrid
argument. First we argue that the adversary cannot distinguish between a nor-
mal setting in which for one random instance of the Sign protocol, the adversary
never requests extraction of that signature, and one in which for one random
instance of the Sign protocol, all the ¢; values are encryptions of random values
unrelated to the randomness used in encrypting a; and b;, and the adversary
never requests extraction of that signature. If not, we can distinguish between
the encryption of two random messages.

Given that the adversary cannot distinguish between these two scenarios, we
can make a reduction directly. The reduction works by choosing one instance
of Sign at random, giving encryptions of unrelated random values for all the ¢;,
and choosing one element of one pair at random and substituting an unknown
challenge ciphertext there: either the proper encryption of «; or §;, or a distinct
random value. If the unknown ciphertext encrypts the correct value, the adver-
sary has a non-negligible chance of revealing it, in which case we discover the
value. If the adversary does not reveal the ciphertext we hope for, we simply
output a random guess. The adversary cannot reveal the ciphertext to be other
than it is, so the non-negligible advantage we obtain is not offset at all.



Thus, if the adversary can break unforgeability, he can either break encryp-
tion under PKg’ g or he can forge signatures under PKg.

Online untransferability: We show how a simulator, with the secret information
of the recipient (including the secret decryption key SK g , which is part of
the recipient’s secret key), and working with the signer, can make a transcript
computationally indistinguishable from one obtained in Sign on message m, but
for which the signature is invalid. The simulator works as follows:

1. The simulator initiates FakeSign with the signer and obtains PK¢ s.

2. On input m and e, the simulator decrypts e to obtain C'H. The simula-
tor then generates 2k random strings a,...,ak, 01, ..., 0k such that for
all i, a; & B; # m. The simulator then computes a; and b; as follows: If
CH; = 0 then a; = EPKC%Z,S(OH;T?) and b, = EPKgYS(ﬁi”’z‘l)- If CH, =1
then a; = EPKgﬁs(ﬁi ®@m;r?) and b; = EPngs(ai @® m;r}). The simulator
then generates ¢; = EPKg’S(r?Hril;rf) and sends PK[ g, and for each i,
a;, a;, b;, c; to the dishonest recipient.

3. If the recipient responds with a decommitment of e to the string CH and a
signature og, the simulator checks the decommitment and og, and if they
are both valid, sends m,CH, PK¢ g, PKr,0r, and for each i the values
al, Bl ag, by, ciy ), i r2 to the signer in FakeSign, where if CH; = 0, o) = «;
and 3, = 0;, and where o = 8; ®m and 5] = a; @m if CH; = 1. When the
signer responds with o, the simulator sends the recipient with ric Hi for each
i along with o.

The only distinction between the messages generated by the simulator and
the messages generated in the real signing protocol is that in the simulated
messages, each pair (a;,b;) do not represent encryptions of two plaintexts that
XOR to m, whereas in the real protocol, they do. A simple reduction proves that
distinguishing these transcripts implies the ability to break encryption under
PKg’ g- It should be clear this simulator is efficient.

Offtine untransferability: We show how a simulator, with the ability to rewind
the dishonest recipient, can produce a view indistinguishable from the one the
dishonest recipient produces with the signer in Sign. The simulator works as
follows:

1. Initiate FakeSign with the signer and obtain PK¢ g.

2. Run the Sign protocol honestly until the beginning of step 4. If the recipient
sends an invalid decommitment C'H,r, abort to the recipient, and output
what it outputs.

3. Rewind to step 2 of Sign. Pick new random strings «; for each ¢, and if
CH; = 0 we let 8; # a; ® m be random and let a; = EPKg,s(ai;T?) and

b; = EPKgS(ﬂ,-;ril) and compute ¢; normally. If CH; = 1 we let of # oy

be random and let a; = EPKJCES(O/»'TQ) and b; = Epgz (0 @ m;r}) and

1)
compute ¢; normally. Send PKC%) s and for each i, o, a;, b;, ¢; to the recipient;

remember 70,71, 72 for use later.



4. If the recipient sends back an invalid decommitment, go back to (simulator)
step 3 and try again with new random values. Otherwise, if the recipient
sends a valid decommitment but an invalid signature, abort to the recipient
and output what it outputs. If the recipient sends a valid decommitment
and a valid signature, send m,CH, PK¢ g, PKr,0r, and for each ¢, send
i, Biyai, by, ciy v r}, and r2 to the signer in FakeSign and obtain o. Send o

R

to the recipient and output what it outputs.

The main point, again, is that the adversary should not be able to distinguish
between being given pairs that decrypt to values that XOR to m from being given
pairs that do not, so long as all the decrypted responses are as expected. This
is important for two reasons: first of all, it makes the views computationally
indistinguishable, and second, it guarantees that the simulator runs in expected
polynomial time.

Let p be the probability that the dishonest recipient reveals a proper de-
commitment in step 3 of Sign with the real signer. Since the Simulator does
exactly as the signer does until that decommitment is given, the simulator has a
probability p of producing a recipient output in which a proper decommitment
is given. (Note that if one is given, the simulator will continue to try its steps
3 and 4 until the recipient decommits properly in one of them. Given this as a
precondition, the outputs are computationally indistinguishable, since the only
difference is whether the pairs decrypt properly or not.

With probability 1 — p, the signer (or the simulator) encounters an invalid
decommitment from the recipient. Given this as a precondition, the outputs are
identical, since the simulator and signer act exactly the same.

It only remains to prove that the simulator runs in expected polynomial
time. We can consider the probability p" that the recipient decommits prop-
erly when interacting with the signer, and the probability p' that the recipient
decommits properly when interacting with the simulator’s further attempts. If
it is likely that an e is chosen such that p° is significantly larger than p!, this
leads directly to an attack on the encryption system. If not, then for all e with-
out this property, the expected number of attempts taken by the simulator is

(0] (0]
14 ZII“ =1+ pg"e‘;u < 2. The probability that an e is chosen without this prop-

erty is negligible; therefore, with all but negligible probability, the simulator runs
in expected polynomial time.

4 Analysis

4.1 Efficiency and assumptions

In our Sign protocol, the signer must compute 3k encryptions and a signature,
and must check a signature and an encryption. The recipient must check k en-
cryptions and a signature, and produce one encryption and two signatures. Thus,
each party computes O(k) cryptographic operations. The signing protocol is four
rounds. In our Disavow protocol, each party must compute a similar amount but



the protocol is non-interactive, and we have no need for Verify protocols. The
remaining protocols are similarly efficient but less important.

Only the schemes of Camenisch and Shoup [6] and Gentry, Molnar, and
Ramzan [15] attain a confirmation protocol with O(1) operations but both of
those results were based on specific computational assumptions, and all prior
schemes require at least O(k) operations for disavowal.

The security of our scheme is based on the security of (1) the underlying
signature scheme, and (2) the underlying encryption scheme. These assumptions
are minimal, as such a scheme obviously implies signatures, and it is known the
designated confirmer signatures imply public-key encryption [22].

4.2 Model and variants

In addition, we make an assumption for the online security case that the recip-
ient knows SKpg. The most natural way to ensure this assumption is to force
the recipient to prove knowledge of SK i when key registration takes place. This
simplifies things significantly, because then the simulator for offline untrans-
ferability can extract the secret key, so online untransferability implies offline
untransferability. However, requiring proofs of knowledge at key registration is
burdensome.

The other way to deal with this assumption is to not require a proof of
knowledge but simply to assume the recipient knows their own key. This is
fairly reasonable, since we imagine “piggybacking” on an already existing PKI,
in which the recipient probably already needs to know his or her key. In this
scenario, we still guarantee online untransferability for any recipient that is hon-
est during key registration (this reflects the likely case in the job offer scenario:
Berkeley may believe that Alice was honest initially, although she might have
become tempted later on.) Recipients that are dishonest during key registration
may circumvent this, but as we show, this still does not allow them to perform
offline transfer attacks.

The recipient’s signature key does not serve the most important function. It
is used to sign og, which exists to satisfy the recipient should they ever want
to reconfirm an online-untransferable signature without extracting it, a prop-
erty that prior schemes have. If this requirement is unnecessary, the recipient’s
signature key can be dropped entirely.

For simplicity of presentation, we assume that the confirmer generates a
separate encryption key for each signer. This may be objectionable, as it increases
the interaction necessary for the scheme to proceed. However, if we are willing
to assume the existence of identity-based encryption schemes, we can do away
with the extra step. Instead, then, PK < will be a master key for an IBE scheme,
and PKg) g will be defined as the public key associated with identity S. By
the security properties of IBE schemes, the encryption remains secure for other
identities, even when the secret keys for certain identities are revealed (thus, one
dishonest signer will not “ruin” the security for any honest signer).

Finally, it may seem to be a drawback of our scheme that the signer must be
willing to engage in the FakeSign protocol on request. This does put a potential



burden on the signer, but the ability of others to engage in the FakeSign protocol
with the signer is only useful in the proofs of security: thus, offering this service
will have little drawback, and will ensure untransferability.

5 Conclusion

Designated confirmer signatures were designed to be a solution that balances
untransferability of signatures with accountability of the signer. Much of the
work done on designated confirmer signatures was concerned with enhancing
its efficiency and reducing the assumptions involved. However, even the original
definitions were somewhat lacking in terms of online transferability. Fortunately,
the notion of public keys comes to our rescue: by assuming the existence of
an established public key, we can push the window of opportunity for collusion
between the recipient and the third party back in time: now, instead of colluding
only during the actual signature protocol, they must have been colluding ever
since the recipient’s key was registered.

We have shown how to attain this level of online untransferability, while at
the same time giving a protocol that is efficient, does not rely on the random
oracle assumption, and uses general cryptographic assumptions.

We wish to thank Jens Groth, David Molnar, and the anonymous reviewers
for their valuable input.
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