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Abstract. This article introduces a new Combined Attack on a CRT-
RSA implementation resistant against Side-Channel Analysis and Fault
Injection attacks. Such implementations prevent the attacker from ob-
taining the signature when a fault has been induced during the compu-
tation. Indeed, such a value would allow the attacker to recover the RSA
private key by computing the gcd of the public modulus and the faulty
signature. The principle of our attack is to inject a fault during the sig-
nature computation and to perform a Side-Channel Analysis targeting
a sensitive value processed during the Fault Injection countermeasure
execution. The resulting information is then used to factorize the public
modulus, leading to the disclosure of the whole RSA private key. After
presenting a detailed account of our attack, we explain how its complex-
ity can be significantly reduced by using lattice reduction techniques.
We also provide simulations that confirm the efficiency of our attack as
well as two different countermeasures having a very small impact on the
performance of the algorithm. As it performs a Side-Channel Analysis
during a Fault Injection countermeasure to retrieve the secret value, this
article recalls the need for Fault Injection and Side-Channel Analysis
countermeasures as monolithic implementations.

Keywords: CRT-RSA, Combined Attacks, Fault Injection, Side-
Channel Analysis, Coppersmith’s methods.

1 Introduction

Since the seminal work of Kocher published in 1996 [1], Side-Channel Analysis
(SCA) has raised a huge interest in both academic and industrial communities.



This kind of attack is based on the fact that side-channel leakages of embedded
devices contain information on the values manipulated inside the device. There-
fore any sensitive variable carelessly used can be recovered by an attacker using
SCA. Originally, time execution was used as side-channel leakage but the ex-
ploitation of power consumption and electromagnetic radiation became quickly
the most efficient way to attack embedded cryptography [2, 3]. Over the years,
many improvements have been made leading to very efficient attacks and very
ingenious countermeasures [4].

In parallel to SCA, Fault Injection (FI) provides the attacker with another
way to attack embedded devices. Such attacks aim at disturbing cryptographic
computations and the analysis of corresponding faulty outputs allows the at-
tacker to recover the secret key [5]. Shortly after the original publication focusing
on RSA implementation [6], many other articles have been published to present
FI attacks on various cryptosystems such as DES, ElGamal or DSA signature
schemes [7,8]. As for SCA, FI has been deeply studied over the last decade [9] and
the consequences of both attacks on the industry are huge since secure products
must now be certified to prove their resistance against such threats.

Over the last few years, the cryptographic community has investigated the
possibility of combining the two previous kinds of attacks. This has resulted in
a new class of attacks called Combined Attacks (CA) that can defeat implemen-
tations which are meant to resist both SCA and FI. However, as far as we know
only four CA have been published since their introduction in 2007, proving the
difficulty to conceive such attacks [10–13].

Nowadays, most embedded devices implement a large variety of cryptosys-
tems to ensure the security of the sensitive assets they contain. As well as being
the first practical public-key cryptosystem published, RSA [14] has also been
the most widely used for many years. In particular, the RSA using the Chinese
Remainder Theorem (CRT), providing a speed-up factor of four compared to
the original implementation, is available on most ID, banking and mobile smart
cards. Obviously, this cryptosystem has been the main target of SCA and FI
attackers leading to the development of efficient countermeasures having the
smallest impact on both memory consumption and time execution due to the
constraints of embedded environment.

In this article, we describe a new Combined Attack against a CRT-RSA
implementation resistant to SCA by using blinding countermeasures and pro-
tected against FI by verifying the signature using the public exponent. Such an
implementation is known to resist each and every kind of attack published so
far. However, we demonstrate that when injecting a fault during the signature
computation, a value depending on the message and on a multiple of a secret
prime is manipulated in plain during the public verification. Therefore, we no-
tice that one can use SCA to gain some information on such a sensitive value.
The recovered information can then be used to factorize the RSA modulus and
thus to reveal the whole private key. Besides, we exploit lattice techniques, and
in particular Coppersmith’s methods for finding small solutions to polynomial
equations [15,16], to significantly reduce the complexity of our CA.
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The rest of this paper is organised as follows. In Section 2 we briefly recall
some basics on CRT-RSA signature as well as the corresponding attacks and
countermeasures. In Section 3 we describe our new CA on a CRT-RSA imple-
mentation that is known to resist both SCA and FI attacks. In Section 4 we
present the results of our simulations which prove the efficiency of our new at-
tack. We then improve its complexity by using lattice reduction techniques in
Section 5. Finally, we suggest in Section 6 possible countermeasures having a
negligible penalty on the performance of the algorithm.

2 Previous Works

In this section we briefly recall the RSA signature, in particular the CRT mode.
Secondly we present the principal attacks on such an algorithm as well as the
main countermeasures.

2.1 RSA on Embedded Systems

Since its introduction in 1978, the RSA cryptosystem has become one of the most
used public-key cryptosystems, especially in electronic signature schemes [14].
In the following we briefly recall how to compute the RSA signature in both
standard and CRT modes.

Let N denote the public modulus being the product of two secret large prime
integers p and q. Let d refer to the private exponent and e refer to the public
exponent satisfying de = 1 mod ϕ(N), where ϕ denotes Euler’s totient function.
The RSA signature of a message m ∈ ZN is then obtained by computing S =
md mod N . To verify the signature, one computes Se mod N and checks if the
corresponding result is equal to m.

In embedded systems, most RSA implementations use the Chinese Remain-
der Theorem (CRT) which yields an expected speed-up factor of four [17]. Fol-
lowing the CRT-RSA algorithm, the signature generation is composed of two
exponentiations Sp = mdp mod p and Sq = mdq mod q, where dp = d mod p− 1
and dq = d mod q − 1. The signature is then obtained by recombining Sp and
Sq, which is usually done by using Garner’s formula [18]:

S = CRT (Sp, Sq) = Sq + q(iq(Sp − Sq) mod p) , (1)

where iq = q−1 mod p.

2.2 Attacks and Countermeasures

Side-Channel Analysis Side-Channel Analysis (SCA) has been introduced
by the publication of the so-called timing attacks in 1996 [1]. SCA exploits the
dependency between the manipulated data or the executed instruction and the
side-channel leakages which can be monitored during the algorithm execution.
Examples of such leakages are the power consumption or the electromagnetic
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radiation of the device. When only one measure is required to exploit sensitive
information, the attack is called Simple Passive Analysis (SPA) [2]. In the case of
a straightforward Square-and-Multiply exponentiation, SPA consists for instance
in observing if the squaring and multiplication operations have different patterns
in the corresponding side-channel leakages [2]. Hence, the secret exponent can
be directly extracted from one measurement. In the literature, a common coun-
termeasures consists in using a so-called regular algorithm which performs the
same operation whatever the exponent bit value such as the Square-Always or
Montgomery ladder algorithms [19,20].

Moreover, attacks based on side-channel leakages have evolved to a type of
SCA called Differential Passive Analysis (DPA) [2] which requires a large number
of measurements. This type of attack applies a statistical treatment on the curves
to recover information on the manipulated values.Nowadays a common statistic
tool used to perform such a statistical treatment, is the Pearson correlation
coefficient:

ρk =
cov(L, H)
σLσH

, (2)

where L is the set of curves and H depends on a known value m and on a guess
of a small part of a secret k. Such an attack is called Correlation Power Analysis
(CPA) [21]. In the literature, many different CPAs have been published to attack
the RSA cryptosystem [22]. For instance in the CRT-mode, an attacker can
mount a CPA to recover the private parameter q during the CRT-recombination,
cf. Rel. (1), by observing the leakage obtained during the manipulation of the
value iq(Sp − Sq) mod p and by making a guess on a few bits of q. Hence, an
attacker can obtain the whole secret q by performing a CPA for each of its
subpart (typically for each byte). However, half of q is sufficient to recover the
rest of q by using Coppersmith’s attack [23]. Classical countermeasures to resist
CPA consist in randomizing the modulus, the message and the exponent [22].

Fault Injection RSA has been the first cryptosystem to succumb to Fault
Injection [24]. In the following, we describe such an attack in the CRT case.
Assume that a fault is injected during the computation of Sp leading to a faulty
signature S̃. Since S ≡ Sp mod p and S ≡ Sq mod q, one can notice that S̃ ≡
S mod q but S̃ 6≡ S mod p. Therefore, the secret parameter q can be easily
recovered by computing the gcd of S− S̃ and N . The rest of the private key can
then be straightforwardly deduced.

When it is not possible to sign the same message twice and if the message is
known to the attacker, a variant of this attack consists in computing the gcd of
S̃e −m and N to obtain the secret value q [25].

Moreover, the effect of fault injections on CRT-RSA is not limited to the
disturbance of Sp or Sq. Indeed, a fault injected in any part of the key parameters
(i.e. p, q, dp, dq or iq), in the message m at the beginning of either Sp or Sq

computation, or even during the CRT-recombination can lead to a useful faulty
signature.
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In the literature, four different fault models are generally considered to define
the attacker’s capabilities [26]:

– the random fault model: the bits are changed to a uniformly distributed
random value;

– the bit-flip fault model: in that case, affected bits are flipped to their com-
plementary value;

– the stuck-at fault model: the fault sets the bits to 0 or to 1, depending on
the underlying hardware;

– the unknown constant fault model: the fault always sets the bits to the same
unknown value.

Moreover, these faults do not necessarily modify a whole temporary result. In-
deed, it is generally considered that the number of bits affected by the fault is
linked to the CPU word-size which is generally 8, 16 or 32 bits.

The most natural way to counteract fault injection on RSA-type signature
is to check the correctness of the signature S before outputting it [24]. More
precisely, the signature is returned iff Se mod N = m. Moreover, such a method
requires very little overhead since the public exponent e is usually small in prac-
tice (typically 3, 17 or 216 + 1).

Other methods getting rid of e have also been proposed but they do not
offer the same level of security and are generally slower than the public verifica-
tion [27–29].

Combined Attacks The idea to combine SCA and FI appeared in 2007 when
Amiel et al. proposed a so-called Combined Attack (CA) on an RSA implemen-
tation protected against FI and SPA [10]. They noticed that by setting to zero
one of the temporary registers used in the Montgomery ladder, its structure be-
comes unbalanced, revealing the value of the secret exponent by SPA. Following
this publication, three other papers have been published taking advantage of this
new way of defeating embedded security. Two of them present a CA against a
secured AES implementation [12,13]. The third one focuses on the elliptic curve
scalar multiplication [11].

Despite its theoretical effectiveness, the combination of SCA and FI is very
difficult in practice, explaining the lack of practical experiments in the current
literature.

Lattices Randomized RSA encoding schemes are usually considered to be re-
sistant to traditional FI attacks since a part of the message is unknown to the
attacker and varies for each signature computation. However this common as-
sumption has to be mitigated regarding the works of [30] and [31] which de-
feat two randomised RSA encoding schemes. These attacks use Coppersmiths
method to solve a bivariate polynomial whose coefficients are built thanks to the
generated faulty signatures.
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More recently in [32], the authors present an attack taking advantage of the
disturbance of the public modulus. The generated faulty signatures allow them
to build a lattice, which in turns leads to factorize the public modulus.

Although [30], [31] and [32] also apply lattice reduction techniques as carried
out in this paper, the attack presented hereafter does not share the same con-
text since we consider a secured implementation which never returns the faulty
signature.

3 A New Combined Attack on CRT-RSA

3.1 Context and Principle

As stated in Section 2, several countermeasures have been developed to pro-
tect CRT-RSA embedded implementations against both SCA and FI. In the
framework of this article, we consider an algorithm protected:

– against SCA by using message and exponent blinding as suggested in [33],
a regular exponentiation algorithm such as the Square Always [20] and a
mask refreshing method along the exponentiation such as the one presented
in [34]. Moreover, the blinding is kept all along the CRT-recombination.

– against FI by verifying the signature using the public exponent e [24]. In
addition, we also use the approach presented in [35] which mainly consists in
checking the result of the verification twice to counteract double FI attacks.

Fig. 1 depicts the main steps of such an implementation where the ki’s are
random values (typically of 64 bits) generated at each execution of the algorithm
and S′p, S

′
q and S′ represent the blinded version of Sp, Sq and S respectively.

In the following, we assume that the fault injected by the attacker follows
either the bit-fault, the stuck-at or the unknown constant fault models (cf. Sec-
tion 2.2). Moreover, we assume the attacker is able to choose which byte of the
message is affected by the fault.

As mentioned in Section 2.2, injecting a fault during the signature compu-
tation leads to a faulty signature that allows the attacker to recover the private
key. However in the implementation considered in this paper, the verification
with the public exponent detects such a disturbance and the faulty signature is
never revealed to the attacker. The main contribution of this paper is to show
that in this case, an SCA can still allow the attacker to gain enough information
on the faulty signature to recover the private key.

At first glance, it seems impossible to perform such an attack during the
signature process due to the blinding countermeasure. However by observing
Fig. 1, one may note that the faulty signature S̃ remains blinded until the end
of exponentiation with e modulo N . Therefore if we can express S̃e mod N in
terms of the message m and of the private key then we can perform an SCA on
this value. In the next section, we exhibit such a relation allowing us to mount
a CA on an SCA-FI-resistant CRT-RSA implementation.
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False True

Return S′ mod N

S′e mod N
?
= m

S′ mod k4N

SCA-resistant CRT-recombination

S′q mod k3qS′p mod k1p

SCA-resistant expo SCA-resistant expo

m+ k2q mod k3qm+ k0p mod k1p

Blinding Blinding

m

Security action

Fig. 1. Main steps of a CRT-RSA implementation secure against SCA and FI.

3.2 A Useful Relation

Proposition 1. If a fault ε is induced in m such that the faulty message m̃ is
equal to m+ ε at the very beginning of the computation of Sp then

S̃e ≡ m+ εqiq mod N , (3)

where S̃ corresponds to the faulty signature.

Proof. By definition of the CRT-RSA signature, we have:{
S̃ ≡ (m+ ε)d mod p
S̃ ≡ md mod q

(4)

It comes then straightforwardly that:{
S̃e ≡ m+ ε mod p
S̃e ≡ m mod q

(5)
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Finally, applying Gauss recombination to (5) leads to (3) since:

S̃e ≡ pipm+ qiq(m+ ε) mod N (6)
≡ (pipm+ qiqm) + εqiq mod N (7)
≡ m+ εqiq mod N , (8)

where ip = p−1 mod q. ut

One may note that a similar relation holds if m is disturbed at the very
beginning of Sq computation due to the symmetrical roles of p and q in both
branches of the CRT-RSA. For the sake of simplicity, we will use the case where
Sp computation is disturbed in the rest of this paper.

3.3 Recovering the Private Key

Following the attack’s principle depicted in Section 3.1 and using Proposition 1,
we will now present in detail the main steps of our attack.

Firstly, the attacker asks the embedded device to sign several messages mi

through a CRT-RSA implemented as described in Section 3.1. For each signature,
the computation of Sq is performed correctly and a constant additive error ε is
injected on the messagemi at the beginning of each Sp computation. Then during
each signature verification, the attacker monitors the corresponding side-channel
leakage Li which represents the manipulation of S̃e

i mod N .
From Proposition 1, we know that there exists a sensitive value k satisfying

the relation S̃e
i mod N = mi + k. Therefore, the attacker will perform a CPA

to recover this sensitive value by computing ρk(mi + k,Li) for all the possible
values of k (cf. Section 2.2).

Depending on the set {(mi, S̃
e
i mod N)}i, it follows from Rel. (3) that k will

be equal either to εqiq mod N or to εqiq mod N − N . Therefore, the value k̂
producing the strongest correlation at the end of the CPA will be one of these
two values. Once k̂ recovered, the attacker must then compute the gcd between
k̂ and N , which leads to the disclosure of q. From this value, the private key is
straightforwardly computed.

Regarding the practicality of our fault model (i.e. a constant additive fault),
one may note that by fixing a small part of the message (e.g. a byte), the distur-
bance of such a part in either the stuck-at, the bit-flip or the unknown constant
fault model results in a constant additive error during the different signature
computations. Therefore our fault model is definitely valid if the attacker can
choose the messages to sign, or even if she can only have the knowledge of the
messages and attack only those with a given common part.

Finally, one may note that it is not possible to perform a statistical attack
targeting the full value of k at once due to its large size (i.e. dlog2(N)e bits).
However, one can attack each subpart of this value, for instance by attacking byte
per byte starting with the least significant one in order to be able to propagate
easily the carry. It is worth noticing that CPA only applies when the correspond-
ing part of the message varies. Therefore, if the attacker fixes the MSB of the
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message, then the corresponding set of measurements can be used to recover the
whole but last byte of k̂. In such a case, a brute force search can be used to
recover the missing byte.

In the next section, we present simulations of our attack which prove the
efficiency of our method and which are based on the attacker’s capability to
inject the same fault and on the noise of the side-channel measurements.

4 Experiments

The success of the attack presented in Section 3 relies on the ability of the
attacker to both measure the side-channel leakage of the system during the
signature verification and induce the same fault ε on the different manipulated
messages.

In order to evaluate the effectiveness of this attack, we have experimented
it on simulated curves of the side-channel leakage L, according to the following
leakage model:

L(d) = HW (d) +N (µ, σ) (9)

with N (µ, σ) a Gaussian noise of mean µ and standard deviation σ, and HW (d)
the Hamming weight function evaluated for the manipulated data d. In the
framework of our experiments, we consider that the processor manipulates 8-bit
words and we use three different levels of noise, namely σ = 0.1, 1 and 5.

As well as the side-channel leakage, the faults were also simulated by setting
the most significant word of the message m to all-0 at the very beginning of the
Sp computation. These faults were induced with a given success rate r, varying
in our different experiment campaigns (namely 50%, 10% and 1%).

Depending on the experimental settings, all the different words of the secret
value will be equivalently correlated with the simulated curves. The graphs pre-
sented in Fig. 2 present the convergence of the correlation for each possible value
k of one particular byte (the 5th least-significant byte) of the secret depending
on the number of side-channel measurements with different simulation settings
σ and r.

As exposed in Fig. 2, the number of traces required to recover the secret
value depends essentially on the fault injection success rate. This comes from
the fact that every wrongly-faulted computation can be considered as noise in
the scope of our statistical analysis. The number of curves required to retrieve
the secret word grows as the fault injection success rate decreases and to a fewer
extent as the noise of the side-channel leakage increases.

With regards to the results obtained when σ = 5 and r = 10%, which appear
to be plausible values in practice, it took us 3.35 seconds to retrieve one byte of
the secret value by performing the CPA on 15, 000 curves of 128 points each4.
Assuming a genuine curve should be made of at least 5, 000 points, we can
estimate the time required to practically perform the attack to about 1 minute
4 The execution time given here and in Section 5.2 have been obtained on a 32-bit

CPU @3.2GHz
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Fig. 2. Convergence of the correlation for the 256 possible values ki for the secret
(the correct one being depicted in black) depending on the number of side-channel
measurements (×500) for different levels of noise σ and fault injection success rates r.

5 seconds per byte. That is to say, it takes about 2 hours 20 minutes to recover
the complete secret value if we consider a 1024-bit RSA module.

For the sake of clarity, we restrained the experiments presented here to the
case where the processor manipulates 8-bit words, and thus ε is an 8-bit error.
The same experiments have been run for processor word-size up to 32 bits with
success. Besides, about the same number of curves were necessary for the CPA
to highlight the correct secret byte.

Section 5 shows how it is possible to considerably reduce the complexity of
our attack thanks to the use of lattice techniques.

5 Reducing the Attack Complexity Using Coppersmith’s
Methods

This section aims at improving the attack complexity using Coppersmith’s meth-
ods. It is in line with the problem of factorizing N knowing half part of prime p
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(or q), that was solved in [16]. With respect to our case, we highlight that if the
CA presented in Section 3 provides about half of the secret εqiq mod N , then
the other half part can be straightforwardly computed by solving a well-designed
modular polynomial equation that we elaborate in the sequel. Besides, we deal
with two cases (ε known and unknown), depending on the fault model that is
considered.

5.1 Bringing Up the Original Problem to Solving a Modular
Equation

Suppose we are given the t least significant bits (LSB) of the secret εqiq mod N .
The latter value can be rewritten as follows:

εqiq ≡ 2tx0 + k mod N , (10)

where t and k are known values, and x0 is the dlog2(N)− te-bit unknown integer
that is to be recovered.

Lemma 1. The unknown secret part x0 is solution of the polynomial Pε(x):

Pε(x) = x2 + c (2t+1k − 2tε) x+ c (k2 − kε) ≡ 0 mod N , (11)

where c = (22t)−1 mod N , k, t, N are known, and ε is the induced fault.

Proof. The Bézout identity applied to our context yields that primes p and q
interrelate with integers ip = p−1 mod q and iq = q−1 mod p by the following
relation:

pip + qiq ≡ 1 mod N . (12)

Multiplying (12) by ε leads to the relation εpip+εqiq ≡ ε mod N , or equivalently
to εpip ≡ ε−εqiq mod N . Therefore, replacing εqiq using (10) allows us to deduce
an equivalence for εpip:

εpip ≡ ε− 2tx0 − k mod N . (13)

As N = pq, we then multiply (10) by (13), to get the relation:

εqiq · εpip ≡ (2tx0 + k) · (ε− 2tx0 − k) ≡ 0 mod N . (14)

Eventually, developing the right-hand side of (14), and multiplying it by c =
(22t)−1 mod N leads to the obtention of the monic polynomial Pε(x). ut

The initial problem of retrieving the unknown part of εqiq mod N is thereby
altered in solving the modular polynomial equation (11). In the sequel, we deal
with two possible cases regarding ε, whether it is known to the adversary or
not.
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Case 1. The fault ε is known to the adversary

This case corresponds to the bit-flip and stuck-at fault models (Section 2.2)
since the message is known to the attacker and the fault location can be chosen.
In both cases, since the fault ε is known, the problem is reduced to solving a
univariate modular polynomial equation, cf. Rel. ((11)). This problem is known
to be hard. However, when the integer solution x is small, Coppersmith showed
[23] that it can be retrieved using the well-known LLL algorithm. Accordingly,
we induce the following proposition:

Proposition 2. Given N = pq and the low order 1/2 log2(N) bits of εqiq mod
N and assuming ε is known, one can recover in time polynomial in (log2(N), d)
the factorization of N .

Proof. From Coppersmith’s Theorem [16], we know that, given a monic polyno-
mial P (x) of degree d, modulo an integer N of unknown factorization, and an
upper bound X on the desired solution x0, one can find in polynomial time all
integers x0 such that

P (x0) ≡ 0 mod N and |X| < N1/d . (15)

In our case we have d = 2, and since x0 is a dlog2(N) − te-bit integer, we
know that |x0| < X = 2dlog2(N)−te . Thus, the condition in (15) becomes
2dlog2(N)−te < N1/2 , i.e.

t >
1
2

log2(N) . (16)

Therefore, knowing at least half part of the secret εqiq mod N allows to recover
the whole secret. As previously done, computing gcd(εqiq mod N,N) provides
the factorization of N . ut

Note that the method is deterministic, and as will be seen further (Table 1), it
is reasonably fast.

Case 2. The fault ε is unknown to the adversary

This case is met in the unknown constant fault model (Section 2.2). In such
a case, one can consider the polynomial Pε(x) as a bivariate modular polyno-
mial equation with unknown values x and ε. This specific scheme has also been
studied by Coppersmith and includes an additional difficulty of algebraic depen-
dency of vectors which induces the heuristic characteristic of the method [15]. As
depicted in Section 5.2, in our experiments nearly 100% of the tests verified the
favorable property of independency. Accordingly, in this vast majority of cases,
the following proposition holds:

Proposition 3. Under an hypothesis of independency (see discussion above),
given N = pq and the low order 1/2 log2(N) + s bits of εqiq mod N , where s
denotes the bitsize of ε, and assuming ε is unknown, one can recover in time
polynomial in (log2(N), d) the factorization of N .
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Proof. Coppersmith’s Theorem for the bivariate modular case [15] notifies that
given a polynomial P (x, ε) of total degree d, modulo an integer N of unknown
factorization, and upper bounds X and E on the desired solutions x0, ε0, it may
be possible (heuristic) to find in polynomial time all integer couples (x0, ε0) such
that

P (x0, ε0) ≡ 0 mod N and |X · E| < N1/d . (17)

In our case, we have d = 2 and E = 2s. The integer x0 is dlog2(N) − te-bit
long, therefore we have X = 2dlog2(N)−te. Thus, the condition in (17) becomes
2dlog2(N)−te · 2s < N1/2 , i.e.

t >
1
2

log2(N) + s . (18)

This means that knowing s more bits of the secret εqiq mod N than before,
would allow the recovering of the whole secret. ut

Remark 1. The bound of success in Proposition 3 can actually be slightly im-
proved using results of [36]. Indeed, Coppersmith’s bound applies to polynomials
whose monomials shape is rectangular, while in our case the monomial ε2 does
not appear in P (x, ε) which corresponds to what they called an extended rectan-
gle in [36]. For the sake of simplicity, we only mentioned Coppersmith’s bound
since practical results are similar.

5.2 Results From Our Implementation

We have implemented this lattice-based improvement using Magma Software
[37], with N a 1024-bit integer i.e. 128 bytes long, in the cases where ε is an 8-
bit known value (for Case 1) and a 32-bit unknown value (for Case 2). We chose
Howgrave-Graham’s method [38] for the univariate case, and its generalization
by Jochemsz et al. [39] for the bivariate case since both have the same bound of
success as Coppersmith’s method (sometimes even better for [39]) and they are
easier to implement. As we know, the theoretical bound given in Coppersmith’s
method is only asymptotic [16]. Thus, we report in Table 1 (for Case 1) and in
Table 2 (for Case 2) the size t (in bytes) of the secret εqiq mod N that is known
to the attacker before applying Coppersmith’s method, the lattice dimension
used to solve (11) and finally the timings of our attack.

As depicted in Table 1, and combining these results with the experiments of
Section 4, the best trade-off is to perform a CPA on the 66 first bytes, taking
66×1m05s = 1h11m30s, and to retrieve the 62 remaining bytes using lattices in
34.25s, bringing the total time up to 1 hour 12 minutes, instead of the previous
2 hours 20 minutes.
In order to illustrate Case 2, we have chosen to rather show our results for
ε being a 32-bit value, since when ε is 8-bit long, we obtained slightly better
results by considering the 255 possible values of the variable ε together with
their corresponding polynomials Pε(x), and by running the method on each of
the polynomials until finding the solution x0 that allows to factorize N. This
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Table 1. Size t required (in bytes) for the method to work and timings (Magma V2.17-
1), as a function of the lattice dimension in Case 1 (ε known, being an 8-bit integer).

Size t required
86 72 70 69 68 67 66 65 64

(bytes)

Dimension of
3 9 11 15 17 23 37 73 Theoretical

the lattice
Time for LLL

< 0.01 0.03 0.07 0.29 0.52 2.63 34.25 2587.7 bound
(seconds)

Table 2. Size t required (in bytes) for the method to work and timings (Magma V2.17-
1), as a function of the lattice dimension in Case 2 (ε unknown, being a 32-bit integer).

Size t required
86 78 76 74 73 72 71 70 69

(bytes)

Dimension of
5 12 22 35 51 70 117 201 Theoretical

the lattice
Time for LLL

< 0.01 0.02 0.16 1.17 5.88 30.22 605.9 12071.1 bound
(seconds)

indeed leads to a best trade-off of 70 bytes required from the CPA and the
58 remaining bytes computed with lattices by performing 255 times the LLL
algorithm in the worst case, for a total of 68× 1m05s+ 255× 0.52s, i.e. 1 hour
16 minutes instead of 2 hours 20 minutes. Besides, this exhaustive search can be
performed in parallel and it also has the advantage to be deterministic.
However, when ε is 32-bit long, an exhaustive search becomes impractical and,
as depicted in Table 2, the best trade-off would be to perform a CPA on 72 bytes
and to compute the 56 remaining bytes with lattices (even if heuristic, it worked
in nearly 100% of the tests in practice), resulting in a total of 72×1m05s+30.22s,
i.e. 1 hour 18 minutes instead of the previous 2 hours 20 minutes.

6 Countermeasures

In this section, we describe different countermeasures to protect an implemen-
tation against the CA presented in Section 3.

6.1 Blind Before Splitting

Our first proposition consists in avoiding the possibility to inject the same fault
during several signature computations. To do so, we deport the blinding of the
input message m before executing the two exponentiations modulo p and q:

m′ = m+ k0N mod k1N , (19)
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with k0 and k1 two n-bit random values generated at each algorithm execution
(n being typically 64). Hence S′p = m′dp mod k2p and S′q = m′dq mod k3q.

This countermeasure prevents an attacker from injecting always the same
error during the signature computation. Indeed if the fault is injected on m at
the very beginning of one exponentiation, then the corresponding error cannot
be fixed due to the blinding injected by Rel. (19).

Moreover, if the fault is injected when the message m is manipulated during
(19), then the error ε impacts the computation of both S′p and S′q, leading to
inexploitable faulty outputs.

Such a countermeasure induces a small overhead in terms of memory space
since m′ must be kept in memory during the first exponentiation but the execu-
tion time remains the same.

6.2 Verification Blinding

Our second countermeasure aims at annihilating the second hypothesis of our
attack: a predictive variable is manipulated in plain during the verification. To
do so, we inject a dlog2(N)e-bit random r before performing the final reduction
with N , cf. Rel. (20). Therefore, each and every variable manipulated during the
verification is blinded.

((S̃e + r −m) mod k1N) mod N ?= r . (20)

One may note that the final comparison should be performed securely with
regards to the attack described in [40] since information on εqiq could leak if
such a comparison was performed through a substraction.

The cost of such a countermeasure is negligible since it mainly consists in
generating a dlog2(N)e-bit random variable.

7 Conclusion

This paper introduces a new Combined Attack on CRT-RSA. Even if a secure
implementation does not return the faulty signature when the computation is
disturbed, we show how to combine FI with SCA during the verification pro-
cess to obtain information on the faulty signature. Such information allows us
to factorize the public modulus and thus to recover the whole private key. We
also show that Coppersmith’s methods to solve univariate and bivariate modu-
lar polynomial equations can be used to significantly reduce the complexity of
our new attack. Finally, we provide simulations to confirm the efficiency of our
method and we present two countermeasures which have a very small penalty
on the performance of the algorithm.

Our main objective was to prove that stacking several countermeasures does
not provide global security despite addressing each and every attack separately.
Therefore, the main consequence of this paper is that fault injection counter-
measures must also be designed to resist SCA and vice versa.
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