
Functional Encryption for Inner Product
with Full Function Privacy

Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Department of Mathematics
Indian Institute of Technology Kharagpur

Kharagpur-721302, India
{pratishdatta,ratna,sourav}@maths.iitkgp.ernet.in

Abstract. Functional encryption (FE) supports constrained decryption
keys that allow decrypters to learn specific functions of encrypted mes-
sages. In numerous practical applications of FE, confidentiality must be
assured not only for the encrypted data but also for the functions for
which functional keys are provided. This paper presents a non-generic
simple private key FE scheme for the inner product functionality, also
known as inner product encryption (IPE). In contrast to the existing sim-
ilar schemes, our construction achieves the strongest indistinguishability-
based notion of function privacy in the private key setting without em-
ploying any computationally expensive cryptographic tool or non-standard
complexity assumption. Our construction is built in the asymmetric bi-
linear pairing group setting of prime order. The security of our scheme
is based on the well-studied Symmetric External Diffie-Hellman (SXDH)
assumption.
Keywords: functional encryption, inner product, function privacy, asym-
metric bilinear group.

1 Introduction
The recent advancement in cloud technology has triggered an emerging trend
among individuals and organizations to outsource potentially sensitive private
informations to external untrustworthy servers and remotely carry out various
computations on the outsourced data at some later point in time by querying
the server. Functional encryption (FE) is an ambitious vision of modern cryptog-
raphy that attempts to preserve confidentiality of externally stored data while
allowing entities to delegate computations on the outsourced data in such cloud
computing platforms. FE supports “restricted” decryption keys, also known as
“functional keys”, that enable decrypters to learn specific functions of the en-
crypted data and nothing else. More precisely, in an FE scheme for certain func-
tion family F , it is possible to derive functional keys skf for any function f ∈ F
from a master secret key. Any party given such a functional key skf and a cipher-
text ctz encrypting some message z, should be able to learn f(z) and nothing
beyond that about z.

A principle focus of research on FE has been to identify what class of functions
F can be supported and what notion of security can be achieved. In terms of

2 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

functionality, starting with the seminal notions of identity-based encryption (IBE)
and attribute-based encryption (ABE), FE has progressively evolved through a
series of distinguished works to support more and more expressive function fam-
ilies culminating into the recent state of the art schemes which are now able to
realize computation of arbitrary polynomial-size circuits [6], [12], [11], [10], [7].
Regarding security, the vast majority of research on FE so far has concentrated
on protecting privacy of the encrypted contents [6], [15].

1.1 Function Privacy in Functional Encryption
A wide range of practical applications, however, demands not only privacy of
the encrypted messages but also privacy of the functions for which functional
keys are provided. This is especially desirable whenever the function embedded
in the functional key itself contains sensitive informations.

Consider the following motivating scenario: Assume that a health organiza-
tion subscribes to a cloud service provider to store medical records of its patients.
To ensure confidentiality of informations, the organization encrypts those records
locally using an FE scheme prior to uploading them to the cloud server. Now,
using the inherent feature of FE, later on the organization can request the cloud
server to perform some analysis on the encrypted records by providing the server
the functional key for the respective function. However, if the FE scheme in use
does not guarantee any hiding for the functions, which may include sensitive
contents, embedded in the functional keys, then the functional keys might reveal
the functions completely to the cloud, thereby leaking sensitive informations.
Private key vs public key setup: Countless real-life applications have driven
the research on function privacy in the context of FE, using the private key set-
ting first by Shen et al. [16] followed by the works of [2], [8], while in the public
key setting by Boneh et al. [4], [5]. Intuitively, function privacy requires that
functional keys reveal no unnecessary information on their functionality. How-
ever, the extent to which function privacy can be satisfied differs dramatically
between the private key and public key regimes. Specifically, in the public key
domain, where anyone can encrypt messages, only a limited form of function
privacy can be attained. To formulate a meaningful security definition, a frame-
work must assume that the functions come from a distribution having sufficient
entropy [4], [5]. On the contrary, in the private key setting, function privacy has
been shown to have tremendously greater potential compared to the public key
domain, both as a stand-alone feature and as a very useful building block.
Full-hiding security model for private key FE: For private key FE schemes,
the strongest (indistinguishability-based) notion of function privacy, also known
as full-hiding security, formulated in [2], [8] considers both privacy of functional
keys and privacy of encrypted data in a perfectly symmetric manner. More pre-
cisely, full-hiding security considers adversaries that interact with

I) a left-or-right functional key generation oracle and
II) a left-or-right encryption oracle,

where both oracles operate using the same bit c ∈ {0, 1}. The adversaries submit
a pair of functions (f (j,0), f (j,1)) to the functional key generation oracle in or-
der to make the j-th functional key query while they submit a pair of messages

Functional Encryption for Inner Product with Full Function Privacy 3

(z(`,0), z(`,1)) to the encryption oracle for making the `-th ciphertext query. De-
pending on the bit c, the functional key generation oracle returns the functional
key skf(j,c) whereas the encryption oracle sends back the ciphertext ctz(`,c) .
The adversaries are allowed to interact with these oracles for any polynomial
number of queries and the adversaries’ goal is to distinguish the cases c = 0
and c = 1. The constraint on the adversaries is that for all (f (j,0), f (j,1)) and
(z(`,0), z(`,1)) with which they query the functional key generation and encryp-
tion oracles respectively, it should hold that f (j,0)(z(`,0)) = f (j,1)(z(`,1)). This
is clearly the minimum necessary restriction as otherwise the adversaries can
trivially determine the bit c used by the oracles.

Regarding the construction of function private FE schemes in the private key
setting, recently Brakerski and Segev [8] have presented a generic transforma-
tion from any private key (possibly non-function-private) FE scheme for general
polynomial-size circuits into one that achieves function privacy in the strongest
model discussed above. Then by combining [8] with the works of [12], [11], or
[10], one can obtain private key function-private FE scheme supporting general
circuits with strong security guarantee. However, the most significant drawback
of the resulting constructions is that they would employ computationally in-
tensive tools for secure computation such as fully homomorphic encryption or
program obfuscation and their security would rely on strong assumptions such as
indistinguishability obfuscation, extractability obfuscation, or polynomial hard-
ness of simple assumptions on multilinear maps. Consequently, these solutions
are far from being practical.

1.2 Inner Product Encryption and Function Privacy
A current motivation of cryptographic research community is to design direct and
efficient FE schemes for functionalities of practical interest which are still expres-
sive enough for real-life applications. As a first attempt, researchers have focused
on the inner product functionality which is an extremely useful functionality in
the context of descriptive statistics, for example, to compute the weighted mean
of a collection of informations. Further, the inner product enables computation
of conjunctions, disjunctions, polynomial evaluations, and exact thresholds.

An inner product function family IPp is parameterized by a prime integer p.
A function ip #»y ∈ IPp is associated with a vector #»y ∈ Znp of length n over the
finite field Zp. On a message #»x ∈ Znp , ip #»y (#»x) is defined to be the inner product
〈 #»x , #»y 〉 modulo p of the vectors #»x and #»y . We stress that this formulation of
inner-product FE, also referred to as inner product encryption (IPE) is distinct
from [16], [13], [14], [2] which study inner product in the context of predicate
encryption (PE). In inner product PE, a message M is encrypted along with a
tag #»x ∈ Znp and decryption with a key corresponding to a vector #»y ∈ Znp yields
M if and only if 〈 #»x , #»y 〉 = 0. In contrast, the objective in the IPE formulation is
to learn the actual inner product value in Zp itself.

The first construction of IPE was presented by Abdalla et al. [1] who devel-
oped a selectively secure construction in traditional discrete log groups. However,
this construction is built in public key domain and do not support any form of
function privacy. Very recently, Bishop et al. [3] have taken a first step forward

4 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

towards exploring the possibility of attaining function privacy in the context
of IPE utilizing efficient and well-studied primitives. In fact, they have con-
structed a function-private IPE scheme in private key domain that withstands
any polynomial number of ciphertext and functional key queries. Their construc-
tion makes use of asymmetric bilinear pairing groups and derives its security from
the well-studied Symmetric External Diffie-Hellman (SXDH) assumption albeit
in a rather weak and unrealistic security model.

1.3 Our Contribution
The current state of the art leaves open the problem of constructing a private
key IPE scheme achieving the strongest practical notion of full-hiding security
under standard assumptions without employing any heavy-duty cryptographic
tool. In this paper we provide a positive answer to this challenging problem. In
particular, we develop a simple and efficient private key IPE scheme achieving
the strongest notion of function privacy based on well-studied complexity as-
sumption. As in [3], our construction utilizes asymmetric bilinear pairing groups
of prime order and we are able to establish the stronger form of security un-
der the SXDH assumption. In order to ensure correctness of our construction,
like [1], [3], we assume that the target inner products will be contained within
a range of polynomial-size. As pointed out in [1], [3], this assumption is quite
reasonable for statistical applications, where, for instance, the average of some
bounded quantity over a polynomial-size database will naturally be included in
a polynomial range.

Although our construction has some resemblance to that of [3], we highlight
several differences below:
– We innovate new technical ideas in order to realize the strongest notion

of full-hiding security while maintaining the simplicity of the scheme. For
all (#»y (j,0), #»y (j,1)) and (#»x (`,0), #»x (`,1)) with which the adversaries query the
functional key generation and encryption oracles respectively, the security
framework of [3] assumes that
〈 #»x (`,0), #»y (j,0)〉 = 〈 #»x (`,0), #»y (j,1)〉 = 〈 #»x (`,1), #»y (j,0)〉 = 〈 #»x (`,1), #»y (j,1)〉 (1)

whereas according to the full-hiding security framework of [2], [8], the only
constraint should be

〈 #»x (`,0), #»y (j,0)〉 = 〈 #»x (`,1), #»y (j,1)〉. (2)
The additional restriction in the security model of [3] has not only weakened
the security of their construction significantly but also it has rendered the
security model itself rather unrealistic. Our security framework is free from
any such restriction beyond that specified in Eq. (2), therefore, much more
practical compared to that of [3].

– As in [3], we make use of the concept of dual pairing vector spaces (DPVS)
introduced in [13], [14] to obtain the features of hidden subspaces in prime
order bilinear group setting. However, our two DPVS have dimensions 4n+ 2
and 6 respectively while those of [3] have dimensions 2n and 2 respectively.
Here n is the dimension of vectors for functional keys and ciphertexts. This
results in some loss in efficiency. However, this seems rather unavoidable for

Functional Encryption for Inner Product with Full Function Privacy 5

strengthening the security both from theoretical and practical point of view.

– Analogous to [3], we consider two pairs of dual orthonormal bases, one for
each of the two dimensions considered. But instead of including the complete
bases like [3], we put certain portions of them in the master secret key while
preserve the remaining dimensions for the security reduction. Specifically, we
employ 3n and 3 hidden dimensions of the pairs of bases of dimensions 4n+2
and 6 respectively to move things forward in our hybrid security argument.

– At a technical level, [3] used each component of the vectors twice while en-
coding the vectors in ciphertexts and functional keys by coupling them with
the basis vectors included in the master secret key. On the contrary, in our
construction, we utilize the components of these vectors only once in the
process of encoding with the basis vectors of the master secret key.

– Although similar to [3], we treat ciphertexts and functional keys in a symmet-
ric fashion in our construction, our hybrid security proof does not maintain
any such symmetry. Specifically, the approach of [3] first established the pri-
vacy of encrypted messages in the multiple ciphertext framework and then
leveraged the symmetry between the structures of ciphertexts and functional
keys to flip the same reasoning to argue for function privacy. In doing so,
they relied on an information theoretic step that required the additional con-
straint as in Eq. (1) on the queries of the adversaries. In order to remove
the extra restriction, we face several challenges. For our security analysis, we
design our hybrid argument differently using a different information theoretic
property of DPVS proven by [13] in a non-trivial way. We begin our hybrid
game transition by changing the form of the queried ciphertexts and instead
of finishing it off completely, at some appropriate point, we initiate change
in the queried functional keys. Since then the transformations of functional
keys and ciphertexts proceed hand in hand.

2 Preliminaries
Throughout this paper we will follow notations presented in Figure 1.

2.1 The Notion of Private Key Function-Private IPE
We adopt the general notion of function-private functional encryption in the
private key setting, introduced in [2], [8], to the particular functionality of com-
puting inner products of n-length vectors over Zp for some prime integer p and
some positive integer n. We will consider only non-zero vectors. Note that this
is a reasonable consideration for all practical applications of inner products.

� Syntax: A private key function-private IPE (PKFP-IPE) scheme consists of
the following probabilistic polynomial-time algorithms:

PKFP-IPE.Setup(1λ, n): The data owner takes as input the security parameter
1λ and a positive integer n (polynomial in λ) specifying the desired length of

6 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Symbol Explanation

ℵ $←− A ℵ is randomly selected from A according to A’s distribution, when A is a
random variable, and ℵ is uniformly selected from A, when A is a set.

#»v a vector (v1, . . . , vn) ∈ Zn
p of length n for some positive integers p and n.

〈 #»v , #»w〉 the inner product of vectors #»v and #»w ∈ Zn
p , i.e.,

∑n

i=1 viwi mod p.

g
#»v an n-tuple of group elements, (gv1 , . . . , gvn) ∈ Gn for some cyclic group G

of order p, where #»v ∈ Zn
p and g ∈ G.

ga #»v (gav1 , . . . , gavn) ∈ Gn, where a ∈ Zp, #»v ∈ Zn
p , and g ∈ G.

g
#»v + #»w (gv1+w1 , . . . , gvn+wn) ∈ Gn, where #»v , #»w ∈ Zn

p and g ∈ G.

GL(n,Zp) the group of all n× n invertible matrices over Zp.

Fig. 1: Notations

vectors for the functional keys and ciphertexts. It generates a master secret
key msk for itself while publishes public parameters pp. (Note that we are
not dealing with a public key scheme, so pp are not sufficient to encrypt –
those are just parameters that need not be kept secret.)

PKFP-IPE.Encrypt(msk,pp, #»x): On input the master secret key msk, the public
parameters pp, and a vector #»x ∈ Znp\{

#»0 }, where #»0 denotes the all zero vector
in Znp , the data owner produces a ciphertext ct #»x .

PKFP-IPE.KeyGen(msk,pp, #»y): Taking as input the master secret key msk, the
public parameters pp, and a vector #»y ∈ Znp\{

#»0 }, the data owner provides a
functional key sk #»y to a legitimate decrypter.

PKFP-IPE.Decrypt(pp,ct #»x , sk #»y): A decrypter takes as input the public pa-
rameters pp, a ciphertext ct #»x encrypting some vector #»x , and a functional
key sk #»y corresponding to some vector #»y . It outputs either a value m ∈ Zp
or the distinguished symbol ⊥.

� Correctness: The correctness of an PKFP-IPE scheme requires the following:
For all #»x , #»y ∈ Znp\{

#»0 },
Pr
[
(msk,pp) $←− PKFP-IPE.Setup(1λ, n); ct #»x

$←− PKFP-IPE.Encrypt(msk,pp, #»x);

sk #»y
$←− PKFP-IPE.KeyGen(msk,pp, #»y) :

PKFP-IPE.Decrypt(pp,ct #»x , sk #»y) = 〈 #»x , #»y 〉
]
> 1− ε(λ)

for some negligible function ε. As in [1], [3], in our construction as well we would
only require that the above holds when 〈 #»x , #»y 〉 is from a fixed polynomial range
of values inside Zp.

� Security: The indistinguishability-based full hiding security notion for a PKFP-
IPE scheme is defined by the following game between a probabilistic adversary
A and a probabilistic challenger C:
Setup: C generates (msk,pp) $←− PKFP-IPE.Setup(1λ, n). It gives pp to A. It
also selects c $←− {0, 1}.

Functional Encryption for Inner Product with Full Function Privacy 7

Query Phase: Throughout the game, A may adaptively make any polynomial
number of queries of the following two types:

– Functional key query: To make the j-th functional key query, A submits a
pair of vectors (#»y (j,0), #»y (j,1)) ∈

(
Znp\{

#»0 }
)2 to C. C creates a functional key

sk(j) $←− PKFP-IPE.KeyGen(msk, pp, #»y (j,c)) and hands sk(j) to A.
– Ciphertext query: To make the `-th ciphertext query, A sends a pair of vectors

(#»x (`,0), #»x (`,1)) ∈
(
Znp\{

#»0 }
)2 to C. C forms ct(`) $←− PKFP-IPE.Encrypt(msk,

pp, #»x (`,c)) and returns ct(`) to A.

Suppose that A makes q1 number of functional key queries and q2 number of
ciphertext queries during the game. The restriction on the queries is that for all
j = 1, . . . , q1 and for all ` = 1, . . . , q2, 〈 #»x (`,0), #»y (j,0)〉 = 〈 #»x (`,1), #»y (j,1)〉.
Guess: A eventually outputs a bit c′ ∈ {0, 1}.

Let ViewA(c) denotes the view of A in the above game when the c ∈ {0, 1}
is the random bit selected by C in the setup phase.

Definition 1. A PKFP-IPE is said to achieve (full) indistinguishability-based
full hiding security if for any probabilistic polynomial-time adversary A, for any
security parameter λ, the advantage of A in the above game, AdvPKFP-IPE

A (λ) =∣∣Pr
[
A(ViewA(0)) = 1

]
− Pr

[
A(ViewA(1)) = 1

]∣∣ < ε(λ) for some negligible func-
tion ε.

2.2 Asymmetric Bilinear Group and SXDH Assumption
Definition 2 (Asymmetric Bilinear Pairing Group). An asymmetric bi-
linear pairing group (p,G1,G2,GT , g1, g2, e) is a tuple of a prime integer p; cyclic
multiplicative groups G1,G2,GT of order p each with polynomial-time computable
group operations; generators g1 ∈ G1, g2 ∈ G2; and a polynomial-time com-
putable non-degenerate bilinear pairing e : G1 ×G2 → GT , i.e., e satisfies

– (bilinearity) e(gs1, gs̆2) = e(g1, g2)ss̆ for all s, s̆ ∈ Zp and
– (non-degeneracy) e(g1, g2) 6= 1GT , where 1GT denotes the identity element of

the group GT .

Let GABPG be an algorithm that on input the security parameter 1λ, outputs a
description (p,G1,G2,GT , g1, g2, e) of an asymmetric bilinear pairing group.

Assumption 1 (Symmetric External Diffie-Hellman: SXDH). The SXDH
problem is to distinguish between the distributions %β =

(
(p,G1,G2,GT , g1, g2, e),

gµ1 , g
ν
1 ,<β ,

)
for β ∈ {0, 1} such that (p,G1,G2,GT , g1, g2, e)

$←− GABPG(1λ),
µ, ν

$←− Zp, and <β = gµν+r
1 where r = 0 or r $←− Zp according as β = 0 or

1 respectively.
The SXDH assumption states that for any probabilistic polynomial-time algo-

rithm C, for any security parameter λ, AdvSXDH
C (λ) =

∣∣Pr
[
C(%0) = 1

]
−Pr

[
C(%1) =

1
]∣∣ < ε(λ) for some negligible function ε. It also states that the same is true for

8 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

the analogous distributions obtained from switching the roles of G1 and G2, i.e.,
%̆β =

(
(p,G1,G2,GT , g1, g2, e), gµ̆2 , gν̆2 , <̆β

)
for β ∈ {0, 1} such that µ̆, ν̆ $←− Zp,

and <̆β = gµ̆ν̆+r̆
2 where r̆ = 0 or r̆ $←− Zp according as β = 0 or 1 respectively.

2.3 Dual Pairing Vector Spaces
Definition 3 (Dual Pairing Vector Spaces (DPVS)). A dual pairing vector
space (DPVS) (p,V1,V2,GT ,A1,A2, E) by a direct product of asymmetric pairing
groups (p,G1,G2,GT , g1, g2, e) is a tuple of a prime integer p; n-dimensional
vector space Vh = Gnh over Zp under vector addition ⊕ and scalar multiplication
⊗ defined respectively as g #»v

h ⊕g
#»w
h = g

#»v+ #»w
h and a⊗g #»v

h = ga
#»v

h , for h = 1, 2, where
#»v , #»w ∈ Znp , and a ∈ Zp; canonical bases Ah = {g

#»e i
h }i=1,...,n of Vh, for h = 1, 2,

where #»e i = (
i−1︷ ︸︸ ︷

0, . . . , 0, 1,
n−i︷ ︸︸ ︷

0, . . . , 0) ∈ Znp ; and a pairing E : V1 × V2 → GT . The

pairing E is defined by E(g #»v
1 , g

#»w
2) =

n∏
i=1

e(gvi1 , g
wi
2) = e(g1, g2)〈 #»v , #»w〉 ∈ GT , where

#»v , #»w ∈ Znp . Observe that the map E is non-degenerate bilinear, i.e., E satisfies

– (bilinearity) E(s ⊗ g
#»v
1 , s̆ ⊗ g

#»w
2) = E(gs #»v

1 , gs̆
#»w

2) = E(g #»v
1 , g

#»w
2)ss̆ for s, s̆ ∈

Zp, #»v , #»w ∈ Znp and
– (non-degeneracy) if E(g #»v

1 , g
#»w
2) = 1GT for all #»w ∈ Znp , then #»v = #»0 .

When clear from the context, we will often omit the symbols ⊕ and ⊗ for vector
addition and scalar multiplication respectively in DPVS’s. The DPVS generation
algorithm GDPVS takes input a positive integer n together with (p,G1,G2,GT , g1,

g2, e)
$←− GABPG(1λ) and outputs a description (p,V1,V2, GT ,A1,A2, E) of DPVS

with n-dimensional vector spaces Vh for h = 1, 2.

In Figure 2 we describe random dual orthonormal basis generator GOB(Znp)
for some prime integer p and positive integer n. This algorithm would be utilized
as a subroutine in our PKFP-IPE construction.

GOB(Zn
p): This algorithm performs the following operations:

1. Choose B = (bi,j)i,j=1,...,n
$←− GL(n,Zp).

2. Compute B∗ = (b∗i,j)i,j=1,...,n = (Bᵀ)−1, where Bᵀ denotes transpose of the
matrix B. Let, #»

b i and #»

b ∗i represent the i-th rows of B and B∗ respectively, for
i = 1, . . . , n. Set B = { #»

b 1, . . . ,
#»

b n} and B∗ = { #»

b ∗1, . . . ,
#»

b ∗n}. Note that (B,B∗)
are dual orthonormal in the sense that for i, i′ = 1, . . . , n,

〈 #»

b i,
#»

b ∗i′〉 =
{

1, if i = i′

0, otherwise

3. Return (B,B∗).

Fig. 2: Dual orthonormal basis generator GOB(Znp)

Functional Encryption for Inner Product with Full Function Privacy 9

3 Our PKFP-IPE Scheme
� Construction

PKFP-IPE.Setup(1λ, n): The data owner takes as input the security parameter
1λ and a positive integer n specifying the desired length of vectors for the
keys and ciphertexts. It proceeds as follows:
1. It first generates an asymmetric bilinear group

(p,G1,G2,GT , g1, g2, e)
$←− GABPG(1λ).

2. Then it forms
(p,V1,V2,GT ,A1,A2, E) $←− GDPVS

(
4n+ 2, (p,G1,G2,GT , g1, g2, e)

)
and

(p,V′1,V′2,GT ,A′1,A′2, E′)
$←− GDPVS

(
6, (p,G1,G2,GT , g1, g2, e)

)
.

3. Next, it samples dual orthonormal bases(
B = { #»

b 1, . . . ,
#»

b 4n+2},B∗ = { #»

b ∗1, . . . ,
#»

b ∗4n+2}
) $←− GOB(Z4n+2

p) and(
D = { #»

d 1, . . . ,
#»

d 6},D∗ = { #»

d ∗1, . . . ,
#»

d ∗6}
) $←− GOB(Z6

p).
It defines B̂ = { #»

b 1, . . . ,
#»

b n,
#»

b 4n+2}, B̂∗ = { #»

b ∗1, . . . ,
#»

b ∗n,
#»

b ∗4n+1}, D̂ =
{ #»

d 1,
#»

d 6}, and D̂∗ = { #»

d ∗1,
#»

d ∗5}.
4. It keeps the master secret key msk = (B̂, B̂∗, D̂, D̂∗) to itself while publishes

the public parameters pp =
(
p, {Vh,V′h}h=1,2,GT , {Ah,A′h}h=1,2, E,E

′).
PKFP-IPE.Encrypt(msk,pp, #»x): Taking as input the master secret key msk, the

public parameters pp, and a vector #»x ∈ Znp\{
#»0 }, the data owner prepares

the ciphertext as follows:
1. It selects α, ξ, ξ0

$←− Zp and computes

c1 = g
α
∑n

i=1
xi

#»
b i+ξ

#»
b 4n+2

1 = g
α
∑

i
xi

#»
b i+ξ

#»
b 4n+2

1 , c2 = gα
#»
d 1+ξ0

#»
d 6

1 (3)
utilizing B̂ and D̂ respectively from msk, where a sum over index i ranges
from i = 1 to i = n unless explicitly specified otherwise. We will follow
the same convention in the sequel as well.

2. It outputs the ciphertext ct #»x = (c1, c2).
PKFP-IPE.KeyGen(msk,pp, #»y): On input the master secret key msk, the public

parameters pp, and a vector #»y ∈ Znp\{
#»0 }, the data owner performs the

following:
1. It picks γ, η, η0

$←− Zp and computes

k∗1 = g
γ
∑

i
yi

#»
b ∗i+η #»

b ∗4n+1
2 ,k∗2 = g

γ
#»
d ∗1+η0

#»
d ∗5

2 (4)
utilizing B̂∗ and D̂∗ respectively from msk.

2. It provides the functional key sk #»y = (k∗1,k∗2) to a legitimate decrypter.
PKFP-IPE.Decrypt(pp,ct #»x , sk #»y): A decrypter takes as input the public param-

eters pp, a ciphertext ct #»x = (c1, c2), and a functional key sk #»y = (k∗1,k∗2).
It proceeds as follows:
1. It computes T1 = E(c1,k

∗
1), T2 = E′(c2,k

∗
2).

2. It then attempts to determine a value m ∈ Zp such that Tm2 = T1 as
elements of GT by checking a specified polynomial-size range of possible
values. If it is successful, then it outputs m. Otherwise it outputs ⊥.

We stress that the polynomial running time of our decryption algorithm is
ensured by restricting the output to lie within a fixed polynomial-size range.

10 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

� Correctness

The correctness of the above PKFP-IPE construction can be verified as follows:
Observe that for any ciphertext ct #»x = (c1, c2) encrypting some vector #»x and
any functional key sk #»y = (k∗1,k∗2) corresponding to some vector #»y , we have

T1 = E(c1,k
∗
1) = e(g1, g2)αγ〈 #»x , #»y 〉, T2 = E′(c2,k

∗
2) = e(g1, g2)αγ .

This follows from the expressions of c1, c2,k
∗
1,k
∗
2 together with the fact that

(B,B∗) and (D,D∗) are dual orthonormal bases. Thus if 〈 #»x , #»y 〉 is contained
in the specified polynomial-size range of possible values that the decryption
algorithm checks, it would output 〈 #»x , #»y 〉 as desired.

� Discussion

In our PKFP-IPE construction, we begin with the intuition of [3] to use an asym-
metric bilinear group setting (p,G1,G2,GT , g1, g2, e), visualizing G1 as the ci-
phertext space whereas G2 as the functional key space. The plaintext vectors are
encrypted in the exponent of g1 while the functional key vectors are encapsulated
in the exponent of g2, so that the bilinearity of the pairing e can be employed
to compute the inner product of the plaintext and functional key vectors in the
exponent without the explicit knowledge of the vectors.

As discussed earlier in this paper, the only PKFP-IPE scheme available in
the literature so far [3] achieves a rather limited and unrealistic form of function
privacy. In particular, for the sake of managing the hybrid security proof of their
construction, they put further restrictions on the queries of the adversaries, as
shown in Eq. (1), beyond those specified in the strongest framework of full-hiding
security described in §2.1. This additional constraint not only leads to a weak
security but it is also not conformal with the intuitive spirit of function privacy.
With the motivation to remove such an undesirable restriction we recourse to
an information theoretic step that uses a nice property of DPVS introduced in
[13] that enables to hide a pair of ciphertext and functional key vectors perfectly
among all vectors having the same inner product.

To generate space for our hybrid proof, we consider two pairs of dual or-
thonormal bases, namely, (B,B∗) of dimension 4n+ 2 and (D,D∗) of dimension
6, where n is the length of vectors for ciphertexts and functional keys. The n+ 2
dimensions of the first pair of bases and 3 of the second pair are used in the
actual scheme while the remaining dimensions are preserved to move things for-
ward in the security proof. As displayed in Eq. (3), to encode a vector #»x in the
ciphertext, we construct a linear combination of the first n vectors together with
the (4n+2)-th vector of B, where the n components of #»x masked with a random
scalar α are used as coefficients of the first n vectors of B. The resulting vector is
then placed in the exponent of g1 ∈ G1. After that, the randomness α is encoded
by forming another linear combination of the first and sixth members of D in
the exponent of g1 using the masking factor α as coefficient of the first vector
of D. The (4n+ 2)-th dimension of B and the sixth dimension of D are utilized
to supply additional randomization for strengthening the security of our cipher-
texts. The encoding of a vector for the functional key is performed in a directly
symmetric fashion utilizing bases B∗,D∗, and g2 ∈ G2 in place of B,D, and g1

Functional Encryption for Inner Product with Full Function Privacy 11

respectively, as can be seen from Eq. (4), where the additional randomization is
provided by the (4n+ 1)-th dimension of B∗ and the fifth dimension of D∗.

In contrast, the construction of [3] considers two pairs of dual orthonormal
bases, one of dimension 2n and the other of dimension 2. Moreover, they make
use of the complete bases in their construction itself and employ each component
of a vector as coefficient twice during formation of the linear combinations in
the process of encoding the vector for ciphertext or functional key, once for
basis vectors in the range 1 to n and again for the basis vectors ranging from
n + 1 to 2n. Further, [3] rely on the orthogonality of all the queried functional
key vectors (respectively all queried ciphertext vectors) to the difference of a
pair of queried ciphertext vectors (respectively a pair of queried functional key
vectors) to simulate a hidden dimension in the bases in the security proof that
they employ to switch from one vector of the pair to the other. However, it
is precisely this approach which necessitates the additional constraint imposed
by them on the adversaries’ queries as in Eq. (1). Furthermore, increasing the
dimensions of the DPVS’s in use seems rather unavoidable for managing the
security reduction without requiring the extra restriction. In fact the 3n and 3
hidden dimensions of our two pairs of bases respectively that we keep aside for
the security argument play a vital role to elegantly isolate a pair of ciphertext
and functional key vectors in an n-dimensional hidden subspace in order to apply
our information theoretic argument.

In summery, although our construction has some kind of resemblance to that
of [3], our proof idea is widely apart. The most significant contribution of our
work lies in a rigorous proof of full-hiding security of a fairly simple construction.
The detail security reduction is presented in the next section.

In terms of communication cum storage complexity, observe that both the
ciphertexts and functional keys of our PKFP-IPE construction consist of 4n+ 8
group elements while our master secret key contains 8n2 + 12n + 28 members
of the finite field Zp. In contrast, the ciphertexts and functional keys in the
construction of [3] are comprised of 2n + 2 group elements each whereas the
master secret key is composed of 8n2 + 8 Zp components.

Regarding computation complexity, note that both our encryption and func-
tional key generation algorithms require 4n + 8 exponentiations while the de-
cryption algorithm involves 4n+ 8 pairing operations followed by an exhaustive
search over a polynomial range of values in order to solve a discrete log. On the
contrary, the encryption and functional key generation algorithms of [3] amount
to 2n + 2 exponentiations each. Other than a similar exhaustive search step,
their decryption algorithm incurs 2n+ 2 pairings.

It is evident that our scheme loses a constant factor of 2 compared to that of
[3] in both communication cum storage and computation efficiency. However, the
additional cost is compensated with stronger and realistic data as well as function
privacy guarantees provided by our construction as opposed to a rather limited
form of security achieved by [3]. Given the rapid advancements in computing
technology and the growing security breaches, high security is often desirable
even at the expense of an admissible increase in complexity.

12 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

The ciphertexts and master public key of the only known IPE scheme in public
key setup [1] involve n+ 1 and n elements respectively in a discrete log group of
prime order p while the master secret key and functional keys are comprised of n
and 1 Zp components respectively. The encryption and decryption algorithms of
[1] respectively incur 2n+1 exponentiations and n+1 exponentiations followed by
an analogous exhaustive search step towards determining a discrete log. However,
the scheme of [1] offers no function privacy and, moreover, provides only selective
data privacy.

4 Security Analysis
Theorem 1. The PKFP-IPE scheme described in §3 is secure as per the security
model of §2.1 under the SXDH assumption.

Proof. The proof of Theorem 1 is structured as a hybrid argument over a series
of games which differ in the construction of the functional keys and ciphertexts
queried by the adversary A in the security game described in §2.1. In the first
game, the queried functional keys and ciphertexts are constructed as those in
the security game of §2.1 where the bit used by the challenger is c = 0. We
then progressively change the functional keys and ciphertexts in multiple hybrid
games to those in the security game of §2.1 where the bit used by the challenger
is c = 1. We prove that each game is indistinguishable from the previous one,
thus proving our PKFP-IPE construction to be secure in the security model of
§2.1. Let q1 be the number of A’s functional key queries and q2 the number of
A’s ciphertext queries. The hybrid game transition is described below. In these
games, a portion of an exponent framed by a white box indicates those terms
which were added or modified in a transition from the previous game, unless
explicitly specified otherwise, while a part of an exponent which was deleted in
the transformation from the earlier game is highlighted in the text.
� Sequence of Hybrid Games

I〉 Game 0 : This game corresponds to the real security game of §2.1 where the
bit used by the challenger to generate queried functional keys and ciphertexts is
c = 0. More precisely, for j = 1, . . . , q1, the response to the j-th functional key
query for vectors (#»y (j,0), #»y (j,1)) is created as sk(j) = (k∗(j)1 ,k

∗(j)
2) such that

k
∗(j)
1 = g

γj
∑

i
y

(j,0)
i

#»
b ∗i+ηj

#»
b ∗4n+1

2 ,

k
∗(j)
2 = g

γj
#»
d ∗1+ηj,0

#»
d ∗5

2 ,

 (5)

where γj , ηj , ηj,0
$←− Zp. On the other hand, for ` = 1, . . . , q2, the reply to the

`-th ciphertext query of A for vectors (#»x (`,0), #»x (`,1)) is generated as ct(`) =
(c(`)

1 , c
(`)
2) such that

c
(`)
1 = g

α`
∑

i
x

(`,0)
i

#»
b i+ξ`

#»
b 4n+2

1 ,

c
(`)
2 = g

α`
#»
d 1+ξ`,0

#»
d 6

1 ,

 (6)

where α`, ξ`, ξ`,0
$←− Zp.

Functional Encryption for Inner Product with Full Function Privacy 13

II〉 Game 1 Sequence
[
Game 1-κ-1, . . . , Game 1-κ-4 (κ = 1, . . . , q2)

]
Game 1-κ-1: Game 1-0-4 coincides with Game 0. Game 1-κ-1 is the same as
Game 1-(κ− 1)-4 except that the components of the κ-th queried ciphertext for
vectors (#»x (κ,0), #»x (κ,1)) are computed as

c
(κ)
1 = g

ακ
∑

i
x

(κ,0)
i

#»
b i+ α′′κ

∑
i
x

(κ,0)
i

#»
b 2n+i +ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+ α′′κ

#»
d 3 +ξκ,0

#»
d 6

1 ,

 (7)

where ακ
$←− Zp and all the other variables are generated as in Game 1-(κ− 1)-4.

Game 1-κ-2: This game is identical to Game 1-κ-1 with the only exception
that the components of the κ-th queried ciphertext corresponding to vectors
(#»x (κ,0), #»x (κ,1)) are formed as

c
(κ)
1 = g

ακ
∑

i
x

(κ,0)
i

#»
b i+α′′κ

∑
i
x

(κ,1)
i

#»
b 2n+i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+α′′κ

#»
d 3+ξκ,0

#»
d 6

1 ,

 (8)

where all the variables are generated as in Game 1-κ-1.

Game 1-κ-3: This game is analogous to Game 1-κ-2 except that the compo-
nents of the κ-th queried ciphertext for vectors (#»x (κ,0), #»x (κ,1)) are created as

c
(κ)
1 = g

ακ
∑

i
x

(κ,0)
i

#»
b i+α′′κ

∑
i
x

(κ,1)
i

#»
b 2n+i+ α′′′κ

∑
i
x

(κ,1)
i

#»
b 3n+i +ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+α′′κ

#»
d 3+ α′′′κ

#»
d 4 +ξκ,0

#»
d 6

1 ,

 (9)

where α′′′κ
$←− Zp and all the other variables are generated as in Game 1-κ-2.

Game 1-κ-4: This game is the same as Game 1-κ-3 except that the compo-
nents of the κ-th queried ciphertext for vectors (#»x (κ,0), #»x (κ,1)) are computed as

c
(κ)
1 = g

ακ
∑

i
x

(κ,0)
i

#»
b i+α′′′κ

∑
i
x

(κ,1)
i

#»
b 3n+i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+α′′′κ

#»
d 4+ξκ,0

#»
d 6

1 ,

 (10)

where all the variables are generated as in Game 1-κ-3, i.e., in this game c(κ)
1 and

c
(κ)
2 are modified from those in the last game by dropping the terms involving
α′′κ in the exponent of g1.

III〉 Game 2 Sequence
[
Game 2-ω-1, . . . , Game 2-ω-6 (ω = 1, . . . , q1)

]
Game 2-ω-1: Game 2-0-6 coincides with Game 1-q2-4. Game 2-ω-1 is the similar
to Game 2-(ω − 1)-6 except that the components of the ω-th queried functional

14 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

key corresponding to vectors (#»y (ω,0), #»y (ω,1)) are formed as

k
∗(ω)
1 = g

γω
∑

i
y

(ω,0)
i

#»
b ∗i+ γ′ω

∑
i
y

(ω,0)
i

#»
b ∗n+i + γ′′ω

∑
i
y

(ω,0)
i

#»
b ∗2n+i +ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = g

γω
#»
d ∗1+ γ′ω

#»
d ∗2 + γ′′ω

#»
d ∗3 +ηω,0

#»
d ∗5

2 ,

 (11)

where γ′ω, γ′′ω
$←− Zp, and all the other variables are generated as in Game 2-(ω−

1)-6.

Sequence of Subgames of Game 2-ω-2
[

Game 2-ω-2-κ-1, . . . , Game
2-ω-2-κ-5 (κ = 1, . . . , q2)

]
Game 2-ω-2-κ-1: Game 2-ω-2-0-5 coincides with Game 2-ω-1. Game 2-ω-2-κ-1 is
analogous to Game 2-ω-2-(κ− 1)-5 with the only exception that the components
of the ω-th queried functional key corresponding to vectors (#»y (ω,0), #»y (ω,1)) are
formed as

k
∗(ω)
1 = g

γω
∑

i
y

(ω,0)
i

#»
b ∗i+γ′ω

∑
i
y

(ω,0)
i

#»
b ∗n+i+γ

′′
ω

∑
i
y

(ω,1)
i

#»
b ∗2n+i+ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = g

γω
#»
d ∗1+γ′ω

#»
d ∗2+γ′′ω

#»
d ∗3+ηω,0

#»
d ∗5

2 ,

 (12)

where all the variables are generated as in Game 2-ω-2-(κ − 1)-5. Here a part
of the exponent framed by a white box (respectively light gray box) indicates
those terms which were changed in the transition from the previous game when
κ ≥ 2 (respectively κ = 1). More specifically, when κ = 1, k∗(ω)

1 in Eq. (12) is
transformed from that in Eq. (11), which is the form of k∗(ω)

1 in Game 2-ω-2-0-5,
by changing the portion of the exponent framed by a light gray box. On the
other hand, when κ ≥ 2, k∗(ω)

1 in Eq. (12) is obtained from that in Eq. (14),
which is the form of k∗(ω)

1 in Game 2-ω-2-(κ− 1)-5, by applying modification in
the portion of the exponent framed by a white box.

Game 2-ω-2-κ-2: This game is identical to Game 2-ω-2-κ-1 except that the
components of the κ-th queried ciphertext for vectors (#»x (κ,0), #»x (κ,1)) are com-
puted as

c
(κ)
1 = g

ακ
∑

i
x

(κ,0)
i

#»
b i+ α′κ

∑
i
x

(κ,0)
i

#»
b n+i +α′′′κ

∑
i
x

(κ,1)
i

#»
b 3n+i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+ α′κ

#»
d 2 +α′′′κ

#»
d 4+ξκ,0

#»
d 6

1 ,

 (13)

where α′κ
$←− Zp and all the other variables are generated as in Game 2-ω-2-κ-1.

Game 2-ω-2-κ-3: This game is similar to Game 2-ω-2-κ-2 with the only ex-
ception that the components of the ω-th queried functional key corresponding
to vectors (#»y (ω,0), #»y (ω,1)) are formed as

k
∗(ω)
1 = g

γω
∑

i
y

(ω,0)
i

#»
b ∗i+γ′ω

∑
i
y

(ω,1)
i

#»
b ∗n+i+γ

′′
ω

∑
i
y

(ω,1)
i

#»
b ∗2n+i+ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = g

γω
#»
d ∗1+γ′ω

#»
d ∗2+γ′′ω

#»
d ∗3+ηω,0

#»
d ∗5

2 ,

 (14)

Functional Encryption for Inner Product with Full Function Privacy 15

while the components of the κ-th queried ciphertext corresponding to vectors
(#»x (κ,0), #»x (κ,1)) are created as

c
(κ)
1 = g

ακ
∑

i
x

(κ,0)
i

#»
b i+α′κ

∑
i
x

(κ,1)
i

#»
b n+i+α′′′κ

∑
i
x

(κ,1)
i

#»
b 3n+i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+α′κ

#»
d 2+α′′′κ

#»
d 4+ξκ,0

#»
d 6

1 ,

 (15)

where all the variables are generated as in Game 2-ω-2-κ-2.

Game 2-ω-2-κ-4: This game is the same as Game 2-ω-2-κ-3 except that the com-
ponents of the κ-th queried ciphertext corresponding to vectors (#»x (κ,0), #»x (κ,1))
are computed as

c
(κ)
1 = g

∑
i
(ακx(κ,0)

i

#»
b i+α′κx

(κ,1)
i

#»
b n+i+ ᾰ′′κx

(κ,1)
i

#»
b 2n+i +α′′′κ x

(κ,1)
i

#»
b 3n+i)+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+α′κ

#»
d 2+ ᾰ′′κ

#»
d 3 +α′′′κ

#»
d 4+ξκ,0

#»
d 6

1 ,

(16)

where ᾰ′′κ
$←− Zp and all the other variables are generated as in Game 2-ω-2-κ-3.

Game 2-ω-2-κ-5: This game is analogous to Game 2-ω-2-κ-4 with the only
exception that the components of the κ-th queried ciphertext corresponding to
vectors (#»x (κ,0), #»x (κ,1)) are formed as

c
(κ)
1 = g

ακ
∑

i
x

(κ,0)
i

#»
b i+ᾰ′′κ

∑
i
x

(κ,1)
i

#»
b 2n+i+α′′′κ

∑
i
x

(κ,1)
i

#»
b 3n+i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+ᾰ′′κ

#»
d 3+α′′′κ

#»
d 4+ξκ,0

#»
d 6

1 ,

 (17)

where all the variables are generated as in Game 2-ω-2-κ-4, i.e., in this game c(κ)
1

and c(κ)
2 are transformed from those in the earlier game by removing the terms

involving α′κ in the exponent of g1.

Game 2-ω-3: This game is identical to Game 2-ω-2-q2-5 with the only ex-
ception that the components of the ω-th queried functional key for vectors
(#»y (ω,0), #»y (ω,1)) are computed as

k
∗(ω)
1 = g

γω
∑

i
y

(ω,0)
i

#»
b ∗i+γ′′ω

∑
i
y

(ω,1)
i

#»
b ∗2n+i+ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = g

γω
#»
d ∗1+γ′′ω

#»
d ∗3+ηω,0

#»
d ∗5

2 ,

 (18)

where all the variables are generated as in Game 2-ω-2-q2-5, i.e., in this game
k
∗(ω)
1 and k∗(ω)

2 are changed from those in the last game by deleting the terms
involving γ′ω in the exponent of g2.

Game 2-ω-4: This game is the same as Game 2-ω-3 except that the compo-
nents of the ω-th queried functional key for vectors (#»y (ω,0), #»y (ω,1)) are created
as

k
∗(ω)
1 = g

γω
∑

i
y

(ω,0)
i

#»
b ∗i+γ′′ω

∑
i
y

(ω,1)
i

#»
b ∗2n+i+ γ′′′ω

∑
i
y

(ω,1)
i

#»
b ∗3n+i +ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = g

γω
#»
d ∗1+γ′′ω

#»
d ∗3+ γ′′′ω

#»
d ∗4 +ηω,0

#»
d ∗5

2 ,

 (19)

16 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

where γ′′′ω
$←− Zp and all the other variables are generated as in Game 2-ω-3.

Game 2-ω-5: This game is similar to Game 2-ω-4 with the only exception that
for ` = 1, . . . , q2, the components of the `-th queried ciphertext for vectors
(#»x (`,0), #»x (`,1)) are computed as

c
(`)
1 = g

α`
∑

i
x

(`,0)
i

#»
b i+α′′′`

∑
i
x

(`,1)
i

#»
b 3n+i+ξ`

#»
b 4n+2

1 ,

c
(`)
2 = g

α`
#»
d 1+α′′′`

#»
d 4+ξ`,0

#»
d 6

1 ,

 (20)

where all the variables are generated as in Game 2-ω-4, i.e., Eq. (20) resets c(`)
1

and c(`)
2 , for ` = 1, . . . , q2, as those in Eq. (10) by dropping the terms involving

ᾰ′′` in the exponent of g1.

Game 2-ω-6: This game is the same as Game 2-ω-5 except that the compo-
nents of the ω-th queried functional key for vectors (#»y (ω,0), #»y (ω,1)) are created
as

k
∗(ω)
1 = g

γω
∑

i
y

(ω,0)
i

#»
b ∗i+γ′′′ω

∑
i
y

(ω,1)
i

#»
b ∗3n+i+ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = g

γω
#»
d ∗1+γ′′′ω

#»
d ∗4+ηω,0

#»
d ∗5

2 ,

 (21)

where all the variables are generated as in Game 2-ω-5, i.e., in this game k∗(ω)
1

and k∗(ω)
2 are changed from those in the earlier game by deleting the terms in-

volving γ′′ω in the exponent of g2.

IV〉 Game 3 : This game is analogous to Game 2-q1-6 except that for j =
1, . . . , q1, the components of the j-th queried functional key corresponding to
vectors (#»y (j,0), #»y (j,1)) are computed as

k
∗(j)
1 = g

γj
∑

i
y

(j,1)
i

#»
b ∗i+γ′′′j

∑
i
y

(j,0)
i

#»
b ∗3n+i+ηj

#»
b ∗4n+1

2 ,

k
∗(j)
2 = g

γj
#»
d ∗1+γ′′′j

#»
d ∗4+ηj,0

#»
d ∗5

2 ,

 (22)

while for ` = 1, . . . , q2, the components of the `-th queried ciphertext for vectors
(#»x (`,0), #»x (`,1)) are computed as

c
(`)
1 = g

α`
∑

i
x

(`,1)
i

#»
b i+α′′′`

∑
i
x

(`,0)
i

#»
b 3n+i+ξ`

#»
b 4n+2

1 ,

c
(`)
2 = g

α`
#»
d 1+α′′′`

#»
d 4+ξ`,0

#»
d 6

1 ,

 (23)

where all the variables are generated as in Game 2-q1-6.

V〉 Game 4 Sequence
[
Game 4-ω-1, . . . , Game 4-ω-6 (ω = 1, . . . , q1)

]
Game 4-ω-1: Game 4-0-6 coincides with Game 3. Game 4-ω-1 is the same as
Game 4-(ω− 1)-6 except that the components of the ω-th queried functional key
for vectors (#»y (ω,0), #»y (ω,1)) are created as

k
∗(ω)
1 = g

γω
∑

i
y

(ω,1)
i

#»
b ∗i+ γ̆′′ω

∑
i
y

(ω,0)
i

#»
b ∗2n+i +γ′′′ω

∑
i
y

(ω,0)
i

#»
b ∗3n+i+ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = g

γω
#»
d ∗1+ γ̆′′ω

#»
d ∗3 +γ′′′ω

#»
d ∗4+ηω,0

#»
d ∗5

2 ,

 (24)

Functional Encryption for Inner Product with Full Function Privacy 17

where γ̆′′ω
$←− Zp and all the other variables are generated as in Game 4-(ω−1)-6.

Game 4-ω-2: This game is identical to Game 4-ω-1 with the only exception that
for ` = 1, . . . , q2, the components of the `-th queried ciphertext corresponding
to vectors (#»x (`,0), #»x (`,1)) are computed as

c
(`)
1 = g

α`
∑

i
x

(`,1)
i

#»
b i+ α̌′′`

∑
i
x

(`,0)
i

#»
b 2n+i +α′′′`

∑
i
x

(`,0)
i

#»
b 3n+i+ξ`

#»
b 4n+2

1 ,

c
(`)
2 = g

α`
#»
d 1+ α̌′′`

#»
d 3 +α′′′`

#»
d 4+ξ`,0

#»
d 6

1 ,

 (25)

where α̌′′`
$←− Zp and all the other variables are generated as in Game 4-ω-1.

Game 4-ω-3: This game is the same as Game 4-ω-2 with the only exception that
the components of the ω-th queried functional key for vectors (#»y (ω,0), #»y (ω,1))
are computed as

k
∗(ω)
1 = g

γω
∑

i
y

(ω,1)
i

#»
b ∗i+γ̆′′ω

∑
i
y

(ω,0)
i

#»
b ∗2n+i+ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = g

γω
#»
d ∗1+γ̆′′ω

#»
d ∗3+ηω,0

#»
d ∗5

2 ,

 (26)

where all the variables are generated as in Game 4-ω-2, i.e., in this game k∗(ω)
1

and k∗(ω)
2 are transformed from those in the previous game by dropping the

terms involving γ′′′ω in the exponent of g2.

Game 4-ω-4: This game is analogous to Game 4-ω-3 except that the components
of the ω-th queried functional key corresponding to vectors (#»y (ω,0), #»y (ω,1)) are
formed as

k
∗(ω)
1 = g

γω
∑

i
y

(ω,1)
i

#»
b ∗i+ γ̆′ω

∑
i
y

(ω,0)
i

#»
b ∗n+i +γ̆′′ω

∑
i
y

(ω,0)
i

#»
b ∗2n+i+ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = g

γω
#»
d ∗1+ γ̆′ω

#»
d ∗2 +γ̆′′ω

#»
d ∗3+ηω,0

#»
d ∗5

2 ,

 (27)

where γ̆′ω
$←− Zp and all the other variables are generated as in Game 4-ω-3.

Sequence of Subgames of Game 4-ω-5
[

Game 4-ω-5-κ-1, . . . , Game
4-ω-5-κ-5 (κ = 1, . . . , q2)

]
Game 4-ω-5-κ-1: Game 4-ω-5-0-5 coincides with Game 4-ω-4. Game 4-ω-5-κ-1 is
identical to Game 4-ω-5-(κ−1)-5 except that the components of the κ-th queried
ciphertext corresponding to vectors (#»x (κ,0), #»x (κ,1)) are computed as

c
(κ)
1 = g

∑
i
(ακx(κ,1)

i

#»
b i+ ᾰ′κx

(κ,0)
i

#»
b n+i +α̌′′κx

(κ,0)
i

#»
b 2n+i+α′′′κ x

(κ,0)
i

#»
b 3n+i)+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+ ᾰ′κ

#»
d 2 +α̌′′κ

#»
d 3+α′′′κ

#»
d 4+ξκ,0

#»
d 6

1 ,

(28)

where ᾰ′κ
$←− Zp and all the other variables are generated as in Game 4-ω-5-(κ−

1)-5.

18 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Game 4-ω-5-κ-2: This game is the same as Game 4-ω-5-κ-1 except that the
components of the κ-th queried ciphertext for vectors (#»x (κ,0), #»x (κ,1)) are formed
as

c
(κ)
1 = g

ακ
∑

i
x

(κ,1)
i

#»
b i+ᾰ′κ

∑
i
x

(κ,0)
i

#»
b n+i+α′′′κ

∑
i
x

(κ,0)
i

#»
b 3n+i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+ᾰ′κ

#»
d 2+α′′′κ

#»
d 4+ξκ,0

#»
d 6

1 ,

 (29)

where all the variables are generated as in Game 4-ω-5-κ-1, i.e., in this game c(κ)
1

and c(κ)
2 are changed from those in the last game by deleting the terms involving

α̌′′κ in the exponent of g1.

Game 4-ω-5-κ-3: This game is similar to Game 4-ω-5-κ-2 with the only ex-
ception that the components of the ω-th queried functional key corresponding
to vectors (#»y (ω,0), #»y (ω,1)) are computed as

k
∗(ω)
1 = g

γω
∑

i
y

(ω,1)
i

#»
b ∗i+γ̆′ω

∑
i
y

(ω,1)
i

#»
b ∗n+i+γ̆

′′
ω

∑
i
y

(ω,0)
i

#»
b ∗2n+i+ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = g

γω
#»
d ∗1+γ̆′ω

#»
d ∗2+γ̆′′ω

#»
d ∗3+ηω,0

#»
d ∗5

2 ,

 (30)

while the components of the κ-th queried ciphertext corresponding to vectors
(#»x (κ,0), #»x (κ,1)) are created as

c
(κ)
1 = g

ακ
∑

i
x

(κ,1)
i

#»
b i+ᾰ′κ

∑
i
x

(κ,1)
i

#»
b n+i+α′′′κ

∑
i
x

(κ,0)
i

#»
b 3n+i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+ᾰ′κ

#»
d 2+α′′′κ

#»
d 4+ξκ,0

#»
d 6

1 ,

 (31)

where all the variables are generated as in Game 4-ω-5-κ-2.

Game 4-ω-5-κ-4: This game is the same as Game 4-ω-5-κ-3 except that the
components of the κ-th queried ciphertext for vectors (#»x (κ,0), #»x (κ,1)) are com-
puted as

c
(κ)
1 = g

ακ
∑

i
x

(κ,1)
i

#»
b i+α′′′κ

∑
i
x

(κ,0)
i

#»
b 3n+i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+α′′′κ

#»
d 4+ξκ,0

#»
d 6

1 ,

 (32)

where all the variables are generated as in Game 4-ω-5-κ-3, i.e., in this game c(κ)
1

and c(κ)
2 are transformed from those in the earlier game by removing the terms

involving ᾰ′κ in the exponent of g1.

Game 4-ω-5-κ-5: This game is analogous to Game 4-ω-5-κ-4 with the only
exception that the components of the ω-th queried functional key corresponding
to vectors (#»y (ω,0), #»y (ω,1)) are formed as

k
∗(ω)
1 =

g
γω
∑

i
y

(ω,1)
i

#»
b ∗i+γ̆′ω

∑
i
y

(ω,0)
i

#»
b ∗n+i+γ̆

′′
ω

∑
i
y

(ω,0)
i

#»
b ∗2n+i+ηω

#»
b ∗4n+1

2 ,

if κ ≤ q2 − 1

g
γω
∑

i
y

(ω,1)
i

#»
b ∗i+γ̆′ω

∑
i
y

(ω,1)
i

#»
b ∗n+i+γ̆

′′
ω

∑
i
y

(ω,1)
i

#»
b ∗2n+i+ηω

#»
b ∗4n+1

2 ,

if κ = q2

(33a)

(33b)
k
∗(ω)
2 = g

γω
#»
d ∗1+γ̆′ω

#»
d ∗2+γ̆′′ω

#»
d ∗3+ηω,0

#»
d ∗5

2 (33c)

Functional Encryption for Inner Product with Full Function Privacy 19

where all the variables are generated as in Game 4-ω-5-κ-4. Here a part of the
exponent framed by a white box (respectively light gray box) indicates those
terms which were changed from the previous game when κ ≤ q2−1 (respectively
κ = q2). More precisely, for κ ≤ q2 − 1, Eq. (33a) resets k∗(ω)

1 as in Eq. (27) by
changing the portion of the exponent framed by a white box before executing the
sequence of subgames Game 4-ω-5-κ-1 – Game 4-ω-5-κ-5 for the next value of κ.
Eq. (33b) modifies k∗(ω)

1 only once for κ = q2 by applying change in the portion
of the exponent framed by a light gray box and comes out of the sequence of
subgames of Game 4-ω-5.

Game 4-ω-6: This game is the same as Game 4-ω-5-q2-5 with the only exception
that the components of the ω-th queried functional key corresponding to vectors
(#»y (ω,0), #»y (ω,1)) are formed as

k
∗(ω)
1 = g

γω
∑

i
y

(ω,1)
i

#»
b ∗i+ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = g

γω
#»
d ∗1+ηω,0

#»
d ∗5

2 ,

 (34)

where all the variables are generated as in Game 4-ω-5-q2-5, i.e., in this game
k
∗(ω)
1 and k∗(ω)

2 are changed from those in the previous game by deleting the
terms involving γ̆′ω and γ̆′′ω in the exponent of g2.

VI〉 Game 5 Sequence
[
Game 5-κ-1, . . . , Game 5-κ-4 (κ = 1, . . . , q2)

]
Game 5-κ-1: Game 5-0-4 coincides with Game 4-q1-6. Game 5-κ-1 is similar
to Game 5-(κ− 1)-4 except that the components of the κ-th queried ciphertext
for vectors (#»x (κ,0), #»x (κ,1)) are created as

c
(κ)
1 = g

ακ
∑

i
x

(κ,1)
i

#»
b i+ ὰ′′κ

∑
i
x

(κ,0)
i

#»
b 2n+i +α′′′κ

∑
i
x

(κ,0)
i

#»
b 3n+i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+ ὰ′′κ

#»
d 3 +α′′′κ

#»
d 4+ξκ,0

#»
d 6

1 ,

 (35)

where ὰ′′κ
$←− Zp and all the other variables are generated as in Game 5-(κ− 1)-4.

Game 5-κ-2: This game is analogous to Game 5-κ-1 with the only exception
that the components of the κ-th queried ciphertext corresponding to vectors
(#»x (κ,0), #»x (κ,1)) are computed as

c
(κ)
1 = g

ακ
∑

i
x

(κ,1)
i

#»
b i+ὰ′′κ

∑
i
x

(κ,0)
i

#»
b 2n+i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+ὰ′′κ

#»
d 3+ξκ,0

#»
d 6

1 ,

 (36)

where all the variables are generated as in Game 5-κ-1, i.e., in this game c(κ)
1 and

c
(κ)
2 are modified from those in the last game by dropping the terms involving
α′′′κ in the exponent of g1.

Game 5-κ-3: This game is identical to Game 5-κ-2 except that the compo-
nents of the κ-th queried ciphertext corresponding to vectors (#»x (κ,0), #»x (κ,1)) are

20 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

computed as

c
(κ)
1 = g

ακ
∑

i
x

(κ,1)
i

#»
b i+ὰ′′κ

∑
i
x

(κ,1)
i

#»
b 2n+i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+ὰ′′κ

#»
d 3+ξκ,0

#»
d 6

1 ,

 (37)

where all the variables are generated as in Game 5-κ-2.

Game 5-κ-4: This game is similar to Game 5-κ-3 with the only exception
that the components of the κ-th queried ciphertext corresponding to vectors
(#»x (κ,0), #»x (κ,1)) are computed as

c
(κ)
1 = g

ακ
∑

i
x

(κ,1)
i

#»
b i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+ξκ,0

#»
d 6

1 ,

 (38)

where all the variables are generated as in Game 5-κ-3, i.e., in this game c(κ)
1 and

c
(κ)
2 are changed from those in the earlier game by deleting the terms involving
ὰ′′κ in the exponent of g1. Note that in the final game, i.e., Game 5-q2-4, all the
queried functional keys sk(j) = (k∗(j)1 ,k

∗(j)
2), for j = 1, . . . , q1, and all the queried

ciphertexts ct(`) = (c(`)
1 , c

(`)
2), for ` = 1, . . . , q2, corresponds to functional keys

and ciphertexts in the real security game of §2.1 where the bit used by the
challenger is c = 1.

� Advantages of Adversary in Hybrid Games

Denote View(0)
A ; View(1-κ-h)

A , for h = 1, . . . , 4; View(2-ω-h)
A , for h = 1, 3, . . . , 6;

View(2-ω-2-κ-h)
A , for h = 1, . . . , 5; View(3)

A ; View(4-ω-h)
A , for h = 1, . . . , 4, 6;

View(4-ω-5-κ-h)
A , for h = 1, . . . , 5; and View(5-κ-h)

A , for h = 1, . . . , 4 to be the views
of the adversary A in Game 0; Game 1-κ-h, for h = 1, . . . , 4; Game 2-ω-h, for
h = 1, 3, . . . , 6; Game 2-ω-2-κ-h, for h = 1, . . . , 5; Game 3; Game 4-ω-h, for
h = 1, . . . , 4, 6; Game 4-ω-5-κ-h, for h = 1, . . . , 5; and Game 5-κ-h, for h = 1, . . . , 4
respectively. We define the advantage of A in Game ι as

Adv(ι)
A (λ) = Pr

[
A(View(ι)

A) = 1
]
,

for ι ∈ {0, 1-κ-h (h = 1, . . . , 4), 2-ω-h (h = 1, 3, . . . , 6), 2-ω-2-κ-h (h =
1, . . . , 5), 3, 4-ω-h (h = 1, . . . , 4, 6), 4-ω-5-κ-h (h = 1, . . . , 5), 5-κ-h (h = 1, . . . , 4)}.

Lemmas 1 – 16, some of which are provided in the next subsection and the rest
in the full version [9], will show that the gap in the advantage of the adversary
A between the neighboring games from Game 0 to Game 3 is at most negligible.
Further, observe that the transition from Game 3 to Game 5-q2-4 is actually
the reverse of the transformation from Game 0 to Game 2-q1-6 with the roles of
(#»x

(0)
` , #»y

(0)
j) exchanged with that of (#»x

(1)
` , #»y

(1)
j), for j = 1, . . . , q1; ` = 1, . . . , q2.

Thus, it follows that
AdvPKFP-IPE

A (λ) =
∣∣Adv(0)

A (λ)− Adv(5-q2-4)
A (λ)

∣∣
is negligible under the SXDH assumption.

Hence the theorem. ut

Functional Encryption for Inner Product with Full Function Privacy 21

� Technically Distinguished Lemmas for Proof of Theorem 1
Here, we present the statements along with the proofs of those lemmas among
Lemmas 1 – 16, namely, Lemmas 1, 2, 5, 8, and 16, which are technically apart
from one another. The proofs of these lemmas will demonstrate in detail our main
techniques. The remaining lemmas, proofs of which follow methods analogous to
some of the lemmas presented in this section, are given in the full version [9].

Lemma 1. For any probabilistic adversary A, there exists a probabilistic algo-
rithm C1-1, whose running time is essentially the same as that of A, such that
for any security parameter λ,

∣∣Adv(1-(κ−1)-4)
A (λ) − Adv(1-κ-1)

A (λ)
∣∣ ≤ AdvSXDH

C1-κ-1
(λ),

where C1-κ-1(·) = C1-1(κ, ·).

Proof. Suppose that there is a probabilistic adversary A that achieves a non-
negligible difference in advantage between Game 1-(κ − 1)-4 and Game 1-κ-1.
We construct a probabilistic algorithm C1-1 that attempts to decide the SXDH
problem using A as a subroutine. C1-1 is given a positive integer κ and an in-
stance of the SXDH problem %β =

(
(p,G1,G2,GT , g1, g2, e), gµ1 , gν1 ,<β = gµν+r

1
)
,

where µ, ν $←− Zp, and r = 0 or r $←− Zp according as β = 0 or 1. C1-1 plays the
role of the challenger in the security game of §2.1 and interacts with A as follows:

• C1-1 forms (p,V1,V2,GT ,A1,A2, E) $←− GDPVS
(
4n+ 2, (p,G1,G2,GT , g1, g2, e)

)
and (p,V′1,V′2,GT ,A′1,A′2, E′)

$←− GDPVS
(
6, (p,G1,G2,GT , g1, g2, e)

)
. Next, it sam-

ples dual orthonormal bases
(
F = { #»

f 1, . . . ,
#»

f 4n+2},F∗ = { #»

f ∗1, . . . ,
#»

f ∗4n+2}
) $←−

GOB(Z4n+2
p) and

(
H = { #»

h 1, . . . ,
#»

h 6},H∗ = { #»

h ∗1, . . . ,
#»

h ∗6}
) $←− GOB(Z6

p). It implic-
itly defines
#»

b i = #»

f i + µ
#»

f 2n+i (i = 1, . . . , n), #»

b i = #»

f i (i = n+ 1, . . . , 4n+ 2),
#»

b ∗2n+i = #»

f ∗2n+i − µ
#»

f ∗i (i = 1, . . . , n), #»

b ∗i = #»

f ∗i (i = 1, . . . , 2n, 3n+ 1, . . . , 4n+ 2),
#»

d 1 = #»

h 1 + µ
#»

h 3,
#»

d i = #»

h i (i = 2, . . . , 6),
#»

d ∗3 = #»

h ∗3 − µ
#»

h ∗1,
#»

d ∗i = #»

h ∗i (i = 1, 2, 4, . . . , 6).

It implicitly sets B = { #»

b 1, . . . ,
#»

b 4n+2},B∗ = { #»

b ∗1, . . . ,
#»

b ∗4n+2},D = { #»

d 1, . . . ,
#»

d 6},
and D∗ = { #»

d ∗1, . . . ,
#»

d ∗6}. Note that (B,B∗) and (D,D∗) are dual orthonormal
bases since those are obtained by applying an invertible linear transformation to
the output of GOB(Z4n+2

p) and GOB(Z6
p) respectively. For instance, observe that

for i = 1, . . . , n,

〈 #»

b i,
#»

b ∗2n+i〉 =
0

〈 #»

f i,
#»

f ∗2n+i〉 −µ
1

〈 #»

f i,
#»

f ∗i 〉 +µ
1

〈 #»

f 2n+i,
#»

f ∗2n+i〉 −µ2
0

〈 #»

f 2n+i,
#»

f ∗i 〉= 0,

〈 #»

b i,
#»

b ∗i 〉 =
1

〈 #»

f i,
#»

f ∗i 〉 +µ
0

〈 #»

f 2n+i,
#»

f ∗i 〉= 1, etc.
It hands the public parameters pp =

(
p, {Vh,V′h}h=1,2,GT , {Ah,A′h}h=1,2, E,E

′)
to A.

• In response to the j-th functional key query of A corresponding to vectors

22 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

(#»y (j,0), #»y (j,1)), for j = 1, . . . , q1, C1-1 chooses γj , ηj , ηj,0
$←− Zp, computes

k
∗(j)
1 = g

γj
∑

i
y

(j,0)
i

#»
f ∗i+ηj

#»
f ∗4n+1

2 = g
γj
∑

i
y

(j,0)
i

#»
b ∗i+ηj

#»
b ∗4n+1

2 ,

k
∗(j)
2 = g

γj
#»
h ∗1+ηj,0

#»
h ∗5

2 = g
γj

#»
d ∗1+ηj,0

#»
d ∗5

2 ,

and gives the functional key sk(j) = (k∗(j)1 ,k
∗(j)
2) to A.

• In reply to A’s `-th ciphertext query corresponding to vectors (#»x (`,0), #»x (`,1)),
C1-1 proceeds as follows:
a) (` < κ) C1-1 picks α`, α′′′` , ξ`, ξ`,0

$←− Zp and computes

c
(`)
1 = g

α`
∑

i
x

(`,0)
i

#»
f i+α′′′`

∑
i
x

(`,1)
i

#»
f 3n+i+ξ`

#»
f 4n+2

1 (gµ1)α`
∑

i
x

(`,0)
i

#»
f 2n+i

= g
α`
∑

i
x

(`,0)
i

#»
b i+α′′′`

∑
i
x

(`,1)
i

#»
b 3n+i+ξ`

#»
b 4n+2

1 ,

c
(`)
2 = g

α`
#»
h 1+α′′′`

#»
h 4+ξ`,0

#»
h 6

1 (gµ1)α`
#»
h 3 = g

α`
#»
d 1+α′′′`

#»
d 4+ξ`,0

#»
d 6

1 .

b) (` = κ) C1-1 selects ξκ, ξκ,0
$←− Zp and computes

c
(κ)
1 = (gν1)

∑
i
x

(κ,0)
i

#»
f i(<β)

∑
i
x

(κ,0)
i

#»
f 2n+ig

ξκ
#»
f 4n+2

1

= g
ν
∑

i
x

(κ,0)
i

(#»
f i+µ

#»
f 2n+i)+r

∑
i
x

(κ,0)
i

#»
f 2n+i+ξκ

#»
f 4n+2

1

= g
ν
∑

i
x

(κ,0)
i

#»
b i+r

∑
i
x

(κ,0)
i

#»
b 2n+i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = (gν1)

#»
h 1(<β)

#»
h 3g

ξκ,0
#»
h 6

1 = g
ν(#»
h 1+µ #»

h 3)+r #»
h 3+ξκ,0

#»
h 6

1 = g
ν

#»
d 1+r #»

d 3+ξκ,0
#»
d 6

1 .

c) (` > κ) C1-1 chooses α`, ξ`, ξ`,0
$←− Zp and computes

c
(`)
1 = g

α`
∑

i
x

(`,0)
i

#»
f i+ξ`

#»
f 4n+2

1 (gµ1)α`
∑

i
x

(`,0)
i

#»
f 2n+i = g

α`
∑

i
x

(`,0)
i

#»
b i+ξ`

#»
b 4n+2

1 ,

c
(`)
2 = g

α`
#»
h 1+ξ`,0

#»
h 6

1 (gµ1)α`
#»
h 3 = g

α`
#»
d 1+ξ`,0

#»
d 6

1 .

C1-1 provides the ciphertext ct(`) = (c(`)
1 , c

(`)
2) to A.

• Finally, A outputs a bit c′. C1-1 outputs β′ = c′.

Observe that if β = 0, i.e., r = 0, the κ-th answered ciphertext is of the form
(6), as in Game 1-(κ − 1)-4, where ακ = ν. On the other hand, if β = 1, i.e.,
r

$←− Zp, the κ-th answered ciphertext is of the form (7), as in Game 1-κ-1, where
ακ = ν and α′′κ = r. Further, for ` < κ, the `-th answered ciphertext is of the
form (10) corresponding to Game 1-`-4, which is its proper form in both Game
1-(κ−1)-4 and Game 1-κ-1 since the full sequence of transformations Game 1-`-1
– Game 1-`-4 has already been executed, whereas for ` > κ, the `-th answered
ciphertext is of the form (6) corresponding to Game 0, which is its proper form
since the sequence of transitions Game 1-`-1 – Game 1-`-4 has not yet been taken
place. Additionally, for j = 1, . . . , q1, the j-th answered functional key is of the
form (5) corresponding to Game 0, which is its proper form since in the game
transition so far no change is made in the form of the queried functional keys.
Thus the view of A simulated by C1-1 is distributed as in Game 1-(κ − 1)-4 or
Game 1-κ-1 according as β = 0 or 1. This completes the proof of Lemma 1. ut

Functional Encryption for Inner Product with Full Function Privacy 23

Lemma 2. For any probabilistic adversary A, for any security parameter λ,
Adv(1-κ-1)

A (λ) = Adv(1-κ-2)
A (λ).

Proof. In order to prove Lemma 2, we define an intermediate game, namely,
Game 1-κ-1’ as follows and show the equivalence of the distributions of the views
of the adversary A in Game 1-κ-1 and that in Game 1-κ-1’ (Claim 1) as well as
those in Game 1-κ-2 and in Game 1-κ-1’ (Claim 2).

Game 1-κ-1’ (κ = 1, . . . , q2): This game is identical to Game 1-κ-1 with the
only exception that the components of the κ-th queried ciphertext corresponding
to vectors (#»x (κ,0), #»x (κ,1)) are formed as

c
(κ)
1 = g

ακ
∑

i
x

(κ,0)
i

#»
b i+α′′κ

∑
i
θ

(κ)
i

#»
b 2n+i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+α′′κ

#»
d 3+ξκ,0

#»
d 6

1 ,

 (39)

where #»

θ (κ) $←− Znp\{
#»0 } and all the other variables are generated as in Game

1-κ-1.

Claim 1 The distribution of the view of the adversary A in Game 1-κ-1 and
that in Game 1-κ-1’ are equivalent.

Proof. Consider the distribution of the view of A in Game 1-κ-1. We define new
dual orthonormal bases (U,U∗) of Z4n+2

p using (B,B∗) $←− GOB(Z4n+2
p) below. We

generate M $←− GL(n,Zp) and define
#»u 2n+1

...
#»u 3n

 = M−1 ·

#»

b 2n+1
...

#»

b 3n

 ,

#»u ∗2n+1

...
#»u ∗3n

 = Mᵀ ·

#»

b ∗2n+1
...

#»

b ∗3n

 ,

#»u i = #»

b i,
#»u ∗i = #»

b ∗i ,
(i = 1, . . . , 2n, 3n+ 1, . . . , 4n+ 2).

(40)

We set U = { #»u 1, . . . ,
#»u 4n+2},U∗ = { #»u ∗1, . . . ,

#»u ∗4n+2}. Note that (U,U∗) are in-
deed dual orthonormal bases since those are obtained from the dual orthonormal
bases (B,B∗) by applying an invertible linear transformation. The components
of the κ-th queried ciphertext corresponding to vectors (#»x (κ,0), #»x (κ,1)) are ex-
pressed as

c
(κ)
1 = g

ακ
∑

i
x

(κ,0)
i

#»
b i+α′′κ

∑
i
x

(κ,0)
i

#»
b 2n+i+ξκ

#»
b 4n+2

1

= g
ακ
∑

i
x

(κ,0)
i

#»u i+α′′κ
∑

i
θ

(κ)
i

#»u 2n+i+ξκ #»u 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+α′′κ

#»
d 3+ξκ,0

#»
d 6

1 ,

 (41)

where ακ, α′′κ, ξκ, ξκ,0
$←− Zp, and #»

θ (κ) = #»x (κ,0) ·M .

Since #»x (κ,0) 6= #»0 and M is uniformly selected from GL(n,Zp),
#»

θ (κ) is uni-
formly distributed in Znp\{

#»0 } and it is independent from all the other variables.
The components of any other `-th queried ciphertext corresponding to vectors
(#»x (`,0), #»x (`,1)) are expressed as

24 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

a) (` < κ)

c
(`)
1 = g

α`
∑

i
x

(`,0)
i

#»
b i+α′′′`

∑
i
x

(`,1)
i

#»
b 3n+i+ξ`

#»
b 4n+2

1

= g
α`
∑

i
x

(`,0)
i

#»u i+α′′′`
∑

i
x

(`,1)
i

#»u 3n+i+ξ` #»u 4n+2

1 ,

c
(`)
2 = g

α`
#»
d 1+α′′′`

#»
d 4+ξ`,0

#»
d 6

1 ,
b) (` > κ)

c
(`)
1 = g

α`
∑

i
x

(`,0)
i

#»
b i+ξ`

#»
b 4n+2

1 = g
α`
∑

i
x

(`,0)
i

#»u i+ξ` #»u 4n+2

1 , c
(`)
2 = g

α`
#»
d 1+ξ`,0

#»
d 6

1 ,

and for all j = 1, . . . , q1, the components of the j-th queried functional key for
vectors (#»y (j,0), #»y (j,1)) are expressed as

k
∗(j)
1 = g

γj
∑

i
y

(j,0)
i

#»
b ∗i+ηj

#»
b ∗4n+1

2 = g
γj
∑

i
y

(j,0)
i

#»u ∗i+ηj #»u ∗4n+1
2 ,k

∗(j)
2 = g

γj
#»
d ∗1+ηj,0

#»
d ∗5

2 ,
where all the variables are generated as in Game 1-κ-1.

Observe that in the light of the adversary A’s view, both (B,B∗) and (U,U∗)
are consistent with respect to pp. Also, this transformation of bases maintains the
form (5) of the j-th answered functional key sk(j) = (k∗(j)1 ,k

∗(j)
2) corresponding

to Game 0, for j = 1, . . . , q1. Additionally, for ` < κ, the `-th answered ciphertext
ct(`) = (c(`)

1 , c
(`)
2) preserves its form as in Eq. (10) corresponding to Game 1-`-4

while for ` > κ, ct(`) = (c(`)
1 , c

(`)
2) remains the same as in Eq. (6) corresponding

to Game 0 under the basis transformation. Moreover, since the RHS of Eq. (41)
and that of Eq. (39) are of the same form, the answered ciphertext ct(κ) =
(c(κ)

1 , c
(κ)
2) is Game 1-κ-1 can be conceptually changed to that in Game 1-κ-1’.

ut

Claim 2 The distribution of the view of adversary A in Game 1-κ-2 and that
in Game 1-κ-1’ are equivalent.

Proof. Claim 2 is proven in a similar manner to Claim 1, using new dual or-
thonormal bases (U,U∗) as in Eq. (40). ut

From Claims 1 and 2, it follows that adversary A’s view in Game 1-κ-1 can be
conceptually changed to that in Game 1-κ-2. This completes the proof of Lemma
2. ut

Lemma 5. For any probabilistic adversary A, there exists a probabilistic algo-
rithm C2-1, whose running time is essentially the same as that of A, such that
for any security parameter λ,

∣∣Adv(2-(ω−1)-6)
A (λ) − Adv(2-ω-1)

A (λ)
∣∣ ≤ AdvSXDH

C2-ω-1
(λ),

where C2-ω-1(·) = C2-1(ω, ·).

Proof. Suppose that there is a probabilistic adversary A that achieves a non-
negligible difference in advantage between Game 2-(ω − 1)-6 and Game 2-ω-1.
We construct a probabilistic algorithm C2-1 that attempts to decide the SXDH
problem using A as a subroutine. C2-1 is given a positive integer ω and an in-
stance of the SXDH problem %̆β =

(
(p,G1,G2,GT , g1, g2, e), gµ̆2 , gν̆2 , <̆β = gµ̆ν̆+r̆

2
)
,

where µ̆, ν̆ $←− Zp, and r̆ = 0 or r̆ $←− Zp according as β = 0 or 1. C2-1 plays the

Functional Encryption for Inner Product with Full Function Privacy 25

role of the challenger in the security game of §2.1 and interacts with A as follows:

• The setup phase is executed by C2-1 in an analogous fashion as that performed
by C1-1 in the proof of Lemma 1 except that C2-1 sets the dual orthonormal bases(
B = { #»

b 1, . . . ,
#»

b 4n+2},B∗ = { #»

b ∗1, . . . ,
#»

b ∗4n+2}
)

and
(
D = { #»

d 1, . . . ,
#»

d 6},D∗ =
{ #»

d ∗1, . . . ,
#»

d ∗6}
)

implicitly from
(
F = { #»

f 1, . . . ,
#»

f 4n+2},F∗ = { #»

f ∗1, . . . ,
#»

f ∗4n+2}
) $←−

GOB(Z4n+2
p) and

(
H = { #»

h 1, . . . ,
#»

h 6},H∗ = { #»

h ∗1, . . . ,
#»

h ∗6}
) $←− GOB(Z6

p) respec-
tively by selecting δ, σ $←− Zp and implicitly defining the following:

#»

b n+i = #»

f n+i − δµ̆
#»

f i (i = 1, . . . , n), #»

b 2n+i = #»

f 2n+i − σµ̆
#»

f i (i = 1, . . . , n),
#»

b i = #»

f i (i = 1, . . . , n, 3n+ 1, . . . , 4n+ 2),
#»

b ∗i = #»

f ∗i + δµ̆
#»

f ∗n+i + σµ̆
#»

f ∗2n+i (i = 1, . . . , n), #»

b ∗i = #»

f ∗i (i = n+ 1, . . . , 4n+ 2),
#»

d 2 = #»

h 2 − δµ̆
#»

h 1,
#»

d 3 = #»

h 3 − σµ̆
#»

h 1,
#»

d i = #»

h i (i = 1, 4, . . . , 6),
#»

d ∗1 = #»

h ∗1 + δµ̆
#»

h ∗2 + σµ̆
#»

h ∗3,
#»

d ∗i = #»

h ∗i (i = 2, . . . , 6).
• In response to the j-th functional key query of A corresponding to vectors
(#»y (j,0), #»y (j,1)), C2-1 proceeds as follows:
a) (j < ω) C2-1 picks γj , γ′′′j , ηj , ηj,0

$←− Zp and computes

k
∗(j)
1 = g

∑
i
(γjy(j,0)

i

#»
f ∗i+γ′′′j y

(j,1)
i

#»
f ∗3n+i)+ηj

#»
f ∗4n+1

2 ⊕

(gµ̆2)
∑

i
(δγjy(j,0)

i

#»
f ∗n+i+σγjy

(j,0)
i

#»
f ∗2n+i)

= g
γj
∑

i
y

(j,0)
i

#»
b ∗i+γ′′′j

∑
i
y

(j,1)
i

#»
b ∗3n+i+ηj

#»
b ∗4n+1

2 ,

k
∗(j)
2 = g

γj
#»
h ∗1+γ′′′j

#»
h ∗4+ηj,0

#»
h ∗5

2 (gµ̆2)δγj
#»
h ∗2+σγj

#»
h ∗3 = g

γj
#»
d ∗1+γ′′′j

#»
d ∗4+ηj,0

#»
d ∗5

2 .

b) (j = ω) C2-1 chooses ηω, ηω,0
$←− Zp and computes

k
∗(ω)
1 = (gν̆2)

∑
i
y

(ω,0)
i

#»
f ∗i (<̆β)

∑
i
(δy(ω,0)

i

#»
f ∗n+i+σy

(ω,0)
i

#»
f ∗2n+i)g

ηω
#»
f ∗4n+1

2

= g

∑
i

(
ν̆y

(ω,0)
i

(#»
f ∗i+δµ̆ #»

f ∗n+i+σµ̆
#»
f ∗2n+i)+δr̆y

(ω,0)
i

#»
f ∗n+i+σr̆y

(ω,0)
i

#»
f ∗2n+i

)
+ηω

#»
f ∗4n+1

2

= g
ν̆
∑

i
y

(ω,0)
i

#»
b ∗i+δr̆

∑
i
y

(ω,0)
i

#»
b ∗n+i+σr̆

∑
i
y

(ω,0)
i

#»
b ∗2n+i+ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = (gν̆2)

#»
h ∗1 (<̆β)δ

#»
h ∗2+σ #»

h ∗3g
ηω,0

#»
h ∗5

2 = g
ν̆(#»
h ∗1+δµ̆ #»

h ∗2+σµ̆ #»
h ∗3)+δr̆ #»

h ∗2+σr̆ #»
h ∗3+ηω,0

#»
h ∗5

2

= g
ν̆

#»
d ∗1+δr̆ #»

d ∗2+σr̆ #»
d ∗3+ηω,0

#»
d ∗5

2 .

c) (j > ω) C2-1 selects γj , ηj , ηj,0
$←− Zp and computes

k
∗(j)
1 = g

γj
∑

i
y

(j,0)
i

#»
f ∗i+ηj

#»
f ∗4n+1

2 (gµ̆2)δγj
∑

i
y

(j,0)
i

#»
f ∗n+i+σγj

∑
i
y

(j,0)
i

#»
f ∗2n+i

= g
γj
∑

i
y

(j,0)
i

#»
b ∗i+ηj

#»
b ∗4n+1

2 ,

k
∗(j)
2 = g

γj
#»
h ∗1+ηj,0

#»
h ∗5

2 (gµ̆2)δγj
#»
h ∗2+σγj

#»
h ∗3 = g

γj
#»
d ∗1+ηj,0

#»
d ∗5

2 .

C2-1 hands the functional key sk(j) = (k∗(j)1 ,k
∗(j)
2) to A.

• In reply to the `-th ciphertext query of A for vectors (#»x (`,0), #»x (`,1)), for

26 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

` = 1, . . . , q2, C2-1 selects α`, α′′′` , ξ`, ξ`,0
$←− Zp and computes

c
(`)
1 = g

α`
∑

i
x

(`,0)
i

#»
f i+α′′′`

∑
i
x

(`,1)
i

#»
f 3n+i+ξ`

#»
f 4n+2

1

= g
α`
∑

i
x

(`,0)
i

#»
b i+α′′′`

∑
i
x

(`,1)
i

#»
b 3n+i+ξ`

#»
b 4n+2

1 ,

c
(`)
2 = g

α`
#»
h 1+α′′′`

#»
h 4+ξ`,0

#»
h 6

1 = g
α`

#»
d 1+α′′′`

#»
d 4+ξ`,0

#»
d 6

1 ,

and provides the ciphertext ct(`) = (c(`)
1 , c

(`)
2) to A.

• Finally, A outputs a bit c′. C2-1 outputs β′ = c′.

Observe that if β = 0, i.e., r̆ = 0, the ω-th answered functional key is of the
form (5), as in Game 2-(ω−1)-6, where γω = ν̆. On the other hand, if β = 1, i.e.,
r̆

$←− Zp, the ω-th answered functional key is of the form (11), as in Game 2-ω-1,
where γω = ν̆, γ′ω = δr̆, and γ′′ω = σr̆. Further, for j < ω, the j-th answered
functional key is of the form (21) as in Game 2-j-6, which is its proper form in
both Game 2-(ω − 1)-6 and Game 2-ω-1 since the sequence of transitions Game
2-j-1 – Game 2-j-6 has already been completed, whereas for j > ω, the j-th
answered functional key is of the form (5) corresponding to Game 0, which is
its proper form since during Game 1 sequence of transformations no change was
made to the queried functional keys and the sequence of hybrids Game 2-j-1 –
Game 2-j-6 has not yet been executed. Additionally, for ` = 1, . . . , q2, the `-th
answered ciphertext is of the form (10) as in Game 1-q2-4, which is the proper
form since for ω = 1, no more alteration in the form of these ciphertexts has
occurred after Game 1-q2-4 and for ω ≥ 2, these ciphertexts have been reset to
this form by Eq. (20) in Game 2-(ω− 1)-5. Thus the view of A simulated by C2-1
is distributed as in Game 2-(ω − 1)-6 or Game 2-ω-1 according as β = 0 or 1.
This completes the proof of Lemma 5. ut

Lemma 8. For any probabilistic adversary A, for any security parameter λ,
Adv(2-ω-2-κ-2)

A (λ) = Adv(2-ω-2-κ-3)
A (λ).

Proof. The proof of Lemma 8 utilizes the following result:

Lemma 9 (Lemma 3 in [13]). For τ ∈ Zp, let Sτ = {(#»χ,
#»

ϑ) | 〈 #»χ,
#»

ϑ 〉 =
τ} ⊂ Znp ×Znp , where p is a prime integer and n is some positive integer. For all
(#»χ,

#»

ϑ) ∈ Sτ , for all (#»

ζ , #»υ) ∈ Sτ ,
Pr
[

#»χ · F = #»

ζ
∧

#»

ϑ · F ∗ = #»υ
]

= Pr
[

#»χ · F ∗ = #»

ζ
∧

#»

ϑ · F = #»υ
]

= 1/]Sτ ,

where F $←− GL(n,Zp),F ∗ = (F ᵀ)−1, and for any set A,]A denotes the cardi-
nality of the set A.

In order to prove Lemma 8, we define an intermediate game, namely, Game
2-ω-2-κ-2’ and show the equivalence of the distribution of the view of the ad-
versary A in Game 2-ω-2-κ-2 and that in Game 2-ω-2-κ-2’ (Claim 3) as well as
those in Game 2-ω-2-κ-3 and in Game 2-ω-2-κ-2’ (Claim 4).

Game 2-ω-2-κ-2’ (ω = 1, . . . , q1; κ = 1, . . . , q2): This game is similar to

Functional Encryption for Inner Product with Full Function Privacy 27

Game 2-ω-2-κ-2 with the only exception that the components of the ω-th queried
functional key corresponding to vectors (#»y (ω,0), #»y (ω,1)) are formed as

k
∗(ω)
1 = g

γω
∑

i
y

(ω,0)
i

#»
b ∗i+γ′ω

∑
i
ϑ

(ω)
i

#»
b ∗n+i+γ

′′
ω

∑
i
y

(ω,1)
i

#»
b ∗2n+i+ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = g

γω
#»
d ∗1+γ′ω

#»
d ∗2+γ′′ω

#»
d ∗3+ηω,0

#»
d ∗5

2 ,

 (42)

while the components of the κ-th queried ciphertext corresponding to vectors
(#»x (κ,0), #»x (κ,1)) are created as

c
(κ)
1 = g

ακ
∑

i
x

(κ,0)
i

#»
b i+α′κ

∑
i
χ

(κ)
i

#»
b n+i+α′′′κ

∑
i
x

(κ,1)
i

#»
b 3n+i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+α′κ

#»
d 2+α′′′κ

#»
d 4+ξκ,0

#»
d 6

1 ,

 (43)

such that (#»χ (κ),
#»

ϑ (ω)) $←− Sτω,κ = {(#»χ,
#»

ϑ) | 〈 #»χ,
#»

ϑ 〉 = τω,κ} ⊂ Znp × Znp , where
τω,κ = 〈 #»x (κ,0), #»y (ω,0)〉

(
= 〈 #»x (κ,1), #»y (ω,1)〉 according to the restriction of the

security game
)
, and all the other variables are generated as in Game 2-ω-2-κ-2.

Claim 3 The distribution of the view of adversary A in Game 2-ω-2-κ-2 and
that in Game 2-ω-2-κ-2’ are equivalent.

Proof. Consider the distribution of the view of A in Game 2-ω-2-κ-2. We define
new dual orthonormal bases (U,U∗) of Z4n+2

p using (B,B∗) $←− GOB(Z4n+2
p) below.

We generate W $←− GL(n,Zp) and set
#»un+1

...
#»u 2n

 = W−1 ·

#»

b n+1
...

#»

b 2n

 ,

#»u ∗n+1

...
#»u ∗2n

 = W ᵀ ·

#»

b ∗n+1
...

#»

b ∗2n

 ,

#»u i = #»

b i,
#»u ∗i = #»

b ∗i ,
(i = 1, . . . , n, 2n+ 1, . . . , 4n+ 2).

(44)

We define U = { #»u 1, . . . ,
#»u 4n+2},U∗ = { #»u ∗1, . . . ,

#»u ∗4n+2}. Note that (U,U∗) are
indeed dual orthonormal bases since those are obtained from the dual orthonor-
mal bases (B,B∗) by applying an invertible linear transformation. The compo-
nents of the ω-th queried functional key corresponding to vectors (#»y (ω,0), #»y (ω,1))
are expressed as

k
∗(ω)
1 = g

γω
∑

i
y

(ω,0)
i

#»
b ∗i+γ′ω

∑
i
y

(ω,0)
i

#»
b ∗n+i+γ

′′
ω

∑
i
y

(ω,1)
i

#»
b ∗2n+i+ηω

#»
b ∗4n+1

2

= g
γω
∑

i
y

(ω,0)
i

#»u ∗i+γ′ω
∑

i
ϑ

(ω)
i

#»u ∗n+i+γ
′′
ω

∑
i
y

(ω,1)
i

#»u ∗2n+i+ηω #»u ∗4n+1
2 ,

k
∗(ω)
2 = g

γω
#»
d ∗1+γ′ω

#»
d ∗2+γ′′ω

#»
d ∗3+ηω,0

#»
d ∗5

2 ,

 (45)

while the components of the κ-th queried ciphertext corresponding to vectors
(#»x (κ,0), #»x (κ,1)) are expressed as

c
(κ)
1 = g

ακ
∑

i
x

(κ,0)
i

#»
b i+α′κ

∑
i
x

(κ,0)
i

#»
b n+i+α′′′κ

∑
i
x

(κ,1)
i

#»
b 3n+i+ξκ

#»
b 4n+2

1

= g
ακ
∑

i
x

(κ,0)
i

#»u i+α′κ
∑

i
χ

(κ)
i

#»un+i+α′′′κ
∑

i
x

(κ,1)
i

#»u 3n+i+ξκ #»u 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+α′κ

#»
d 2+α′′′κ

#»
d 4+ξκ,0

#»
d 6

1 ,

 (46)

where γω, γ′ω, γ′′ω, ηω, ηω,0, ακ, α′κ, α′′′κ , ξκ, ξκ,0
$←− Zp, and #»

ϑω = #»y (ω,0) · (W ᵀ)−1,
#»χ (κ) = #»x (κ,0) ·W .

From Lemma 9 it follows that (#»χ (κ),
#»

ϑ (ω)) are uniformly distributed in Sτω,κ ,
where 〈 #»x (κ,0), #»y (ω,0)〉 = τω,κ, and are independent from all the other variables.

28 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

The components of any other j-th queried functional key corresponding to
vectors (#»y (j,0), #»y (j,1)) are expressed as follows
a) (j < ω)

k
∗(j)
1 = g

γj
∑

i
y

(j,0)
i

#»
b ∗i+γ′′′j

∑
i
y

(j,1)
i

#»
b ∗3n+i+ηj

#»
b ∗4n+1

2

= g
γj
∑

i
y

(j,0)
i

#»u ∗i+γ′′′j
∑

i
y

(j,1)
i

#»u ∗3n+i+ηj #»u ∗4n+1
2 ,

k
∗(j)
2 = g

γj
#»
d ∗1+γ′′′j

#»
d ∗4+ηj,0

#»
d ∗5

2 ,
b) (j > ω)

k
∗(j)
1 = g

γj
∑

i
y

(j,0)
i

#»
b ∗i+ηj

#»
b ∗4n+1

2 = g
γj
∑

i
y

(j,0)
i

#»u ∗i+ηj #»u ∗4n+1
2 ,

k
∗(j)
2 = g

γj
#»
d ∗1+ηj,0

#»
d ∗5

2 ,

while the components of any other `-th queried ciphertext corresponding to
vectors (#»x (`,0), #»x (`,1)) are expressed as
a) (` < κ)

c
(`)
1 = g

α`
∑

i
x

(`,0)
i

#»
b i+ᾰ′′`

∑
i
x

(`,1)
i

#»
b 2n+i+α′′′`

∑
i
x

(`,1)
i

#»
b 3n+i+ξ`

#»
b 4n+2

1

= g
α`
∑

i
x

(`,0)
i

#»u i+ᾰ′′`
∑

i
x

(`,1)
i

#»u 2n+i+α′′′`
∑

i
x

(`,1)
i

#»u 3n+i+ξ` #»u 4n+2

1 ,

c
(`)
2 = g

α`
#»
d 1+ᾰ′′`

#»
d 3+α′′′`

#»
d 4+ξ`,0

#»
d 6

1 ,
b) (` > κ)

c
(`)
1 = g

α`
∑

i
x

(`,0)
i

#»
b i+α′′′`

∑
i
x

(`,1)
i

#»
b 3n+i+ξ`

#»
b 4n+2

1

= g
α`
∑

i
x

(`,0)
i

#»u i+α′′′`
∑

i
x

(`,1)
i

#»u 3n+i+ξ` #»u 4n+2

1 ,

c
(`)
2 = g

α`
#»
d 1+α′′′`

#»
d 4+ξ`,0

#»
d 6

1 ,

where all the variables are generated as in Game 2-ω-2-κ-2.

Observe that in the light of the adversary A’s view, both (B,B∗) and (U,U∗)
are consistent with respect to pp. Also, for j < ω, the j-th answered functional
key sk(j) = (k∗(j)1 ,k

∗(j)
2) preserves its form as in Eq. (21) corresponding to

Game 2-j-6 while for j > ω, sk(j) = (k∗(j)1 ,k
∗(j)
2) remains the same as in Eq. (5)

corresponding to Game 0, and for ` < κ, the `-th answered ciphertext ct(`) =
(c(`)

1 , c
(`)
2) preserves its form as in Eq. (17) corresponding to Game 2-ω-2-`-5 while

for ` > κ, ct(`) = (c(`)
1 , c

(`)
2) remains the same as in Eq. (10) corresponding to

Game 1-q2-4 (or equivalently of the form (20) as in Game 2-(ω− 1)-5, for ω ≥ 2)
under the basis transformation. Moreover, since the RHS of Eq. (45) (respectively
Eq. (46)) and that of Eq. (42) (respectively Eq. (43)) are of the same form, the ω-
th queried functional key sk(ω) = (k∗(ω)

1 ,k
∗(ω)
2) and the κ-th queried ciphertext

ct(κ) = (c(κ)
1 , c

(κ)
2) in Game 2-ω-2-κ-2 can be conceptually changed to those in

Game 2-ω-2-κ-2’. ut

Claim 4 The distribution of the view of the adversary A in Game 2-ω-2-κ-3 and
that in Game 2-ω-2-κ-2’ are equivalent.

Proof. Claim 4 is proven in an analogous manner to Claim 3 using new dual
orthonormal bases (U,U∗) as in Eq. (44). ut

Functional Encryption for Inner Product with Full Function Privacy 29

From Claims 3 and 4 it follows that adversary A’s view in Game 2-ω-2-κ-2 can
be conceptually changed to that in Game 2-ω-2-κ-3. This completes the proof of
Lemma 8. ut

Lemma 16. For any probabilistic adversary A, for any security parameter λ,
Adv(2-q1-6)

A (λ) = Adv(3)
A (λ).

Proof. In Game 2-q1-6, for j = 1, . . . , q1, the components of the j-th queried
functional key corresponding to vectors (#»y (j,0), #»y (j,1)) have the form

k
∗(j)
1 = g

γj
∑

i
y

(j,0)
i

#»
b ∗i+γ′′′j

∑
i
y

(j,1)
i

#»
b ∗3n+i+ηj

#»
b ∗4n+1

2 ,k
∗(j)
2 = g

γj
#»
d ∗1+γ′′′j

#»
d ∗4+ηj,0

#»
d ∗5

2 ,

as in Eq. (21), where γj , γ′′′j , ηj , ηj,0
$←− Zp, while for ` = 1, . . . , q2, the compo-

nents of the `-th queried ciphertext for vectors (#»x (`,0), #»x (`,1)) of the form

c
(`)
1 = g

α`
∑

i
x

(`,0)
i

#»
b i+α′′′`

∑
i
x

(`,1)
i

#»
b 3n+i+ξ`

#»
b 4n+2

1 , c
(`)
2 = g

α`
#»
d 1+α′′′`

#»
d 4+ξ`,0

#»
d 6

1 ,

as in Eq. (20), where α`, α′′′` , ξ`, ξ`,0
$←− Zp.

Therefore, by swapping the components of the dual orthonormal bases
(
B =

{ #»

b 1, . . . ,
#»

b 4n+2},B∗ = { #»

b ∗1, . . . ,
#»

b ∗4n+2}
) (

respectively
(
D = { #»

d 1, . . . ,
#»

d 6},D∗ =
{ #»

d ∗1, . . . ,
#»

d ∗6}
))

in the first block, i.e., in the range i = 1, . . . , n (respectively
i = 1) and in the fourth block, i.e., in the range i = 3n + 1, . . . , 4n (respec-
tively i = 4), we obtain the distribution in Game 3. More precisely, we de-
fine new dual orthonormal bases (U,U∗) of Z4n+2

p and (W,W∗) of Z6
p using

(B,B∗) $←− GOB(Z4n+2
p) and (D,D∗) $←− GOB(Z6

p) as follows: We set

#»u 3n+i = #»

b i,
#»u ∗3n+i = #»

b ∗i (i = 1, . . . , n),
#»u i = #»

b 3n+i,
#»u ∗i = #»

b ∗3n+i (i = 1, . . . n),
#»u i = #»

b i,
#»u ∗i = #»

b ∗i (i = n+ 1, . . . , 3n, 4n+ 1, 4n+ 2),
#»w4 = #»

d 1,
#»w∗4 = #»

d ∗1,
#»w1 = #»

d 4,
#»w∗1 = #»

d ∗4,
#»wi = #»

d i,
#»w∗i = #»

d ∗i (i = 2, 3, 5, 6).
We define U = { #»u 1, . . . ,

#»u 4n+2},U∗ = { #»u ∗1, . . . ,
#»u ∗4n+2},W = { #»w1, . . . ,

#»w6},
W∗ = { #»w∗1, . . . ,

#»w∗6}. It is clear that (U,U∗) and (W,W∗) are indeed dual
orthonormal bases since those are obtained from the dual orthonormal bases
(B,B∗) and (D,D∗) respectively by means of invertible linear transformations.

Observe that in light of the adversary A’s view, both (B,B∗) (respectively
(D,D∗)) and (U,U∗) (respectively (W,W∗)) are consistent with respect to pp.
Moreover, it readily follows that the components of the queried functional keys
and ciphertexts in Game 2-q1-6 over bases (B,B∗) and (D,D∗) are expressed as
those in Eq. (22) and Eq. (23) of Game 3 over bases (U,U∗) and (W,W∗). This
completes the proof of Lemma 16. ut

5 Conclusion
In this paper, we have presented the first non-generic private key FE scheme
for the inner product functionality achieving the strongest indistinguishability-
based notion of function privacy, namely, the full-hiding security [2], [8]. Our

30 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

construction has utilized the standard asymmetric bilinear pairing group of prime
order and has derived its security from the SXDH assumption. A significant
future direction of research in this area would be to explore simulation-based
notion of function privacy [2] in the context of IPE in the private key setting.

References
1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption

schemes for inner products. In: Public-Key Cryptography–PKC 2015, pp. 733–751.
Springer (2015)

2. Agrawal, S., Agrawal, S., Badrinarayanan, S., Kumarasubramanian, A., Prab-
hakaran, M., Sahai, A.: Function private functional encryption and property pre-
serving encryption: New definitions and positive results. Tech. rep., Cryptology
ePrint Archive, Report 2013/744 (2013)

3. Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption.
Tech. rep., Cryptology ePrint Archive, Report 2015/672 (2015)

4. Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryp-
tion: Hiding the function in functional encryption. In: Advances in Cryptology–
CRYPTO 2013, pp. 461–478. Springer (2013)

5. Boneh, D., Raghunathan, A., Segev, G.: Function-private subspace-membership
encryption and its applications. In: Advances in Cryptology-ASIACRYPT 2013,
pp. 255–275. Springer (2013)

6. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges.
In: Theory of Cryptography, pp. 253–273. Springer (2011)

7. Boyle, E., Chung, K.M., Pass, R.: On extractability obfuscation. In: Theory of
Cryptography, pp. 52–73. Springer (2014)

8. Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key
setting. In: Theory of Cryptography, pp. 306–324. Springer (2015)

9. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product
with full function privacy. Tech. rep., Cryptology ePrint Archive, Report 2015/1255
(2015)

10. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure functional encryp-
tion without obfuscation. Tech. rep., Cryptology ePrint Archive, Report 2014/666
(2014)

11. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: Foun-
dations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on. pp.
40–49. IEEE (2013)

12. Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable
garbled circuits and succinct functional encryption. In: Proceedings of the forty-
fifth annual ACM symposium on Theory of computing. pp. 555–564. ACM (2013)

13. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Advances in Cryptology–CRYPTO
2010, pp. 191–208. Springer (2010)

14. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Advances in Cryptology–ASIACRYPT 2012, pp. 349–366.
Springer (2012)

15. O’Neill, A.: Definitional issues in functional encryption. Tech. rep., Cryptology
ePrint Archive, Report 2010/556 (2010)

16. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Theory
of Cryptography, pp. 457–473. Springer (2009)

	Functional Encryption for Inner Product with Full Function Privacy
	Introduction
	Function Privacy in Functional Encryption
	Inner Product Encryption and Function Privacy
	Our Contribution

	Preliminaries
	The Notion of Private Key Function-Private IPE
	Asymmetric Bilinear Group and SXDH Assumption
	Dual Pairing Vector Spaces

	Our PKFP-IPE Scheme
	 Construction
	 Correctness
	 Discussion

	Security Analysis
	 Sequence of Hybrid Games
	 Advantages of Adversary in Hybrid Games
	 Technically Distinguished Lemmas for Proof of Theorem 1

	Conclusion

