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Abstract. Verifiably encrypted signatures (VES) are signatures encrypted
by a public key of a trusted third party and we can verify their validity
without decryption. This paper proposes a new VES scheme which is
secure under the decisional linear (DLIN) assumption in the standard
model. We also propose new obfuscators for encrypted signatures (ES)
and encrypted VES (EVES) which are secure under the DLIN assump-
tion.
All previous efficient VES schemes in the standard model are either
secure under standard assumptions (such as the computational Diffie-
Hellman assumption) with large verification (or secret) keys or secure
under (non-standard) dynamic q-type assumptions (such as the q-strong
Diffie-Hellman extraction assumption) with short verification keys. Our
construction is the first efficient VES scheme with short verification (and
secret) keys secure under a standard assumption (DLIN).
As by-products of our VES scheme, we construct new obfuscators for
ES/EVES based on our new VES scheme. They are more efficient than
previous obfuscators with respect to the public key size. Previous ob-
fuscators for EVES are secure under non-standard assumption and use
zero-knowledge (ZK) proof systems and Fiat-Shamir heuristics to obtain
non-interactive ZK, i.e., its security is considered in the random oracle
model. Thus, our construction also has an advantage with respect to as-
sumptions and security models. Our new obfuscator for ES is obtained
from our new obfuscator for EVES.

keywords: verifiably encrypted signature, obfuscation, encrypted verifi-
ably encrypted signature, decisional linear assumption

1 Introduction

1.1 Background

In verifiably encrypted signature (VES) schemes, there are a signer, veri-
fiers, and a trusted third party, called the adjudicator. The signer generates



a signature, encrypts it under the public key of the adjudicator, and adds
extra contents to make it verifiable without decryption. The adjudica-
tor can recover ordinary signatures from encrypted ones by using his/her
decryption key.

VES was introduced by Asokan, Shoup, and Waidner [2] and Boneh,
Gentry, Lynn, and Shacham proposed an efficient (non-interactive) VES
scheme based on Boneh-Lynn-Shacham signature scheme in the random
oracle model (ROM) [8, 9]. VES has useful and important applications
such as online contract signing and optimistic fair exchange [2, 3]. Sup-
pose a situation that a user, say Alice, wants to buy digital goods from a
company online. Alice gives the company her VES for a contract instead
of paying money and the company returns the requested digital goods
if it receive a valid VES. Alice sends an ordinary signature as effective
one to the company if she receives the goods. If a malicious company
does not return the requested goods when it receives a VES, Alice can
claim that the VES is of no use for the contract since it is encrypted. If
malicious Alice does not return a ordinary signature when she receives
the goods, the company sends the encrypted signature together with the
transcript to the adjudicator and the adjudicator extracts an ordinary
signature from the VES by using the secret key of the adjudicator and
returns it to the company. The adjudicator is offline, that is, it should be
active only when malicious Alice cheats the company. As another appli-
cation, Fuchsbauer used a certain kind of VES to construct delegatable
anonymous credentials [16]. Anonymous credentials are very useful for
access control [5]. In some system with access control, users must prove
to have the required credential issued by an authority to use the system.
The authority may want to delegate its right to other entities to avoid
centralization of power.

Lu, Ostrovsky, Sahai, Shacham, and Waters proposed a VES scheme
which is secure under the computational Diffie-Hellman (CDH) assump-
tion in the standard model, but the verification key size is quite large [24].
Rückert and Schröder proposed a VES scheme with short verification
keys, but its security relies on a non-standard q-type assumption, called
q-strong DH extraction assumption [27]. They did not prove its hard-
ness in the generic group model [28]. Thus, there is no VES scheme that
achieves constant size verification key and signature based on standard
assumptions.

Program Obfuscation and Encrypted Signature/VES. Encrypted VES (EVES)
is an extension of encrypted signature (ES) proposed by Hada [23]. ES/EVES
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functionalities output encryption of signatures/VES. They do not encrypt
messages but signatures, and can be used as building blocks of signcryp-
tion functionalities as Hada pointed out [23]. If Alice uses free web-mail
services to send a mail to Bob on low computational power devices such as
smart-phones and her web browsers do not have enough resources to sign
messages and encrypt them with Bob’s public key, then she wants web-
mail providers to carry out its process instead of her. However, she does
not want to reveal her signing key. The obfuscation for ES/EVES will
give a solution. A program obfuscator is an algorithm which transforms
a program into a completely unintelligible program whose functionality
is the same as the original one [4, 22]. Informally speaking, obfuscators
should guarantee that what is efficiently computed given an obfuscated
program is nothing more than what is computed given black-box access to
the original program. If Alice gives an obfuscated program for ES/EVES
functionalities, then she can securely delegate her signing capability to
web-mail providers. Moreover, in a situation that president Alice on va-
cation want to have vice president Carol sign contracts for Bob (only
Alice to Bob) instead of her, Alice can give Carol an obfuscated program
for EVES functionality. In the case of the obfuscator for ES by Hada, if a
malicious party has access to Bob’s decryption key, then Alice’s signing
key is extracted from the obfuscated program [23]. However, in the case
of our obfuscator for EVES, even such a malicious party cannot extract
Alice’s key due to the existence of the adjudicator’s key. Thus, obfuscators
for EVES have useful applications.

Hada proposed a secure obfuscator for an ES functionality and its
application to signcryption [23]. His scheme is secure under the DLIN as-
sumption in the standard model, but the verification key size is quite
large. Cheng, Zhang, and Zhang proposed a secure obfuscator for an
EVES functionality at ProvSec’11 [13]. Their VES scheme and obfuscator
for EVES use zero-knowledge (ZK) proofs and Fiat-Shamir heuristics to
crash ZK proofs into non-interactive zero-knowledge (NIZK) proofs. That
is, their scheme and obfuscator are secure in the ROM. Furthermore, they
used a non-standard assumption, called exponent 3-weak DH assumption
to prove the unforgeability of their scheme and did not prove opacity (ex-
plained in the next section), which is required for secure VES schemes,
of their scheme.

In general, obfuscators for ES/EVES can be obtained from fully homo-
morphic encryption (FHE) schemes [17]. However, existing FHE schemes
are still inefficient [11, 12, 14, 18–20, 29]. so we do not rely on expensive
FHE schemes but directly construct obfuscators for ES/EVES.
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1.2 Our Contributions and Constructions

We propose a new efficient VES scheme based on the decisional linear
assumption (DLIN) in the standard model. Our main advantages over
previous VES schemes are as follows:

1. It is efficient and secure under a standard (i.e., not q-type) assumption
in the standard model.

2. The verification key and signature size is small (constant).

As a by-product of our VES scheme, we construct secure obfuscators for
ES/EVES functionality based on the DLIN assumption in the standard
model. Main advantages of our obfuscators for ES/EVES over previous
obfuscators for ES/EVES are as follows: They are secure under the DLIN
assumption in the standard model with short verification keys.

Comparison and Related Works. Comparisons of our results and previous
results of VES schemes and obfuscators for ES/EVES are shown in Table
1 and in Table 2, respectively. Let λ denote the security parameter. In
this paper, the CDH assumption is considered in bilinear groups. There
is no efficient VES scheme and obfuscator for ES/EVES which are secure
under standard assumptions in the standard model with short verification
keys prior to our work. The VES scheme by Lu et al. needs a quite large
verification key but its signature size is small and its security is based on a
standard CDH assumption, so one may think that the scheme of Lu et al.
is better than our scheme in terms of signature size. However, we think it is
incomparable with our new scheme and we showed a tradeoff between the
verification key size and signature size. Rückert proposed a VES scheme
based on full-domain hash RSA signature, but it is secure in the ROM [25].
Rückert, Schneider, and Schröder proposed generic constructions for VES
without NIZKs, pairings, and ROM. Their construction is very insightful,
but their schemes use an extra adjudication setup phase and Merkle trees,
so they need to setup large parameters and have large keys (non-constant
size), that is, they are inefficient [26].

Our Construction Technique. Loosely speaking, a VES scheme consists
of a signature scheme and a encryption scheme as Lu et al. and Rückert
and Schröder [24, 27]. We use a signature scheme presented by Waters
at CRYPTO’09 [31] as an underlying signature scheme. We call it the
Waters dual signature in this paper to distinguish from Waters’ signature
at Eurocrypt’05 [30]. Someone may think that a combination of the Wa-
ters dual signature and ElGamal encryption easily yields a secure VES
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Table 1. A summary of previous efficient schemes and ours for VES

Reference Key size (vk/sk) VES size Assumptions ROM

BGLS [8] 1G/1Zp 2G CDH Yes

ZSS [32] 2G/2Zp 1G CDH Yes

LOSSW [24] O(λ)G(> 160G)/1Zp 3G CDH No

RS [27] 4G/2Zp 2G + 1Zp q-strong DH extraction No

This work 16G + 1GT /3G 12G + 2Zp DLIN No

Table 2. A summary of previous obfuscation for encrypted ES/EVES

Reference ES/EVES Key size (vk) ROM Assumptions

Hada [23] ES O(λ) No DLIN

CZZ [13] EVES O(λ) Yes DLIN and Exponent 3-weak DH

This work ES O(1) No DLIN

This work EVES O(1) No DLIN

scheme under the DLIN assumption, but that is not the case. The reason
is as follows: We can prove unforgeability of VES by relying on unforge-
ability of the underlying signature scheme as previous schemes [8,24,27],
but opacity is non-trivial. Opacity means that it is difficult to extract
ordinary signatures from VES, i.e., decrypt VES. Moreover, it is highly
non-trivial whether we can prove opacity from standard assumptions or
not. The reason is as follows: The VES scheme of Lu et al. is a combina-
tion of Waters’ signature (Eurocrypt’05) [30] and the ElGamal encryp-
tion scheme and they proved its opacity from the aggregate extraction
assumption [8] (fortunately, it is equivalent to the CDH assumption [15]).
On the other hand, the VES scheme of Rückert and Schröder is a combi-
nation of Boneh-Boyen signature scheme [6] and the ElGamal encryption
scheme, but they proved its opacity from q-strong DH extraction assump-
tion, which is a stronger assumption than that of underlying Boneh-Boyen
signature scheme [27].

Our construction is a combination of the Waters dual signature scheme
and the ElGamal encryption scheme. We encrypt only signature elements
related to signing keys. The security proof of the Waters dual signature
is different from that of many known secure signature schemes such as
Boneh-Boyen [6], Waters [30], so we must employ a different proof strat-
egy from that of Lu et al. and Rückert and Schröder. The Waters dual
signature has two types of signature, standard signature (which is called
type A) and semi-functional signature (which is called type B). Semi-
functional signatures also pass the verification algorithm as standard ones
and are indistinguishable from standard ones [21,31]. We extend the proof
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strategy of this dual form signature technique to prove opacity. First, we
employ type B signatures as normal signatures output by a normal sign-
ing algorithm and type A signatures are used for simulation. Both type
A and B signatures are valid signatures and there is no essential differ-
ence in terms of functionality as long as a normal verification algorithm
is used. We employ this swap of role since we do not know how to prove
that the adversary cannot extract a valid type A signature from given
VES when the oracle answers type A signatures.

In the experiment of opacity, the adversary can output a pair of a
signature and a message such that the message was queried to an ora-
cle which returns a VES for the queried message. This causes the main
difficulty for proving the opacity since the adversary may output a re-
randomized signature obtained by using valid signatures from oracles.
Unfortunately, the Waters dual signature is re-randomizable. Thus, we
modify the Waters dual signature scheme to make it strongly unforge-
able. Strong unforgeability guarantees that the adversary cannot output
a forgery even for a queried message, so it must hold that if the adversary
output valid signature for queried message in the experiment of opacity,
then the signature is identical to the signature generated by the VES
creation oracle (otherwise, contradict to strong unforgeability). This fact
can be used to prove the opacity of our scheme.

In the proof of opacity, we must simulate two oracles. One is the
creation oracle, which answers VES for queried messages. The other is
the adjudication oracle, which extracts ordinary signatures from queried
message/VES pairs and returns them. When we answer only encryption of
type B signature for VES creation queries of the adversary, we can prove
that the adversary cannot extract type B signature from VES under the
aggregate extraction assumption. This is the reason why we swap the
role of type A signatures for that of type B signature. We have no way
to prove that when we answer only encryption of type A signature for
VES creation queries of the adversary, adversary cannot extracts type A
signature from VES.

Thus, it is showed that the adversary cannot output a valid signature
for queried message to the VES creation oracle. For non-queried messages,
we can use the proof technique for unforgeability of dual form signatures.
We show that the adversary cannot output a type A signature when the
oracle returns type B signatures (VES).

Next, we change the type of signatures used to generate VES which
are answered by the VES creation oracle. Answers of the adjudication
oracle depend on the type of the VES creation oracle. Thus, we show
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that the view of the adversary is indistinguishable even if the type of
answers are changed from type B to type A one-by-one for each query.
This order of change is reverse to the original proof, but it is not essential
difference. Lastly, we show that the adversary cannot output a type B
signature when the oracle returns type A signatures (VES).

Secure obfuscations for ES and EVES based on the Waters dual sig-
nature scheme are also non-trivial because the signing keys of the Waters
dual signature scheme consist of multiple group elements and the signing
algorithm computes exponentiation of the signing keys with randomness
in contrast to Waters’ signature presented at Eurocrypt’05, whose sign-
ing key is only one group element and signing algorithm only multiplies it
by other group elements [30]. We overcome this hurdle by using additive
homomorphic property of ElGamal and the linear encryption schemes [7].
Cheng et al. use the linear encryption scheme for not only encryption of
VES but also the construction of VES itself, so their VES scheme cannot
check the validity of ciphertext by using only the pairing technique and
they need (NI)ZK [13]. We do not need (NI)ZK because our new VES
scheme uses the ElGamal encryption scheme and can verify the validity
of VES by using only pairings.

Remark. In this extended abstract, we do not have enough space to write
complete proofs and all definitions, so we omitted some of them.

2 Preliminaries

Notations and Conventions. For any n ∈ N \ {0}, let [n] be the set

{1, . . . , n}. When D is a random variable or distribution, y
R← D denote

that y is randomly selected from D according to its distribution. If S is
a set, then x

U← S denotes that x is uniformly selected from S. y := z
denotes that y is set, defined or substituted by z. When b is a fixed value,
A(x)→ b (e.g., A(x)→ 1) denotes the event that machine (or algorithm)
A outputs a on input x. We say that function f : N → R is negligible in
λ ∈ N if for every constant c ∈ N there exists kc ∈ N such that f(λ) < λ−c

for any λ > kc. Hereafter, we use f < negl(λ) to mean that f is negligible
in λ. Let Γ := (p,G,GT , e, g) be a description of groups G and GT of
prime order p equipped with efficient bilinear map e : G × G → GT .
We often omit common parameters Γ . Let Gbmp be a standard parameter
generation algorithm for bilinear maps that outputs Γ .

Definition 1 (DLIN assumption). The DLIN problem is to guess β ∈
{0, 1}, given (Γ, g, f, ν, gx, fy, Qβ)

R← Gdlinβ (1λ), where Gdlinβ (1λ): Γ :=
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(p,G,GT , e, g)
R← Gbmp(1λ), f, ν

U← G, x, y
U← Zp, Q0 := νx+y, Q1

U← G,
return (Γ, g, f, ν, gx, fy, Qβ). The advantage is AdvDLIN

A (λ) :=∣∣∣Pr
[
A(I)→ 1

∣∣∣ I R← Gdlin0 (1λ)
]
− Pr

[
A(I)→ 1

∣∣∣ I R← Gdlin1 (1λ)
]∣∣∣. We say

that the DLIN assumption holds if for all probabilistic polynomial-time
(PPT) adversary A, AdvDLIN

A (λ) < negl(λ).

Definition 2 (Aggregate Extraction (AgExt) assumption [8,15]).
The AgExt problem in bilinear groups is to compute gxy, given Γ :=
(p,G,GT , e, g)

R← Gbmp(1λ) and (gx, gy, gβ, gδ, gxy+βδ) for x, y, β, δ
U← Zp.

The advantage is AdvAgExtA (λ) := Pr[z = gxy | Γ U← Gbmp(1λ);x, y, β, δ
U←

Zp; z
R← A(Γ, gx, gy, gβ, gδ, gxy+βδ)]. We say that the AgExt assumption

holds in bilinear groups if for any PPT A, AdvAgExtA (λ) < negl(λ).

Definition 3 (CDH assumption). The CDH problem in bilinear groups

is to compute gxy, given Γ := (p,G,GT , e, g)
R← Gbmp(1λ) and (gx, gy)

for x, y
U← Zp. The advantage is AdvCDH

A (λ) := Pr[z = gxy | Γ U←
Gbmp(1λ);x, y

U← Zp; z
R← A(Γ, gx, gy)]. We say that the CDH assump-

tion holds in bilinear groups if for any PPT A, AdvCDH
A (λ) < negl(λ).

The AgExt assumption is equivalent to computational Diffie-Hellman
(CDH) assumption, which is implied by the DLIN assumption.

Theorem 1 ( [15]). The AgExt and CDH problems are Karp reducible
to each other with O(1) computation.

Verifiably Encrypted Signature (VES). A VES scheme consists of follow-
ing seven algorithms VES = {AdjGen,Gen, Sign,Vrfy,Create,VesVrfy,Adj}:

Adjudicator Key Generation: Algorithm AdjGen takes as input secu-
rity parameter 1λ and outputs a pair of key for an adjudicator, that
is, (apk, ask)

R← AdjGen(1λ).
Key Generation: Algorithm Gen takes as input 1λ and outputs a pair

of keys for a signer, that is, (vk, sk)
R← Gen(1λ). They are called the

verification key and the signing key, respectively.
Signing: Algorithm Sign takes as input a signing key and a message and

outputs signature σ. That is, σ
R← Sign(sk,M), where M ∈Mvk and

Mvk is a message space defined by vk.
Verification: Algorithm Vrfy is deterministic and takes as input vk, M ,

and σ and outputs bit b. If b = 1 then the signature is valid. Else, it
is invalid. That is, Vrfy(vk, σ,m)→ b.

VES Creation: Algorithm Create takes as input sk, apk, and M and
outputs VES ω on M . That is, ω

R← Create(sk, apk,M).

8



VES Verification: Algorithm VesVrfy is deterministic and takes as in-
put apk, vk, ω, and M and outputs bit b, VesVrfy(apk, vk, ω,M)→ b.

Adjudication: Algorithm Adj takes as input ask, apk, vk, ω, and M . If
ω is valid, it extracts an ordinary signature σ on M and returns σ,
that is σ

R← Adj(ask, apk, vk, ω,M) if VesVrfy(apk, vk, ω,M)→ 1.

For correctnes, it is required that ∀λ ∀(apk, ask)
R← AdjGen(1λ) ∀(vk, sk)

R←
Gen(1λ) ∀m ∈ Mvk VesVrfy(apk, pk,Create(sk, apk,M),M) → 1 and
Vrfy(vk,Adj(ask, apk, vk,Create(sk, apk,M)),M)→ 1.

Experiments VesForgeA(λ) and OpacA(λ) are defined as follows:

Experiment VesForgeA(λ)

(apk, ask)
R← AdjGen(1λ);

(vk, sk)
R← Gen(1λ);

(M∗, ω∗)
R←

ACO(sk,apk,·),AO(ask,apk,vk,·,·)(vk, apk);
Return 1 iff
VesVrfy(apk, vk, ω∗,M∗)→ 1 and
M∗ /∈ QC and M∗ /∈ QA.

Experiment OpacA(λ)

(apk, ask)
R← AdjGen(1λ);

(vk, sk)
R← Gen(1λ);

(M∗, σ∗)
R←

ACO(sk,apk,·),AO(ask,apk,vk,·,·)(vk, apk);
Return 1 iff
Vrfy(vk, σ∗,M∗)→ 1 and
M∗ /∈ QA.

where the creation oracle, CO(sk, apk, ·), returns a VES for a queried mes-
sage, the adjudication oracle, AO(ask, apk, vk, ·, ·), extracts and returns
a signature for a queried message/VES pair, and QC and QA are sets of
messages queried by the adversary to CO and AO, respectively.

Definition 4 (Secure VES [8]). A VES scheme is secure if it satisfies
unforgeability and opacity, i.e., it holds for any PPT A, Pr[VesForgeA(λ)→
1] < negl(λ) and Pr[OpacA(λ)→ 1] < negl(λ).

Collision Resistant Hash Functions (CRHF). Let H := {Hk} be a keyed
hash family of functions Hk : {0, 1}∗ → {0, 1}n indexed by k ∈ Kλ where
λ is a security parameter.

Definition 5. We say that H is (t, ε)-collision-resistant if for any ad-
versary A running in time t, we have that AdvCRHFA,H (λ) := Pr[m0 6=
m1 ∧ Hk(m0) = Hk(m1) | (m0,m1)

R← A(k)] < ε where the probability
is taken over the random choice of k ∈ Kλ and random coins of A.

3 Strongly Unforgeable Waters Dual Signature

Waters Dual Signature Scheme. We review a signature scheme presented
by Waters [31] since we use it as a essential building block. However, we
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add a few minor changes to fit the scheme to this paper. We will explain
the differences between the original scheme and modified scheme WdSig.

Wd.Gen(1λ, Γ ): On input security parameter λ and Γ := (p,G,GT , e, g)
R←

Gbmp(1λ), it chooses generators v, v1, v2, w, u, h
U← G and exponent

a1, a2, b, α
U← Zp, computes τ1 := vva11 , τ2 := vva22 , and sets V K :=

(Γ, gb, ga1 , ga2 , gba1 , gba2 , v, v1, v2, τ1, τ2, τ
b
1 , τ

b
2 , w, u, h, e(g, g)αa1b) and SK

:= (V K, gα, gαa1 , ga1a2). Hereafter we often omit input 1λ.
Wd.Sign(SK,M): On input messageM ∈ Zp, it selects r1, r2, z1, z2, γ, stag

U← Zp, sets r := r1 + r2, computes sig := (σ0, σ1, . . . , σ7, stag), where

σ0 := (uMwstagh)r1 , σ1 := gαa1vrg−a1a2γ , σ2 := g−αvr1g
z1ga2γ ,

σ3 := (gb)−z1 , σ4 := vr2g
z2ga1γ , σ5 := (gb)−z2 ,

σ6 := (gb)r2 , σ7 := gr1 .

Wd.Vrfy(V K, sig,M): On input V K,M , and sig, it outputs 1 if and only
if it holds that

e(uMwstagh, σ7) = e(g, σ0),

e(gb, σ1)e(g
ba1 , σ2)e(g

a1 , σ3) = e(τ1, σ6) e(τ
b
1 , σ7),

e(gb, σ1) e(g
ba2 , σ4) e(g

a2 , σ5) = e(τ2, σ6) e(τ
b
2 , σ7) e(g, g)αa1b.

The differences are as follows: In the original Waters dual signature
scheme, (1) the verification equation is only one equation and proba-
bilistic, (2) values v, v1, v2 are included in secret keys, (3) value ga1a2 is
not included in the signing key, (4) the (normal) signing algorithm does
not multiply g−a1a2γ , ga2γ , ga1γ in σ1, σ2, σ4, respectively.

There are two types of signatures in the Waters dual signature scheme,
type A (if γ = 0) and type B (if γ 6= 0) signatures. The modified three
verification equations above are introduced by Abe et al. [1]. They proved
that if a signature passes the equations, then the signature is either type
A or B. The original equations use ciphertexts and the decryption pro-
cedure of the Waters dual encryption scheme, so it is probabilistic and
has a semi-functional verification algorithm that uses semi-functional ci-
phertexts [31]. Type A signatures are signatures with γ = 0 and pass
both the normal and semi-functional verification equations. Type B sig-
natures are signatures with γ 6= 0 and cannot pass the semi-functional
verification equations (Gerbush, Lewko, O’Neill, and Waters defined them
as backdoor verification tests [21]). As long as the verification equations
are normal, both type A and type B signatures are valid signatures and
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there is no essential difference. Thus, we employ type B signatures in the
normal signing algorithm.

Even if v, v1, v2 are disclosed, we cannot compute vb2 (and semi-functional
ciphertexts of the dual system encryption of Waters [31]). Thus, we add
(v, v1, v2) to the verification key and this does not affect its security since
gα and gαa1 (and vb2) are kept secret and they are essential secret signing
keys. This is observed by Abe et al. [1]. For the minor changed version
above, the following theorem holds [1, 31].

Theorem 2. If the DLIN assumption holds, then WdSig := Wd.{Gen,
Sign,Vrfy} is existentially unforgeable against adaptive chosen message
attacks (EUF-CMA).

The original Waters dual signature is not strongly unforgeable since
it is re-randomizable. “Strong” means that the adversary cannot forge
a signature even for a queried message to the signing oracle. In order
to make our VES scheme satisfy opacity, we modify the Waters dual
signature. We extend the technique by Boneh, Shen, and Waters [10].
They introduced a property called 2-partitioned to convert unforgeable
signature schemes into strongly unforgeable signature schemes. We extend
2-partitioned to 3-partitioned.

Definition 6. A signature scheme is 3-partitioned if it satisfies the fol-
lowing two properties:

– The signing algorithm consists of three deterministic algorithms F1,
F2, and F3

1. chooses random R ∈ R (R is a space for randomness),
2. computes Σ1 := F1(M,R, V K), Σ2 := F2(R, V K), Σ3 := F3(R,SK),
3. and outputs signature σ := (Σ1, Σ2, Σ3).

– Given M and Σ2 there is at most one (Σ1, Σ3) such that (Σ1, Σ2, Σ3)
is a valid signature on M under V K.

A 2-partitioned signature is σ = (Σ′1, Σ
′
2) where Σ′1 = F ′1(M,R, SK) and

Σ′2 = F ′2(R,SK) [10]. Value Σ′2 binds all randomness R, so M and R fully
determine Σ′1. For VES, signature elements related to the secret signing
key (i.e., Σ3) should be encrypted, so we cannot use such elements as
inputs to hash functions (we will use hash functions to obtain strongly
secure signature) and want to isolate the secret signing key from Σ′2.
Otherwise, encrypted signatures are not verifiable. If Σ3 is not used as
an input of hash function, then hash values are not changed even if Σ3

is encrypted. This is the reason why we introduced 3-partitioned and Σ1

and Σ2 are independent of the secret signing key.
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Let Π := (Gen,Sign,Vrfy) be an existentially unforgeable signature
scheme. New signature scheme Π ′ := (Gen′, Sign′,Vrfy′) is as follows:

Gen′(1λ): It generates (V K, SK)
R← Gen(1λ), chooses h̄

U← G and random
hash key k ∈ K, and sets (V K ′, SK ′) := ((V K, h̄, k), SK).

Sign′(SK ′,M): On input message M ∈ {0, 1}`, it chooses exponent ϕ
U←

Zp and randomness R ∈ R, computes Σ2 := F2(R, V K), ϑ := Hk(M ‖
Σ2) (view ϑ as an element in Zp),m := Hk(g

ϑh̄ϕ),Σ1 := F1(m,R, V K)
and Σ3 := F3(R,SK), and outputs a signature sig := (Σ1, Σ2, Σ3, ϕ).

Vrfy′(V K ′, sig,M): On input V K ′,M , and signature sig = (Σ1, Σ2, Σ3, ϕ),
it computes ϑ′ := Hk(M ‖ Σ2) (view ϑ′ as an element Zp), m′ :=
Hk(g

ϑ′ h̄ϕ), It outputs 1 if and only if Vrfy(V K, (Σ1, Σ2, Σ3),m
′)→ 1.

Theorem 3. Signature scheme Π ′ is (t, q, ε)-strongly existentially un-
forgeable if Π is (t, q, ε/3)-existentially unforgeable, the (t, ε/3)-DL as-
sumption holds in G, and H is (t, ε/3)-collision-resistant.

This is easily proved by extending the proof of Boneh, Shen, and Wa-
ters [10]. The DL assumption means the discrete logarithm assumption.
The essential point is that given message M and partial signature Σ2,
the randomness which is used to generate the whole signature is deter-
mined and there is at most one (Σ1, Σ3) such that (Σ1, Σ2, Σ3) is a valid
signature on M under V K. Intuitively, in the construction of Π ′, we sign
not only message M but also randomness R to bind the randomness and
prevent re-randomization. Moreover, in order to prevent message m be-
ing determined by randomness R, new randomness ϕ is introduced and
chameleon hash functions (gϑh̄ϕ) are used. Value m will be signed.

Theorem 4. The Waters dual signature is 3-partitioned.

Proof. Let R := {(r1, r2, z1, z2, stag, γ)| r1, r2, z1, z2, stag, γ
U← Zp}, then

functions F1, F2, and F3 are defined as follows: R
R← R, F1(M,R, V K) :=

σ0 = (uMwstagh)r1 , F2(R, V K) := (σ3, . . . , σ7, stag) = (g−bz1 , vr2g
z2 ·

ga1γ , g−bz2 , gbr2 , gr1 , stag), F3(R,SK) := (σ1, σ2) = (gαa1vr·g−a1a2γ , g−αvr1gz1 ·
ga2γ) where γ

U← Zp is chosen for type B signatures. If the signature is
type A, then γ := 0. We can interpret σ3, σ5, σ6, σ7 (outputs of F2) as
g−bz1 , g−bz2 , gbr2 , gr1 , respectively and it follows σ0 = (uMwstagh)r1 from
the first verification equation, that is, the output of F1 is fixed. If we
interpret σ4 as vr2g

z2 · ga1γ , then by the second and third equations two
unknowns σ1 and σ2 are fixed to gαa1vr · g−a1a2γ and g−αvr1g

z1 , respec-
tively, that is, the output of F3 is fixed. Thus, if the output of F2 and M
are fixed, then the outputs of F1 and F3 are also fixed.
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We can see that even if (σ1, σ2) is encrypted by the ElGamal encryption,
hash value ϑ = Hk(M ‖ (σ3, . . . , σ7, stag)) is not changed, so it can be
fitted to VES schemes. Note that we assume that each element g ∈ G has
a unique encoding. We can obtain strongly secure scheme sWdSig:

sWd.Gen(1λ, Γ ): It generates (V K ′, SK ′)
R←Wd.Gen(1λ, Γ ), chooses h̄

U←
G and random hash key k ∈ K, and sets (V K, SK) := ((V K ′, h̄, k), SK ′).

sWd.Sign(SK,M): On input message M ∈ Zp, it selects r1, r2, z1, z2, γ,

stag, ϕ
U← Zp, sets r := r1 + r2, computes σ1 := gαa1vr · g−a1a2γ , σ2 :=

g−αvr1g
z1 · ga2γ , σ3 := (gb)−z1 , σ4 := vr2g

z2 · ga1γ , σ5 := (gb)−z2 , σ6 :=
(gb)r2 , σ7 := gr1 , ϑ := Hk(M ‖ Σ2) where Σ2 = (σ3, . . . , σ7, stag) and
view ϑ as an element in Zp, m := Hk(g

ϑh̄ϕ), σ0 := (umwstagh)r1 , and
outputs sig := (σ0, σ1, . . . , σ7, stag, ϕ).

sWd.Vrfy(V K, sig,M): On input V K,M , and signature sig = (σ0, σ1, . . . ,
σ7, stag, ϕ), it computes ϑ′ := Hk(M ‖ (σ3, . . . , σ7, stag)), m′ :=
Hk(g

ϑ′ h̄ϕ), and Wd.Vrfy(V K ′, sig′,m′)→ b where sig′ := (σ0, . . . , σ7, stag),
and outputs b.

Corollary 1. The scheme above is strongly unforgeable against adap-
tive chosen message attacks if the DLIN assumption holds. In particular,
for any PPT adversary F against sWdSig that makes at most q sign-
ing queries, there exists PPT algorithm B′ for DLIN and C for CRHF,
AdvsEUF-CMA

F ,sWdSig (λ) ≤ {(q+3)/3}AdvDLIN
B′ +(1/3)AdvCRHFC,H where AdvsEUF-CMA

F ,sWdSig (λ)

and AdvEUF-CMA
F ′,WdSig (λ) is the advantage of the adversary for sWdSig.

Note that the DL assumption is implied by the DLIN assumption.

4 Construction of Our VES

We present our VES scheme, sWdVES, based on the strongly secure
variant the Waters dual signature scheme in this section. The proposed
scheme is basically the same as the strongly unforgeable Waters dual sig-
nature scheme in Section 3 except that we encrypt signature elements
which include secret keys (gα, gαa1 , ga1a2) by the ElGamal encryption
scheme. That is, in our creation algorithm, only σ1 and σ2 are encrypted.
In order to verify encrypted signatures, we add extra elements and can-
cel out group elements which are generated by pairing computation of
encrypted signatures in the verification equation. sWdVES is as follows:

AdjGen(1λ): It selects β
U← Zp and sets apk := ζ := gβ and ask := β.
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Gen(1λ): It generates (V K ′, SK ′) := ((g, gb, ga1 , ga2 , gba1 , gba2 , τ1, τ2, τ
b
1 , τ

b
2 ,

v, v1, v2, w, u, h, h̄, k, e(g, g)αa1b), (gα, gαa1 , ga1a2))
R← sWd.Gen(1λ) and

sets vk := V K ′ and sk := (V K ′, SK ′).
Sign and Vrfy: Same as sWd.{Sign,Vrfy} in Section 3, respectively.

Create(sk, apk,M): It generates (σ0, . . . , σ7, stag, ϕ)
R← sWd.Sign(SK ′,M),

selects ρ1, ρ2
U← Zp, outputs ω := (K0, . . . ,K7,K

′
1,K

′
2, K̂1, K̂2, stag, ϕ),

where (K0,K3, . . . ,K7) := (σ0, σ3, . . . , σ7) and

K1 := σ1 · ζρ1 , K ′1 := gρ1 , K̂1 := (gb)ρ1 ,

K2 := σ2 · ζρ2 , K ′2 := gρ2 , K̂2 := (gba1)ρ2 .

VesVrfy(apk, vk, ω,M): It parses ω = (K0, . . . ,K7,K
′
1,K

′
2, K̂1, K̂2, stag, ϕ),

and computes ϑ′ := Hk(M ‖ (K3, . . . ,K7, stag)), m′ := Hk(g
ϑ′ h̄ϕ), It

outputs 1 if and only if it holds that

e(K ′1, g
b) = e(g, K̂1) , e(K ′2, g

ba1) = e(g, K̂2)

e(um
′
wstagh,K7) = e(g,K0)

e(gb,K1)

e(ζ, K̂1)
· e(g

ba1 ,K2)

e(ζ, K̂2)
· e(ga1 ,K3) = e(τ1,K6) e(τ

b
1 ,K7)

e(gb,K1)

e(ζ, K̂1)
· e(gba2 ,K4) e(g

a2 ,K5) = e(τ2,K6) e(τ
b
2 ,K7) e(g, g)αa1b

Adj(ask, apk, vk, ω,M): It parses ω = (K0, . . . ,K7, stag, ϕ) and computes
σ1 := K1 · (K ′1)−β, σ2 := K2 · (K ′2)−β, σ3 := K3, σ4 := K4, σ5 := K5,
σ6 := K6, σ7 := K7, σ0 := K0. If VesVrfy(apk, vk, ω,M) → 1, then it
outputs (σ0, . . . , σ7, stag, ϕ). These are valid signatures.

Intuitively, the scheme above is secure because underlying signature scheme
is strongly unforgeable. The adversary has no choice but to decrypt valid
VES given by oracles to output a valid signature, but it contradicts to
the one-wayness of the ElGamal encryption scheme.

Rückert and Schröder defined key-independence and extractability of
VES to prove unforgeability and collusion-resistance of VES in a modular
way [26,27]. Key-independence means that a VES creation algorithm con-
sists of a signature generation part and a transformation (into VES) part
and they are independent. Extractability means that if VES ω is valid,
then the adjudicator can extract a valid (ordinary) signature σ with ex-
cept negligible probability. Collusion-resistance means that no adversary
can forge VES even if the adjudicator is corrupted, i.e., adversary ob-
tains the secret decryption key of the adjudicator. Rückert and Schröder
showed the following theorem.
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Theorem 5 ( [27]). Let VES be an extractable and key-independent ver-
ifiably encrypted signature scheme. VES is unforgeable if and only if the
underlying signature scheme Sig is unforgeable.

As a corollary, sWdVES is unforgeable under the DLIN assumption since
we can easily show that our sWdVES based on sWdSig is key-independent
and extractable though we omit proofs in this extended abstract.

Theorem 6. sWdVES is opaque if the DLIN assumption holds and there
exists CRHF.

Proof. If adversary A outputs forgery σ∗ = (σ∗0, . . . , σ
∗
7, stag

∗, ϕ∗) and M∗

such that M∗ is not queried toAO, then it means thatA breaks opacity of
sWdVES. A directly forges a signature of underlying sWdSig or extracts a
signature by breaking the one-wayness of the ElGamal encryption scheme.
In order to prove opacity, we introduce the following games: Let Game-(i)
denote a game where CO answers encryption of type A signatures for the
first i (i ∈ [qC] and qC is the number of creation query by A) queries
and encryption of type B signatures for the remaining (qC − i) queries
and AO answers signatures extracted from queried VES for all qA (the

number of adjudication query) queries. Let Advforge-Ai (resp. Advforge-Bi )
denote the advantage of the adversary in Game-(i) for outputting type
A (resp. B) forgery for a non-queried message (a message which is not
queried to CO). Let Advextract-B0 denote the advantage of the adversary
in Game-0 for extracting a type B signature from a VES for a queried
message (a message which is queried to CO).

1. In Game-(0), CO returns encryption of type B signature and AO re-
turns type B signature. First, we show Lemma 1: If A outputs a valid
type B signature for message Mi which has been already queried to
CO, then we can construct algorithm E which solves the AgExt prob-
lem. Thus, in the remaining games, we only consider A which outputs
forgery for message M∗ such that M∗ 6= Mi for all i ∈ [q]. We can show
that if A outputs forgery of type A signature, then we can construct
algorithm B1 which solves the CDH problem.

2. Next, we consider Game-(i). We can show that if A detects the change
from type B answer to type A answer by CO, then we can construct
algorithm B2 which solves the DLIN problem.

3. Last, we consider Game-(qC), where all answers for VES queries of A
are encryption of type A signature. We can show that if A outputs a
forgery of type B signature, then we can construct algorithm B3 which
solves the DLIN problem.
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Thus, if the DLIN assumption holds, the signature scheme is opaque.
The core part is Lemma 1. By statements described above except Lemma
1, we can show AdvOpac

A (λ) = Advforge-A0 + Advextract-B0 + Advforge-B0 <
Advextract-B0 + AdvEUF-CMA

F ,WdSig < Advextract-B0 + (qC + 2)AdvDLIN
B . By Lemma

1, we can show

Advextract-B0 < qCAdv
AgExt
E + AdvsEUF-CMA

F ′,sWdSig + AdvCRHFC

<
4qC + 3

3
AdvDLIN

B +
4

3
AdvCRHFC .

Thus, it holds AdvOpac
A (λ) < ((7qC + 9)/3)AdvDLIN

B + (4/3)AdvCRHFC .

Lemma 1. If there exists adversary A that outputs a type B forgery for
a queried message Mi in Game-(0), then we can construct algorithm E
that solves the AgExt problem.

Proof of lemma. E is given instance (Γ, gx, gy, gβ, gδ, gxy+βδ) of the
AgExt problem. E generates the verification key as follows: Chooses expo-
nents a1, b, yv, yv1 , yv2 , yw, yh, yu, η

U← Zp and hash key k ∈ K, computes
g := g, gb := gb, ga1 := ga1 , ga2 := gy, gba2 := (gy)b, gba1 := gba1 ,
v := gyv , v1 := gyv1 , v2 := gyv2 , w := gyw , u := gyu , h := gyh , h̄ := gη,
ζ := gβ, e(g, g)αa1b := e(gx, gy)a1·b (it implicitly holds α = xy though
E does not have α), τ1 := vva11 , τ b1 , τ2 := v(gy)yv2 , and τ b2 , and sets
V K := (g, gb, ga1 , ga2 , gba1 , gba2 , τ1, τ2, τ

b
1 , τ

b
2 , w, u, h, h̄, k, e(g, g)αa1b) and

apk := ζ = gβ. Note that E does not have a2 = y and gα = gxy, so E
cannot directly compute Type B signature.

Simulation of Creation Oracle: E initializes list QList := ∅. E chooses ran-
dom index j

U← [qC], i.e., guesses which VES A selects and outputs its ex-
traction. E outputs encryption of Type B signatures for i-th VES creation
queryMi as follows: If i 6= j, then chooses r1, r2, z1, z2, γ

′, stag, ϕi, ρ1, ρ2
U←

Zp, sets r := r1 + r2 (we want to set γ := x + γ′), computes σi,1 :=
(gy)−γ

′a1 · vr = (gαa1vr) · g−a1a2γ (where a2 = y and xy = α), σi,2 :=
(gy)γ

′
vr1g

z1 = (gαvr1g
z1) · ga2γ , K3 := σi,3 := (gb)−z1 , K4 := σi,4 :=

(gx)a1ga1γ
′
vr2g

z2 = (vr2g
z2) · ga1γ , K5 := σi,5 := (gb)−z2 , K6 := σi,6 := gr2b,

K7 := σi,7 := gr1 , ϑi := Hk(Mi ‖ Σi,2) whereΣi,2 := (σi,3, . . . , σi,7),mi :=
Hk(g

ϑi h̄ϕi), K0 := σi,0 := (umiwstagh)r1 , K1 := σi,1 ·ζρ1 , K ′1 := gρ1 , K̂1 :=
(gb)ρ1 , K2 := σi,2 · ζρ2 , K ′2 := gρ2 , K̂2 := (gba1)ρ2 , stores (Mi, σi, Ri :=
(r1, r2, z1, z2, stag, γi := γ′)) in QList where σi := (σi,0, . . . , σi,7, stag, ϕi)
and outputs ω := (K0, . . . ,K7,K

′
1,K

′
2, K̂1, K̂2, stag, ϕi) for Mi. We can

verify σi is a correct type B signature.
Embedding Instance: If i = j, then E chooses r∗1, r

∗
2, z
∗
1 , z
∗
2 , γ
∗, stag∗, ϕ∗,

ρ∗1, ρ
∗
2

U← Zp, sets r∗ = r∗1+r∗2, answersK∗1 := (gxy+βδ)a1 ·vr∗ ·(gy)−a1γ∗ζρ∗1 =
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(gαa1vr
∗
) · g−a1a2γ∗ζρ′1 (where a2 = y, xy = α, ρ′1 := a1δ + ρ∗1), K

∗′
1 :=

(gδ)a1gρ
∗
1 = gρ

′
1 , K̂∗1 := (gδ)ba1gbρ

∗
1 = (gb)ρ

′
1 , K∗2 := (gxy+βδ)−1vr

∗
1 g

z∗1 ·
(ga2)γ

∗
(gβ)ρ

∗
2 = (g−αvr

∗
1 g

z∗1 ) · ga2γ∗ζρ′2 (where ρ′2 := −δ + ρ∗2), K
∗′
2 :=

(gδ)−1gρ
∗
2 = gρ

′
2 , K̂∗2 := (gδ)−ba1gba1ρ

∗
2 = (gba1)ρ

′
2 , K∗3 := (gb)−z

∗
1 , K∗4 :=

vr
∗

2 g
z∗2ga1γ

∗
, K∗5 := (gb)−z

∗
2 , K∗6 := gr

∗
2b, K∗7 := gr

∗
1 , ϑ∗ := Hk(K

∗
3 , . . . ,K

∗
7 ,

stag∗), m∗ := Hk(g
ϑ∗ h̄ϕ

∗
), and K∗0 := (um

∗
wstag∗h)r

∗
1 and records (Mj , ω

∗

:= (K∗0 , . . . , ϕ
∗), j, γ∗) as the challenge instance. It can be verified ω∗ is a

correct encryption of type B signature.

Simulation of Adjudication Oracle: When A makes `-th adjudication
query (M`, ω`), then we know that A must have queried M` to CO by
the theorem of Rückert and Schröder (Otherwise, it is a forgery. This
is the same argument by Rückert and Schröder in [27]). First, E verifies
the query and returns ⊥ if it is invalid. Otherwise, E acts as follows: If
M` = Mj , that is, the guessed index ((Mj , . . .) /∈ QList), then E aborts.
Otherwise, there exists (Mi, σi, Ri) ∈ QList for some i 6= j such that
M` = Mi and the signature is Type B. In this case (M` = Mi), for query
(M`, ω = (K0, . . . ,K7,K

′
1,K

′
2, K̂1, K̂2, stag, ϕ)), if ϕ 6= ϕi, then A breaks

strong unforgeability of our modified Waters dual signature. We consider
an intermediate game where if ϕ 6= ϕi, then E aborts. The probability E
aborts with this condition is less than the success probability of break-
ing strong unforgeability of sWdSig. That is, it holds ϕ = ϕi without
negligible probability. If ϕ = ϕi, then it holds K3 = σi,3, K4 = σi,4,
K5 = σi,5, K6 = σi,6, K7 = σi,7, stag = stagi since otherwise it means A
outputs (K3, . . . ,K7, stag) such that Hk(σi,3, . . . , σi,7, stagi) = ϕi = ϕ =
Hk(K3, . . . ,K7, stag) and (K3, . . . ,K7, stag) 6= (σi,3, . . . , σi,7, stagi). This
is a collision of the hash function and contradicts to the collision-resistant
property. We consider an intermediate game where ifHk(σi,3, . . . , σi,7, stagi
) = ϕi = ϕ = Hk(K3, . . . ,K7, stag) and (K3, . . . ,K7, stag) 6= (σi,3, . . . , σi,7,
stagi), then E aborts. The probability E aborts with this condition is less
than the success probability of breaking the CRHF. That is, randomness
of (K3, . . . ,K7, stag) is the same as that of (σi,3, . . . , σi,7, stagi) without
negligible probability.

By using K3 = g−bz1 , K5 = g−bz2 , K6 = gbr2 , K7 = gr1 , E can
compute gr2 = (K6)

1/b, gr1 = K7, g
z1 = (K3)

−1/b, gz2 = (K5)
−1/b,

vr = (gr1 · gr2)yv , vr1 = (gr1 · gr2)yv1 , and vr2 = (gr1 · gr2)yv2 since E
has b, yv, yv1 , yv2 and it holds that v = gyv v1 = gyv1 v2 = gyv2 . E can
use the same computation procedure in the simulation of CO above by
using γi stored in QList. Therefore, E can return valid Type B signature
(σ0, . . . , σ7, stag, ϕ) such that the randomness r in σ1, σ2 is the same as
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that in K1, K2 by using stored information σi. That is, AO is perfectly
simulated by E .

Solving the Problem: At some point, A outputs a Type B extraction,
M∗ = Mj , stag∗, σ∗1 = gαa1vr

∗
g−a1a2γ

∗
, σ∗2 = g−αvr

∗
1 g

z∗1ga2γ
∗
, σ∗3 =

(gb)−z
∗
1 , σ∗4 = vr

∗
2 g

z∗2ga1γ
∗
, σ∗5 = (gb)−z

∗
2 , σ∗6 = gr

∗
2b, σ∗7 = gr

∗
1 , ϑ∗ =

Hk(σ3, . . . , σ7, stag
∗), m∗ = Hk(g

ϑ∗ h̄ϕ), and σ∗0 = (um
∗
wstag∗h)r

∗
1 (not

queried to AO but CO) such that randomness are the same as those used
when B embedded the problem instance at j-th query and (Mj , ω

∗, j, γ∗)
is recorded as the challenge instance. This is guaranteed by the strong
unforgeability and collision-resistance as we discussed above. By using
these values, E can compute gr

∗
2 = (σ∗6)1/b, gr

∗
1 = σ∗7, gz

∗
1 = (σ∗3)−1/b,

gz
∗
2 = (σ∗5)−1/b, vr

∗
= (gr

∗
1 · gr∗2 )yv , vr

∗
1 = (gr

∗
1 · gr∗2 )yv1 , vr

∗
2 = (gr

∗
1 · gr∗2 )yv2 ,

since E has b, yv, yv1 , yv2 and it holds that v = gyv v1 = gyv1 v2 = gyv2 .
Thus, E can compute gz

∗
1 · vr∗1 ga2γ

∗
/σ∗2 = gα = gxy since E has a1 and

γ∗ is recorded. That is, E can output solution gxy of the AgExt problem
if the adversary outputs a Type A extraction for queried message Mj to
CO. E guesses index j, so its success probability is degraded by a factor
of 1/qC. However, it still breaks the AgExt problem with non-negligible
probability ε/qC where ε is the success probability of A. �

5 Application to Obfuscators for ES and EVES

Our VES scheme can be used to construct new obfuscators for ES and
EVES. Hada constructed an obfuscator for ES by combining Waters’s
signature (2005) and the linear encryption scheme [23]. The linear en-
cryption scheme proposed by Boneh, Boyen, and Shacham [7] and is as
follows:

L.Gen(1λ): It generates Γ
R← Gbmp(1λ), selects exponents xe, ye

U← Zp,
and outputs pk := (fe, he) := (gxe , gye), dk := (xe, ye).

L.Enc(pke,m): On input m ∈ G and pk = (fe, he) it selects r, s
U← Zp and

outputs c := (f re , h
s
e, g

r+sm).

Hada’s idea is as follows: Suppose that signature σ is computed as σ =
sk · G(m) where sk ∈ G is the signing key, m ∈ Zp is the message and
G : Zp → G is an efficiently computable function. Then, for ciphertext
c = L.Enc(pk, sk), we can compute c̃ := c · G(m) = L.Enc(pk, sk · G(m))
by homomorphic property of the linear encryption scheme. This is ex-
actly an encrypted signature. The ciphertext of sk can be seen as an
obfuscated circuit for encrypted signatures since the linear encryption
scheme is semantically secure and no information about sk is revealed.

18



We extend Hada’s construction, that is, we combine our VES scheme
based on the strongly unforgeable Waters dual signature and the linear
encryption scheme. However, our VES scheme is based on the Waters
dual signature, which is more complex than Waters’ signature at Euro-
crypt’05, so it is non-trivial whether we can use Hada’s technique directly
or not. Especially, in Waters’ signature at Eurocrypt’05, the signing al-
gorithm does not exponentiate sk, but in the Waters dual signature,
it does. We can resolve this problem by using the multiplicatively ho-
momorphic property of the linear encryption scheme, that is, we can
compute cr · G(m) = L.Enc(pk, skr · G(m)). Therefore, if we encrypt
sk = (gα, gαa1 , ga1a2) by linear encryption, then we can construct an
obfuscator for ES/EVES. We omit details of these constructions since we
do not have space to present them. We will present them in a full version.
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