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Abstract. Three approaches are currently used for devising identity-
based encryption schemes. They respectively build on pairings, quadratic
residues (QR), and lattices. Among them, the QR-based scheme proposed
by Cocks in 2001 is notable in that it works in standard RSA groups: its
security relies on the standard quadratic residuosity assumption. But it
has also a number of deficiencies, some of them have been subsequently
addressed in follow-up works. Currently, one of the main limitations of
Cocks’ scheme resides in its apparent lack of structure. This considerably
restricts the range of possible applications. For example, given two Cocks
ciphertexts, it is unknown how to evaluate of a function thereof.
Cocks’ scheme is believed to be non-homomorphic. This paper disproves
this conjecture and proposes a constructive method for computing over
Cocks ciphertexts. The discovery of the hidden algebraic structure be-
hind Cocks encryption is at the core of the method. It offers a better
understanding of Cocks’ scheme. As a further illustration of the impor-
tance of the knowledge of the underlying structure, this paper shows how
to anonymize Cocks ciphertexts without increasing their size or sacrific-
ing the security.
Finally and of independent interest, this paper presents a simplified ver-
sion of the abstract identity-based cryptosystem with short ciphertexts
of Boneh, Gentry, and Hamburg.
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1 Introduction

Identity-based cryptography is an extension of the public-key paradigm which
was first put forward by Shamir [25]. As discussed in [20, Chapter 1], a major
issue with public-key cryptography is the management of trust. Another issue
to be dealt with is to recover the public key and accompanying certificate, verify
it, and then only encrypt and send messages. Identity-based cryptography aims
at solving these practical issues by simplifying the key management.

While identity-based signature schemes were quickly proposed (already in his
1984 paper, Shamir presented such a scheme), identity-based encryption (IBE)



schemes seem harder to develop and only came later. The first implementation
of an IBE scheme was proposed by Desmedt and Quisquater [13] in 1986. It is
however non-standard in the sense that it requires tamper-proof hardware for its
security. The realization of a truly practical IBE scheme remained elusive until
a breakthrough paper by Boneh and Franklin [7] in 2001, and concurrently by
Sakai et al. [24]. The Boneh-Franklin IBE scheme makes use of bilinear maps. Its
publication was quickly followed up by a large number of works. More recently,
lattices were considered as a building block for constructing IBE schemes [16].
Again this gave rise to a number of follow-up works.

A totally different approach was described back in 2001 by Cocks in a short
4-page paper [12]. Cocks’ IBE scheme only requires elementary mathematics.
Encryption merely involves a couple of operations modulo an RSA modulus and
the evaluation of Jacobi symbols. Its security rests on the standard quadratic
residuosity assumption in the random oracle model. Despite its simplicity, Cocks’
scheme received less attention from the research community, compared to the
pairing-based or lattice-based constructions. We believe that this is mainly due
to the apparent lack of structure behind Cocks’ scheme. In this paper, we identify
Cocks ciphertexts as elements of a certain algebraic group. This makes Cocks’
scheme amenable to applications that were previously not possible. In particular,
it can now be used in applications where computing over ciphertexts is required.
Typical applications include electronic voting, auction systems, private informa-
tion retrieval, or cloud computing.

Related work Since it appeared in 2001, a handful of variants of Cocks’ IBE
scheme have been proposed in the literature, aiming at enhancing certain features
of the original scheme or offering extra properties.

Cocks’ scheme is known not to be anonymous. The ciphertexts leak informa-
tion about their recipient’s identity. The anonymity aspect in Cocks-like cryp-
tosystems was first considered by Di Crescenzo and Saraswat in [14] (and inci-
dentally in [8]). Subsequently, Ateniese and Gasti [2] and, more recently, Clear
et al. [11] proposed concurrent anonymous cryptosystems derived from Cocks’
scheme. Table 1 in [11] gives a comparison of these two latter schemes. The
scheme by Clear et al. features the best encryption and decryption times (i.e.,
79 ms and 27 ms for a 128-bit message with a key-size of 1024 bits in their
setting). The Ateniese-Gasti scheme is slower but has a smaller ciphertext ex-
pansion.

Cocks’ scheme is mostly attractive when used with the hybrid encryption
paradigm encrypting a short session key. Indeed messages are encrypted in a
bit-by-bit fashion with Cocks’ IBE scheme. It therefore looses its practicability
when long messages need to be encrypted. The ciphertext expansion issue was
addressed by Boneh, Gentry, and Hamburg [8]. They propose a space-efficient,
anonymous IBE scheme based on the quadratic residuosity. However, the en-
cryption in their scheme is time-consuming. Encryption time is quartic in the
security parameter per message bit. Several possible trade-offs are discussed in [8,
Section 5.3] and [19].



The work closest to ours is a recent paper by Clear, Hughes, and Tewari [10].
They develop a xor-homomorphic variant of Cocks’ scheme. This is elegantly
achieved by seeing ciphertexts as elements (of the multiplicative group) in a
certain quotient ring. The homomorphism property then naturally pops up as
an application of the corresponding multiplication operation. A similar scheme
was independently found —and generalized to higher power residue symbols—
by Boneh, LaVigne, and Sabin [9]. As explained in [9], these schemes are however
less efficient, bandwidth-wise, than the original Cocks’ scheme.

Our contributions Motivated by the work of [10], we were interested in finding
the exact algebraic structure behind Cocks’ scheme. We quote from [23]:

“We believe that studying and understanding the mathematics that un-
derlies the associated cryptosystems is a useful aid to better understand
their properties and their security.”

Interestingly, the results of Rubin and Silverberg [23] (appearing earlier in [22])
were instrumental in our work. In a nutshell, we consider the torus T1(Fp) = F×p
viewed as a ‘degenerate’ representation of the torus T2(Fp) where Fp2 is replaced
with Fp(δ) where δ ∈ F×p . We then extend the setting modulo an RSA composite
through Chinese remaindering. We show that the Cocks ciphertexts are squares
in the so-obtained algebraic structure and form a quasi-group. The underlying
group law yields the sought-after homomorphism. Compared to the approach
in [10] there is no ciphertext expansion —the ciphertexts in [10] are twice longer.
More importantly, it directly applies to Cocks’ scheme. This is somewhat surpris-
ing. It points out that the original Cocks’ IBE scheme is inherently homomorphic.
In this regard, it shares similarities with the Goldwasser-Micali [public-key] en-
cryption scheme [17]. We note that both schemes are semantically secure under
the quadratic residuosity assumption and have comparable performance.

Another contribution is an anonymous variant of Cocks’s scheme. Anonymous
identity-based schemes are important cryptographic tools as they constitute the
central building block for public-key encryption with keyword search (PEKS).
The companion PEKS scheme derived from our anonymous IBE scheme is
detailed in Appendix D. Compared to the earlier QR-based1 scheme by Di
Crescenzo and Saraswat [14], it reduces the size of the searchable ciphertexts
by a typical factor of 2 without sacrificing the security.

Of independent interest, we present in Appendix E a simplified version of the
abstract IBE system with short ciphertexts of Boneh, Gentry, and Hamburg [8].

2 Definitions and Notation

In this section, we review the classical notions of semantic security and of
anonymity for identity-based encryption. We also formally present the quadratic
residuosity assumption and a variant thereof.

1 We note that the new security assumption introduced in [14] was later shown in [2]
to be equivalent to the QR assumption.



2.1 Identity-based encryption

An identity-based encryption scheme [7] (or IBE in short) is defined as a tuple
of four polynomial-time algorithms (SETUP, EXTRACT, ENCRYPT, DECRYPT):

Setup The setup algorithm SETUP is a randomized algorithm that, taking a
security parameter 1κ as input, outputs the system parameters mpk together

with the master secret key msk: (mpk,msk)
R← SETUP(1κ). The message space

is denoted by M.

Key derivation The key derivation algorithm EXTRACT takes as input an iden-
tity id and, using the master secret key msk, returns a secret key for the user
with identity id: usk← EXTRACTmsk(id).

Encryption The encryption algorithm ENCRYPT is a randomized algorithm that
takes as input an identity id and a plaintext m ∈M, and returns a ciphertext
C. We write C ← ENCRYPTmpk(id,m).

Decryption The decryption algorithm DECRYPT takes as input secret key usk
(corresponding to identity id) and a ciphertext C and returns the corre-
sponding plaintext m or a special symbol ⊥ indicating that the ciphertext
is invalid. We write m ← DECRYPTusk(C) if C is a valid ciphertext and
⊥ ← DECRYPTusk(C) if it is not.

It is required that DECRYPTusk(ENCRYPTmpk(id,m)) = m for any identity id and

all messages m ∈M, where (mpk,msk)
R← SETUP(1κ) and usk← EXTRACTmsk(id).

2.2 Security notions

Semantic security The notion of indistinguishability of encryptions [17] cap-
tures a strong notion of data-privacy: The adversary should not learn any-
thing about a plaintext given its encryption, beyond the length of the plaintext.
The definitions for the public-key setting naturally extend to the identity-based
paradigm. The standard definition is strengthened by allowing the adversary to
issue chosen private-key extraction queries [7].

We view an adversary A as a pair (A1,A2) of probabilistic algorithms. This
corresponds to adversary A running in two stages. Upon receiving the system
parameters mpk, in the “find” stage, algorithm A1 issues private-key extrac-
tion queries id1, . . . , idn1

and receives back the private key uski corresponding to
identity idi: uski ← EXTRACTmsk(idi). The queries may be asked adaptively. Once
the adversary decides not to make further oracle queries, it outputs a challenge
identity id∗ (with id∗ 6= idi, 1 ≤ i ≤ n1), two (different) equal-size messages
m0 and m1 ∈ M (where M denotes the message space), and some state infor-
mation s. In the “guess” stage, algorithm A2 receives a challenge ciphertext C
which is the encryption of mb for identity id∗ where b is chosen uniformly at
random in {0, 1}. Algorithm A2 can issue more private-key extraction queries
idn1+1, . . . , idn2

; the only restriction is that idi 6= id∗, n1 < i ≤ n2. The goal of
A2 is to guess the value of b from s and C. Formally, a public-key encryption



scheme is said indistinguishable (or semantically secure) if

Pr

(mpk,msk)
R← SETUP(1κ),

(id∗,m0,m1, s)← AEXTRACTmsk(·)
1 (mpk),

b
R← {0, 1}, C ← ENCRYPTmpk(id

∗,mb)

: AEXTRACTmsk(·)
2 (s, C) = b

− 1

2

is negligible in the security parameter for any polynomial-time adversary A; the
probability is taken over the random coins of the experiment according to the
distribution induced by SETUP and over the random coins of the adversary.

Adversary A = (A1,A2) can encrypt any message of its choice, for any
identity of its choice. In other words, the adversary can mount chosen-identity,
chosen-plaintext attacks (ID-CPA). Hence, we write IND-ID-CPA the security
notion achieved by a semantically secure identity-based encryption scheme.

Remark 1. When the message space is M = {0, 1}, the previous probability
simplifies to

Pr

(mpk,msk)
R← SETUP(1κ),

(id∗, s)← AEXTRACTmsk(·)
1 (mpk),

b
R← {0, 1}, C ← ENCRYPTmpk(id

∗, b)

: AEXTRACTmsk(·)
2 (s, C) = b

− 1

2
.

Anonymity Analogously, the notion of anonymity captures a strong require-
ment about privacy: a ciphertext should not reveal the identity of the recipient.
More formally, it is defined as a straightforward adaptation of key privacy [4] to
the identity-based paradigm [1].

As before, we view an adversary A as a pair (A1,A2) of probabilistic algo-
rithms. In the “find” stage, algorithm A1 issues private-key extraction queries
id1, . . . , idn1 and receives back the private key uski corresponding to identity
idi: uski ← EXTRACTmsk(idi). The queries may be asked adaptively. Once the
adversary decides not to make further oracle queries, it outputs two (different)
challenge identities id∗0 and id∗1 (with id∗0, id

∗
1 6= idi, 1 ≤ i ≤ n1), a message

m ∈ M, and some state information s. In the “guess” stage, algorithm A2 re-
ceives a challenge ciphertext C which is the encryption of m for identity id∗b where
b is chosen uniformly at random in {0, 1}. Algorithm A2 can issue more private-
key extraction queries idn1+1, . . . , idn2 ; the only restriction is that idi 6= id∗0, id

∗
1,

n1 < i ≤ n2. The goal of A2 is to recover the value of b from s and C.
An IBE scheme is said to be anonymous if

Pr

(mpk,msk)
R← SETUP(1κ),

(id∗0, id
∗
1,m, s)← A

EXTRACTmsk(·)
1 (mpk),

b
R← {0, 1}, C ← ENCRYPTmpk(id

∗
b ,m)

: AEXTRACTmsk(·)
2 (s, C) = b

− 1

2

is negligible in the security parameter for any polynomial-time adversary A; the
probability is taken over the random coins of the experiment according to the
distribution induced by SETUP and over the random coins of the adversary. We
write ANO-ID-CPA the corresponding security notion achieved by an anonymous
IBE scheme.



Semantic security and anonymity Of course, the goals of indistinguisha-
bility and anonymity can be combined to give rise to the ANO-IND-ID-CPA
security notion. Halevi’s sufficient condition [18] was extended to IBE schemes
in [1]. Namely, an IBE scheme is ANO-IND-ID-CPA if it is IND-ID-CPA and if

Pr


(mpk,msk)

R← SETUP(1κ),

(id∗0, id
∗
1,m, s)← A

EXTRACTmsk(·)
1 (mpk),

b
R← {0, 1}, r R←M and |r|2 = |m|2,

C ← ENCRYPTmpk(id
∗
b , r)

: AEXTRACTmsk(·)
2 (s, C) = b

− 1

2

is negligible in the security parameter for any polynomial-time adversary A; the
probability is taken over the random coins of the experiment according to the
distribution induced by SETUP and over the random coins of the adversary. The
difference is that a random message r is encrypted as opposed to the message m
chosen by A; the only restriction being that r and m must be of equal length.

2.3 Complexity assumptions

It is useful to introduce some notation. Let N = pq be the product of two
primes p and q. The set of integers whose Jacobi symbol is 1 is denoted by JN ,
JN =

{
a ∈ Z∗N |

(
a
N

)
= 1

}
; the set of quadratic residues is denoted by QRN ,

QRN =
{
a ∈ Z∗N |

(
a
p

)
=
(
a
q

)
= 1
}

. Notice that QRN is a subset of JN .

This leads to the following computational assumption [17]. Basically, it says
that quadratic residues cannot be distinguished from quadratic non-residues
modulo an RSA composite N = pq.

Definition 1 (Quadratic Residuosity Assumption). Let RSAgen be a prob-
abilistic algorithm which, given a security parameter κ, outputs primes p and q
and their product N = pq. The Quadratic Residuosity (QR) assumption relative
to RSAgen asserts that the success probability defined as the distance∣∣∣Pr[D(x,N) = 1 | x R← QRN ]− Pr[D(x,N) = 1 | x R← JN \QRN ]

∣∣∣
is negligible for any probabilistic polynomial-time distinguisher D; the proba-
bilities are taken over the experiment of running (N, p, q) ← RSAgen(1κ) and
choosing at random x ∈ QRN and x ∈ JN \QRN .

A stronger assumption is introduced in [8]. It says that the QR assumption
holds in the presence of a hash square-root oracle. More formally, the assumption
is defined as follows.

Definition 2 (Interactive Quadratic Residuosity Assumption). Again
let RSAgen be a probabilistic algorithm which, given a security parameter κ, out-
puts primes p and q and their product N = pq. Let also H be a hash function
that on input an arbitrary bit-string returns an element in JN and let O be a
hash square-root oracle that maps an input pair (N, s) to one of H(s)1/2 mod N



or (uH(x))1/2 mod N , for some quadratic non-residue u ∈ JN . The Interac-
tive Quadratic Residuosity (IQR) assumption asserts that the success probability
defined as the distance∣∣∣Pr[DO(x,N) = 1 | x R← QRN ]− Pr[DO(x,N) = 1 | x R← JN \QRN ]

∣∣∣
is negligible for any probabilistic polynomial-time distinguisher D; the probabili-
ties are taken over the experiment of running (N, p, q)← RSAgen(1κ), choosing
at random oracle O, and choosing at random x ∈ QRN and x ∈ JN \QRN .

Remark 2. As noted in [8] the IQR assumption is equivalent to the QR assump-
tion in the random oracle model [5].

3 Review of Cocks’ Scheme

In 2001, Cocks published an identity-based encryption scheme that does not
rely on pairings over elliptic curves [12]. Cocks’ scheme works in standard RSA
groups and its security relies on the quadratic residuosity assumption (in the
random oracle model). The encryption processes one bit at a time. To simplify
the presentation, we assume that messages being encrypted are in the set {−1, 1}.
For example, the map µ : {0, 1} → {−1, 1}, b 7→ m = (−1)b maps a bit b to a
message m ∈M = {±1}. The inverse map is given by µ−1(m) = (1−m)/2.

3.1 Description

Cocks’ scheme proceeds as follows.

SETUP(1κ) Given a security parameter κ, SETUP generates an RSA modulus N =
pq where p and q are prime. It also selects an element u ∈ JN \ QRN . The
system parameters are mpk = {N, u,H} where H is a cryptographic hash
function mapping bit-strings to JN . The master secret key is msk = {p, q}.

EXTRACTmsk(id) Using hash function H, EXTRACT sets Rid = H(id). If Rid ∈ QRN
it computes rid = Rid

1/2 mod N ; otherwise it computes rid = (uRid)
1/2 mod

N . EXTRACT returns user’s private key usk = {rid}.
ENCRYPT(id,m) To encrypt a message m ∈ {±1} for user with identity id,

ENCRYPT chooses at random t, t̄ ∈ Z/NZ such that
(
t
N

)
=
(
t̄
N

)
= m. It

then computes

c = t+
Rid

t
mod N and c̄ = t̄+

uRid

t̄
mod N

where Rid = H(id). The returned ciphertext is C = (c, c̄).
DECRYPTusk(C) From usk = {rid} and C = (c, c̄), if rid

2 ≡ H(id) (mod N),
DECRYPT sets γ = c; otherwise it sets γ = c̄. Plaintext m is then recovered as

m =

(
γ + 2rid

N

)
.



Remark 3. The above description is a generalization of the original scheme.
In [12], Cocks considers Blum integers; namely, RSA moduli N = pq with

p, q ≡ 3 (mod 4). Doing so, it follows that
(
−1
p

)
=
(
−1
q

)
= −1 and therefore

−1 ∈ JN \ QRN . The original scheme corresponds to the choice u = −1. The
above description also slightly generalizes the one offered in [8, Appendix A] in
that parameter u is not necessarily chosen as a random quadratic non-residue
in JN .

Remark 4. Alternatively, the decryption algorithm can recover plaintext m as

m =
(
γ−2rid
N

)
. The correctness of the decryption follows by remarking that when

rid
2 ≡ H(id) (mod N), γ±2rid ≡ t(1± rid

t )2 (mod N) yielding
(
γ±2rid
N

)
=
(
t
N

)
=

m. Likewise, when rid
2 ≡ uH(id) (mod N), γ ± 2rid ≡ t̄(1± rid

t̄ )2 (mod N) and

thus
(
γ±2rid
N

)
=
(
t̄
N

)
= m.

3.2 Security analysis

The next proposition shows that the generalized Cocks’ scheme is semantically
secure under the QR assumption in the random oracle model. Equivalently, as
mentioned in Remark 2, the scheme is semantically secure under the IQR as-
sumption in the standard model.

Proposition 1. The scheme of § 3.1 is IND-ID-CPA under the quadratic resid-
uosity assumption in the random oracle model.

Proof. The proof can be found in Appendix A. ut

4 A Useful Representation

Let Fq denote the finite field with q elements, where q = pr is a prime power.
The order of the multiplicative group F×pr = Fpr \ {0} is pr − 1. Note that
pr − 1 =

∏
d|r Φd(p) where Φd(x) represents the d-th cyclotomic polynomial. We

let Gp,r ⊆ F×pr denote the cyclic subgroup of order Φr(p). In [22], Rubin and
Silverberg identify Gp,r with the Fp-points of an algebraic torus. Namely, they
consider

Tr(Fp) = {α ∈ F×pr | NFpr/F (α) = 1 whenever Fp ⊆ F ( Fpr} ,

that is, the elements of F×pr whose norm is one down to every intermediate sub-
field F . Their key observation is that Tr(Fp) forms a group whose elements can
be represented with only φ(r) elements of Fp, where φ denotes Euler’s totient
function. The compression factor is thus of r/φ(r) over the field representa-
tion [22,15].



4.1 Parametrization of T2(Fp)

This corresponds to the case r = 2. We review the explicit representation for
T2(Fp) presented in [22, Section 5.2].

For simplicity, we assume that p is an odd prime. Let ∆ = δ2 ∈ F×p with
δ /∈ Fp. Then T2(Fp) is the multiplicative group given by

T2(Fp) =
{
x+ δy | x, y ∈ Fp and x2 −∆y2 = 1

}
.

Define the map ψ : Fp → T2(Fp), u 7→ u+δ
u−δ = u2+∆

u2−∆ +δ 2u
u2−∆ . The inverse map is

given by ψ−1 : T2(Fp) \ {1} → Fp, v 7→ δ(v+1)
v−1 . By augmenting Fp with a special

symbol ∞ and defining ψ(∞) = 1, maps ψ and ψ−1 extend naturally to give an
isomorphism T2(Fp)

∼→ Fp ∪ {∞}.

4.2 An alternative representation for (Z/NZ)×

One may wonder what happens if ∆ is chosen as a quadratic residue in the
Rubin-Silverberg representation for T2(Fp). As will become apparent in § 4.3,
this seemingly useless setting has practical consequences. We start with the mul-
tiplicative group F×p and then extend our results to (Z/NZ)× through Chinese
remaindering.

The group Fp,∆ Let p be an odd prime. We henceforth assume that δ ∈ F×p
and thus that ∆ = δ2 ∈ QRp. In this case, the torus T2(Fp) becomes isomorphic
to T1(Fp) = F×p . Note also that map ψ as given in § 4.1 is no longer defined at
u = δ. Moreover, when δ ∈ F×p , ψ(−δ) = 0 cannot be expressed as ψ(−δ) = x+δy
for some x, y ∈ Fp with x2 −∆y2 = 1. So, we define the set

Fp,∆ = (Fp \ {±δ}) ∪ {∞} = {u ∈ Fp | u2 6= ∆} ∪ {∞}

and restrict map ψ to Fp,∆:

ψ : Fp,∆ → F×p , u 7→

{
u+δ
u−δ if u 6=∞ ,

1 otherwise .

For completeness, we show that Fp,∆ equipped with the group law ~ (defined
hereafter) and F×p are isomorphic. Clearly, the map ψ : Fp,∆ → F×p is injective and
thus defines a bijection. Indeed, suppose ψ(u1) = ψ(u2) for some u1, u2 ∈ Fp,∆.
If ψ(u1) 6= 1, this implies (u1 +δ)(u2−δ) = (u2 +δ)(u1−δ) and in turn u1 = u2;
it ψ(u1) = 1 then again this implies u1 = u2 (=∞) since (u+ δ)/(u− δ) 6= 1 for
every u ∈ Fp,∆. The inverse map is given by

ψ−1 : F×p → Fp,∆, v 7→

{
δ(v+1)
v−1 if v 6= 1 ,

∞ otherwise .



Furthermore, map ψ yields a homomorphism from Fp,∆ to F×p . Let u1, u2 ∈
Fp,∆ \ {∞} with u1 6= −u2. Then we have

ψ(u1) · ψ(u2) =
(u1 + δ)(u2 + δ)

(u1 − δ)(u2 − δ)
=
u1u2 +∆+ δ(u1 + u2)

u1u2 +∆− δ(u1 + u2)
=

u1u2+∆
u1+u2

+ δ
u1u2+∆
u1+u2

− δ

= ψ(u3) where u3 = u1u2+∆
u1+u2

.

Note also that ψ(∞) = 1 and that 1
ψ(u1) = u1−δ

u1+δ = −u1+δ
−u1−δ = ψ(−u1).

We write Fp,∆ multiplicatively and use ~ to denote its group law. In more
detail, we have:

– the neutral element is ∞: u~∞ =∞~ u = u for all u ∈ Fp,∆ ;
– the inverse of u ∈ Fp,∆ \ {∞} is −u: u~ (−u) = (−u) ~ u =∞ ;
– given u1, u2 ∈ Fp,∆ \ {∞}, their product is given by:

u1 ~ u2 =

{
u1u2+∆
u1+u2

if u1 6= −u2 ,

∞ otherwise .

The group ZN,∆ The previous setting naturally extends through Chinese
remaindering. Let N = pq be an RSA modulus. Then

ZN,∆ := Fp,∆ ×Fq,∆ ∼= (Z/NZ)× (1)

is a group w.r.t. ~ and has order φ(N).
For each element u ∈ ZN,∆, there exists a unique pair of elements up ∈ Fp,∆

and uq ∈ Fq,∆ such that u mod p = up and u mod q = uq. We denote this
equivalence by u = [up, uq] and let∞ = [∞p,∞q] represent the neutral element.

We also define the subset Z̃N,∆ :=
(
(Fp,∆ \ {∞p})× (Fq,∆ \ {∞q})

)
∪ {∞}.

Efficient methods for working in ZN,∆ are discussed in Appendix B.

Remark 5. Please note that 0 is of order 2 as an element of ZN,∆, namely 0~0 =
∞. Note also that for any u ∈ ZN,∆, u 6= 0,∞, we have u~ 0 = ∆/u.

4.3 The subset SN,∆ of squares in Z̃N,∆

We now have all ingredients to introduce the useful quasi-group SN,δ. Let N = pq

be an RSA modulus and let ∆ = δ2 ∈ QRN . Consider the set of squares in Z̃N,∆,

namely (Z̃N,∆)2 = {u~ u | u ∈ Z̃N,∆} ⊂ (ZN,∆)2, or more exactly, the subset

SN,∆
def
=
{
u2+∆

2u | u ∈ (Z/NZ)× and gcd(u2 −∆,N) = 1
}

(2)

= (Z̃N,∆)2 \ {∞} .

The set SN,∆ almost defines a group: it contains all elements s of the group
(ZN,∆)2 = {s = u ~ u | u ∈ ZN,∆} minus elements of the form [sp,∞q] or



[∞p, sq] (and ∞ = [∞p,∞q]). Since it is a subset of (ZN,∆)2, SN,∆ is endowed

with the ~-law. In practice, for cryptographic applications, working in (Z̃N,∆)2 =
SN,∆ ∪ {∞} rather than in (ZN,∆)2 does not really matter since the probability

that operation ~ is not defined on (Z̃N,∆)2 is negligible.
What makes the quasi-group SN,∆ special is that, up to a scaling factor of

two, it represents the set of all valid [components of] Cocks ciphertexts. Before
making this statement clear, we need to explain what is meant by ‘valid com-
ponent’. This follows from the next lemma, adapted from [12, Section 5]. Ba-
sically, it shows that, given a (generalized) Cocks ciphertext C = (c, c̄), among
its two components c and c̄, one carries no information whatsoever about the
corresponding plaintext. The component that yields the plaintext is called valid
component.

Lemma 1. Using the notations of § 3.1, let C = (c, c̄) be a (generalized) Cocks
ciphertext. If H(id) /∈ QRN then the component c corresponds with the same
probability to the encryption of message m = 1 or m = −1. Conversely, if
uH(id) /∈ QRN then the component c̄ corresponds with the same probability to
the encryption of message m = 1 or m = −1.

Proof. Suppose that H(id) /∈ QRN (i.e., H(id) ∈ JN \ QRN ). Let Rid = H(id).
We have c = t + Rid

t mod N for some random t ∈ (Z/NZ)× such
(
t
N

)
= m.

Consider also t1, t2, t3 ∈ (Z/NZ)× such that

– t1 ≡ t (mod p), t1 ≡ Rid/t (mod q);
– t2 ≡ Rid/t (mod p), t2 ≡ t (mod q);
– t3 ≡ Rid/t (mod p), t3 ≡ Rid/t (mod q).

Note that the condition
(
t
N

)
= m implies

(
t1
N

)
=
(
t2
N

)
=
(
t3
N

)
= m. The four

possible values t, t1, t2, and t3 are equally likely since c ≡ t+Rid/t ≡ t1+Rid/t1 ≡
t2 +Rid/t2 ≡ t3 +Rid/t3 (mod N). At the same time, since Rid ∈ JN \QRN we

also have
(
t
N

)
=
(
t3
N

)
6=
(
t1
N

)
=
(
t2
N

)
. Hence, component c leaks no information

about
(
t
N

)
; it has the same probability to be 1 or −1.

The case uH(id) /∈ QRN is proved similarly. ut

With the notations of § 3.1, from a ciphertext C = (c, c̄), letting ∆ = H(id) ∈
QRN (resp. ∆ = uH(id) ∈ QRN ) and γ = c (resp. c̄), we have

γ

2
∈ SN,∆ =⇒ ∃τ ∈ (Z/NZ)× with gcd(τ2 −∆,N) = 1 such that γ = τ2+∆

τ .

In other words, up to a factor of two, the valid component of C is an element of
SN,∆; i.e., γ2 ∈ SN,∆. By Lemma 1, the other component does not matter. Note
also that the condition gcd(τ2−∆,N) = 1 is implicit in the (generalized) Cocks
encryption since

(
τ
N

)
= m ∈ {±1} where τ = t (resp. τ = t̄) and decryption is

obtained as (
γ ± 2δ

N

)
which is 0 when gcd(τ2 −∆,N) 6= 1 ⇐⇒ τ ≡ ±δ (mod {p, q}). The condition
τ ∈ (Z/NZ)× (instead of t, t̄ ∈ Z/NZ) is trivially satisfied since

(
τ
N

)
∈ {±1}.



5 Computing over Cocks Ciphertexts

Homomorphic encryption is a form of encryption which allows combining two
ciphertexts through a non-private operation that results in a third ciphertext
which, when decrypted, yields a plaintext that is the combination of the corre-
sponding two plaintexts through a specific operation. Mathematically, for two
ciphertexts C1 = ENCRYPT(m1) and C2 = ENCRYPT(m2), there exists a non-
private operation ∂ such that C1 ∂ C2 = ENCRYPT(m1 ? m2) for some specific
operation ?. Examples of known operations ? include (modular) addition and
(modular) multiplication.

5.1 HOM procedure

Consider the following procedure HOM. It takes as input two elements x1, x2 ∈
Z/NZ and an element Γ ∈ JN , and outputs an element z ∈ Z/NZ. We write
z = HOM(x1, x2, Γ ).

1: procedure HOM(x1, x2, Γ )
2: Define D = x1x2 + 4Γ mod N and U = x1 + x2 mod N ;
3: Select t ∈ Z/NZ such that

(
θ
N

)
= 1 where

θ = tD + (t2 + Γ )U mod N ;

4: Evaluate

z =
(t2 + Γ )D + 4ΓtU

θ
mod N ;

5: Return z.
6: end procedure

Remark 6. Note that when
(
U
N

)
=
(
x1+x2

N

)
= 1, we can take t = 0 (in Procedure

HOM, Line 3). This yields θ = ΓU mod N (∈ JN ) and in turn z = D/U mod N .

5.2 Application

The HOM procedure allows for computing over two Cocks ciphertexts.
Specifically, suppose we are given two ciphertexts C1 = {c1, c̄1} and C2 =

{c2, c̄2} that are the respective encryption of two messages m1 and m2 for a same
identity, say id. The system parameters are mpk = {N, u,H} where N = pq is
an RSA modulus, u is a quadratic non-residue in JN , and H is a hash function
mapping bit-strings to JN . As in the description given in § 3.1, we assume that
the message space is M = {±1}.

Let Rid = H(id). Two applications of the HOM procedure yields a third
ciphertext C3 = (c3, c̄3) obtained as

c3 = HOM(c1, c2, Rid) and c̄3 = HOM(c̄1, c̄2, uRid) .

A simple calculation shows that C3 is the encryption of m3 = m1 ·m2.



Proof. Suppose first that Rid ∈ QRN . Then, letting rid = Rid
1/2 mod N , we

have: (
c3+2rid
N

)
=
(
θ
N

)(c3+2rid
N

)
=
(

(t2+Rid)D+4RidtU+2rid(tD+(t2+Rid)U)

N

)
=
(

(t2+Rid+2ridt)D+(2ridt+t
2+Rid)(2ridU)

N

)
=
(

(t+rid)
2(D+2ridU)

N

)
=
(
D+2ridU

N

)
=
(

(c1c2+4Rid)+2rid(c1+c2)

N

)
=
(
c1+2rid
N

)(
c2+2rid
N

)
as desired.

The case Rid ∈ JN \QRN is similar. Letting rid = (uRid)
1/2 mod N , we then

have
(
c̄3+2rid
N

)
=
(
c̄1+2rid
N

)(
c̄2+2rid
N

)
. ut

Why does it work? At first sight, the HOM procedure may appear cum-
bersome. Actually it is not. Without loss of generality, assume that input Γ ←
Rid = rid

2 ∈ QRN . A straightforward application of the homomorphism in-
duced by the underlying ~ law will not get the correct result. Clearly, if we call
c3 = HOM(c1, c2, Rid) and let

c′3
2

=
c1
2

~
c2
2
⇐⇒ c′3 =

c1c2 + 4Rid

c1 + c2

then
(
c3+2rid
N

)
=
(
c′3+2rid
N

)
if and only if

(
c1+c2
N

)
= 1. Indeed, the above definition

of c′3 immediately yields(
c3 + 2rid

N

)
:=

(
c1 + 2rid

N

)(
c2 + 2rid

N

)
=

(
c1 + c2

N

)(
c′3 + 2rid

N

)
.

In other words, c′3 is the encryption of m1 · m2 if and only if
(
c1+c2
N

)
= 1.

This problem is resolved by randomizing one of the input ciphertexts using the
homomorphism. One way to achieve this is to replace ciphertext c1 with an
equivalent randomized ciphertext,

c1
2
← c1

2
~

1l

2

until
(
c1+c2
N

)
= 1, where 1l = ENCRYPTmsk(id, 1) is a random Cocks encryption

(w.r.t. Rid) of message m = 1. Note that no secret is involved in the randomiza-
tion of c1. This is the design strategy behind the HOM procedure.

We have seen that the HOM procedure can be used to randomize cipher-
texts. Likewise, it can be used to flip the value of a plaintext message m1 ∈ {±1}
corresponding to a given Cocks ciphertext C1 = (c1, c̄1) by taking the encryption
of m2 = −1 for ciphertext C2 = (c2, c̄2).



A variant of Cocks’ scheme that makes easier the computation over cipher-
texts can be found in Appendix C.

It is also worth noting that when the message space is {0, 1} rather than
{±1} then the scheme is homomorphic with respect the xor operator. Indeed,
letting b1 = µ−1(m1) and b2 = µ−1(m2), we have µ−1(m1 ·m2) = b1⊕ b2, where
µ−1(mi) = (1 − mi)/2 —see Section 3. We so get µ(b1 ⊕ b2) = (−1)b1⊕b2 =
(−1)b1+b2 = m1 ·m2.

6 An Anonymous IBE Scheme

In numerous scenarios, the recipient’s identity in a transmission needs to be kept
anonymous. This allows users to maintain some privacy. Protecting communi-
cation content may be not enough, as already observed in, e.g., [3,4,21]. For
example, by analyzing the traffic between an antenna and a mobile device, one
can recover some information about [at least] user’s position and some details
about the use of her mobile device. This information leaks easily during all day:
it is a common habit, indeed, to use a mobile phone every day and to keep it
(almost) always switched on.

As pointed out by Galbraith (see [6, Section 4], Cocks’ scheme is not anony-
mous. A detailed discussion on the so-called Galbraith’s test can be found in [2,
Section 2.3]). In the same paper, Ateniese and Gasti also show that Galbraith’s
is the “best test” possible against the anonymity of Cocks’ scheme.

In this section, we rephrase Galbraith’s test using our representation. We
then build on an original technique developed in [11] to get anonymized Cocks
ciphertexts. However, unlike [11], there is no ciphertext expansion. Anonymized
Cocks ciphertexts have the same size as non-anonymized ciphertexts. The de-
cryption algorithm is modified accordingly by first de-anonymizing the ciphertext
and then applying the regular decryption process. The resulting scheme is shown
to meet the ANO-IND-ID-CPA security notion under the QR assumption in the
random oracle model or, equivalently, under the IQR assumption in the standard
model (cf. Remark 2).

6.1 Making Cocks ciphertexts anonymous

As Equation (6) indicates, the subset Z̃N,∆ ⊂ ZN,∆ can be defined as

Z̃N,∆ = {u ∈ Z/NZ | gcd(u2 −∆,N) = 1} ∪ {∞}

where N = pq and ∆ ∈ QRN . The following subsets of Z̃N,∆ will be useful:

– ẐN,∆ :=
{
u ∈ Z/NZ | gcd(u2 −∆,N) = 1

}
⊂ Z̃N,∆;

– Ẑ [−1]
N,∆ :=

{
u ∈ Z/NZ |

(
u2−∆
N

)
= −1

}
⊂ ẐN,∆;

– Ẑ [+1]
N,∆ :=

{
u ∈ Z/NZ |

(
u2−∆
N

)
= 1
}
⊂ ẐN,∆;

– (ẐN,∆)2 :=
{
u ∈ Z/NZ |

(
u2−∆
p

)
=
(
u2−∆
q

)
= 1
}
⊂ Ẑ [+1]

N,∆.



We have

ẐN,∆ = Z̃N,∆ \ {∞} = (Fp,∆ \ {∞p})× (Fq,∆ \ {∞q})

from Eq. (5). By definition (see § 4.2), for u ∈ Fp,∆ \{∞p}, we have ψ(u) = u+δ
u−δ ,

and ψ(∞p) = 1. Multiplying both sides by (u− δ)2, the latter identity yields

ψ(u) · (u− δ)2 = u2 −∆ . (3)

The group (Fp,∆)2 = {u ~ u | u ∈ Fp,∆} is the subgroup of squares in Fp,∆.

Therefore, if u ∈ (Fp,∆)2 then ψ(u) is a quadratic residue modulo p; i.e.,
(
ψ(u)

p

)
=

1. Together with Eq. (3) it follows that u2 − ∆ is a quadratic residue modulo
p when u ∈ (Fp,∆)2, u 6= ∞p. This gives an alternative definition for the group

(Fp,∆)2, namely (Fp,∆)2 =
{
u ∈ Fp,∆ |

(
u2−∆
p

)
= 1

}
∪ {∞p} =

{
u ∈ Fp |(

u2−∆
p

)
= 1
}
∪ {∞p}. Hence, using Chinese remaindering, we get

(ẐN,∆)2 =
(
(Fp,∆)2 \ {∞p}

)
×
(
(Fq,∆)2 \ {∞q}

)
.

This means that (ẐN,∆)2 is an alternative representation for the subset SN,∆

of squares in Z̃N,∆. Likewise, Ẑ [−1]
N,∆ denotes the subset of elements that are

squares modulo p and non-squares modulo q, or vice-versa; and Ẑ [+1]
N,∆ denotes

the subset of elements that are either both squares modulo p and modulo q, or
both non-squares modulo p and modulo q.

We have shown that:

Proposition 2. Let N = pq be an RSA modulus and let w ∈ ẐN,∆. If(
w2 −∆
N

)
= −1

then w /∈ SN,∆. ut
This is nothing but Galbraith’s test. Back to the anonymity problem, letting

u ∈ JN \QRN , it implies that elements of the form c
2 = t2+Rid

2t mod N (respec-

tively, c̄
2 = t̄2+uRid

2t̄ mod N) —where Rid = H(id) is derived from some user’s
identity id— cannot be used as part of a ciphertext for user with identity id′

because if
(

(c/2)2−Rid′

N

)
= −1 (respectively, if

(
(c̄/2)2−uRid′

N

)
= −1) —where

Rid′ = H(id′) for some other identity id′— then one can conclude that the
identity of the recipient of the ciphertext is not id′. This clearly violates the
anonymity requirement.

This issue is easily solved by ~-multiplying with probability 1/2 the value

of c
2 (resp. c̄

2 ) by an element d
2 satisfying

(
(d/2)2−∆

N

)
= −1 (resp.

(
(d/2)2−u∆

N

)
=

−1). The decryption algorithm, assuming it is the legitimate recipient of the
ciphertext, can then ~-divide by d

2 the ciphertext in the case it were ~-multiplied

by d
2 ; letting e

2 (resp. ē
2 ) the received part of the ciphertext, it is easy for the

decryption algorithm to know if e
2 = c

2 or e
2 = c

2 ~ d
2 (resp. ē2 = c̄

2 or ē
2 = c̄

2 ~ d
2 )

by checking if
(

(e/2)2−∆
N

)
= 1 or −1 (resp.

(
(ē/2)2−u∆

N

)
= 1 or −1), respectively.



6.2 Anonymous IBE without ciphertext expansion

There is a variety of possible instantiations of the above methodology. An efficient
implementation can be achieved by specializing hash function H. Instead of
considering a function mapping bit-strings to any element of JN , we require that,

in addition, on input id, the output must satisfy the extra condition
(
d2−4Rid

N

)
=(

d2−4uRid

N

)
= −1 for some given d:

Hd : {0, 1}∗ → JN , id 7→ Hd(id) s.t.
(
d2−4Hd(id)

N

)
=
(
d2−4uHd(id)

N

)
= −1 . (4)

Here is the resulting scheme.

SETUP(1κ) Given a security parameter κ, SETUP generates an RSA modulus N =
pq where p and q are prime. It also selects an element u ∈ JN \ QRN and
a global integer d. The public system parameters are mpk = {N, u, d,Hd}
where Hd is a cryptographic hash function as per Eq. (4). The master secret
key is msk = {p, q}.

EXTRACTmsk(id) Given identity id, algorithm EXTRACT sets Rid = Hd(id). Then

if Rid ∈ QRN it computes rid = Rid
1/2 mod N ; otherwise it computes rid =

(uRid)
1/2 mod N . EXTRACT returns user’s private key usk = {rid}.

ENCRYPTmpk(id,m) To encrypt a message m ∈ {±1} for a user with identity id,
ENCRYPT defines Rid = Hd(id). It chooses at random t, t̄ ∈ Z/NZ such that(
t
N

)
=
(
t̄
N

)
= m and lets

c(0) = t+
Rid

t
mod N , c(1) =

c(0)d+ 4Rid

c(0) + d
mod N ,

c̄(0) = t̄+
uRid

t̄
mod N , c̄(1) =

c̄(0)d+ 4uRid

c̄(0) + d
mod N .

It chooses random bits β1, β2 ∈ {0, 1} and sets c = c(β1) and c̄ = c̄(β2). The
returned ciphertext is C = (c, c̄).

DECRYPTusk(C) Let Rid = Hd(id). From usk = {rid} and C = (c, c̄), if rid
2 ≡ Rid

(mod N), DECRYPT sets γ = c and ∆ = Rid; otherwise it sets γ = c̄ and

∆ = uRid. Next, it computes σ =
(
γ2−4∆

N

)
. Finally, it returns plaintext m

as

m =


(
γ+2rid
N

)
if σ = 1 ,(

(γ+2rid)(d−2rid)(d−γ)

N

)
if σ = −1 .

Remark 7. The choice p ≡ −q (mod 4) (or equivalently N ≡ 3 (mod 4)) sim-

plifies the setting. In this case, we know that
(
−1
p

)
= −

(
−1
q

)
and therefore(

−1
N

)
= −1. A nice observation is that d = 0 is a valid parameter when N ≡ 3

(mod 4) since then
(
d2−4H(id)

N

)
=
(
d2−4uH(id)

N

)
=
(
−1
N

)
= −1 as desired. Any

cryptographic hash function H mapping bit-strings to JN can be used.



6.3 Security analysis

The two next propositions assess the security of the scheme under the quadratic
residuosity assumption.

Proposition 3. The scheme of § 6.2 is IND-ID-CPA under the quadratic resid-
uosity assumption in the random oracle model.

Proof. Assume there exists an IND-ID-CPA adversary A against the previous
scheme (§ 6.2). We can then use A to break the semantic security of the general-
ized Cocks’ scheme (§ 3.1), which in turn will contradict the quadratic residuosity
assumption. This is readily verified by observing that if C = (c, c̄) is a valid ci-
phertext for the scheme of § 3.1 for some user i with identity id then C ′ = (c′, c̄′)
is a valid ciphertext for the scheme of § 6.2, where c′ = c with probability 1/2 and
c′ = cd+4Rid

c+d mod N with probability 1/2 and, likewise, c̄′ = c̄ with probability

1/2 and c̄′ = c̄d+4Rid

c̄+d mod N with probability 1/2. ut

Before proving that the scheme is anonymous, we need the following lemma.

Lemma 2. Let RSAgen be a probabilistic algorithm which, given a security pa-
rameter κ, outputs primes p and q and their product N = pq. Let also δ be a
random element in (Z/NZ)× and ∆ = δ2 mod N . Then, under the quadratic
residuosity assumption,∣∣∣Pr
[
D(x,∆,N) = 1 | x R← (ẐN,∆)2

]
− Pr

[
D(x,∆,N) = 1 | x R← Ẑ [+1]

N,∆ \ (ẐN,∆)2
]∣∣∣

is negligible for any probabilistic polynomial-time distinguisher D; the probabili-
ties are taken over the experiment of running (N, p, q)← RSAgen(1κ), sampling

δ
R← (Z/NZ)×, and choosing at random x ∈ (ẐN,∆)2 and x ∈ Ẑ [+1]

N,∆ \ (ẐN,∆)2.

Proof. As previously shown in § 6.1, we have that (ẐN,∆)2 = SN,∆ (i.e., the
set of all valid components of Cocks ciphertexts). The lemma now follows as an
immediate application of [2, Lemma 2]. ut

Proposition 4. The scheme § 6.2 is ANO-ID-CPA under the quadratic residu-
osity assumption in the random oracle model.

Proof. As mentioned in § 2.2, since the scheme is already known to be IND-ID-
CPA, it suffices to prove that the statistical distance between the two distribu-
tions

D0 =
{

(id∗0, id
∗
1, ENCRYPTmpk(id

∗
0,m)) | m R← {±1}

}
and

D1 =
{

(id∗0, id
∗
1, ENCRYPTmpk(id

∗
1,m)) | m R← {±1}

}
is negligible. In our case, a ciphertext encrypted for identity id∗b (with b ∈ {0, 1})
is of the form Cb = (cb, c̄b). From Lemma 1, only the valid component can



help in distinguishing D0 from D1. Without loss of generality, we assume that
H(id∗0) = H(id∗1) ∈ QRN . Letting ∆b = H(id∗b), the valid component is then

cb := c
(0)
b = t+

∆b

t
mod N or cb := c

(1)
b =

c
(0)
b d+ 4∆b

c
(0)
b + d

mod N

where
(
t
N

)
= m.

Omitting id∗0, id
∗
1 to ease the reading, the above criterion requires that the

distributions D0 = {c(β)
0 | β R← {0, 1}} and D1 = {c(β)

1 | β R← {0, 1}} —or
equivalently rescaling by a factor of two, that the distributions

D∗0 =
{ c(β)0

2 | β
R← {0, 1}

}
and D∗1 =

{ c(β)1

2 | β
R← {0, 1}

}
must be indistinguishable with overwhelming probability. Using the ~ operator,
the elements of D∗b (for b ∈ {0, 1}) are

c
(β)
b

2 =


1
2

(
t+ ∆b

t

)
= t2+∆b

2t = t~ t when β = 0

1
2

( c(0)b d+4∆b

c
(0)
b +d

)
=

c
(0)
b
2

d
2 +∆b

c
(0)
b
2 + d

2

=
c
(0)
b

2 ~ d
2 = (t~ t) ~ d

2 when β = 1

where t
R← {t ∈ (Z/NZ)× | gcd(t2 −∆b, N) = 1}. Hence, we can see that

D∗b =

{{
u | u R← (ẐN,∆b)2

} c≡
{
u | u R← Ẑ [+1]

N,∆b

}
when β = 0{

u | u R← Ẑ [−1]
N,∆b

}
when β = 1

.

The first assertion (when β = 0) follows from Lemma 2 (the notation
c≡ means

computationally equivalent —under the QR assumption in this case). The second

assertion (when β = 1) follows by noting that the Jacobi symbol

(
d2

4 −∆b
N

)
= −1

and thus d
2 ∈ Ẑ

[−1]
N,∆b

.
As a consequence, under the QR assumption, the distribution D∗b appears

indistinguishable from the uniform distribution over Ẑ [+1]
N,∆b

∪ Ẑ [−1]
N,∆b

= ẐN,∆b .
This concludes the proof by noting that D∗0 and D∗1 are essentially the same sets:
any random element is D∗0 is also an element in D∗1 , and vice-versa. ut

Altogether, this proves that the scheme achieves ANO-IND-ID-CPA under the
quadratic residuosity assumption in the random oracle model.

7 Conclusion

Somewhat surprisingly, we identified and detailed the algebraic group structure
underlying Cocks encryption. The knowledge of this structure gives a better
understanding of Cocks’ scheme and allows one to see it differently. In particu-
lar, the hidden homomorphism opens the way to applications that were before
not readily available or possible with Cocks’ scheme, including homomorphic
computations or anonymous encryption.
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A Proof of Proposition 1

Let A = (A1,A2) be adversary that can break the IND-ID-CPA security of the
generalized scheme described in § 3.1 with probability ε. We will use A to decide
whether a random element w in JN is quadratic residue modulo N or not.

A.1 First case: u is universally fixed

The firt case assumes that system parameter u is a universally fixed parameter.
It covers the original Cocks’ scheme wherein p, q ≡ 3 (mod 4) and u = −1 ∈
JN \QRN .

Let H : {0, 1}∗ → JN be a hash function viewed as a random oracle. Consider
the following distinguisher2 D(w, u,N) for solving the QR problem. The goal
of D is to distinguish a random element w ∈ QRN from a random element
w ∈ JN \QRN .

2 Note that D is given u ∈ JN \QRN as it is universally fixed.



1. Set mpk = {N, u,H}, and give mpk to AEXTRACTmsk(·),H(·)
1 —A1 has

oracle access to EXTRACTmsk(·) and H(·), it may issue a number of
extraction and hash queries, after what it selects a target identity id∗;

2. Depending on id∗:
(a) If H(id∗) = w then

i. Choose a random bit b ∈ {0, 1}, let Rid∗ = H(id∗), and com-
pute the encryption of (−1)b as Cb = (cb, c̄b) where

cb = t+
Rid∗

t
mod N , c̄b = t̄+

uRid∗

t̄
mod N ,

for some random elements t, t̄ ∈ Z/NZ such that
(
t
N

)
=

(−1)b and
(
t̄
N

)
= (−1)1−b;

ii. Give s and Cb = (cb, c̄b) to AEXTRACTmsk(·),H(·)
2 —A2 may issue

more extraction and hash queries, after what it returns its
guess b′;

iii. If b′ = b return 1; otherwise return 0.
(b) If H(id∗) 6= w then

i. Choose a random bit b′ ∈ {0, 1};
ii. Return b′.

It remains to detail how D simulates answers to oracle queries. D maintains
a history list Hist[H] composed of triplets. The list is initialized to ∅. It also
maintains a counter k initialized to 0. Let qH1

denote the number of hash queries
that are not followed by extract queries and let qE1

denote the number of extract
queries, made by A1. Without loss of generality, we assume that A1 issues a hash
query on id∗. Finally, we let k1 denote a random integer in {1, . . . , qH1 + qE1}
chosen by D.

Hash queries When A queries oracle H on some id, D checks whether there
is an entry of the form (id, h, r) in Hist[H]; i.e., a triplet with id as the first
component. If so, it returns h. Otherwise, it does the following:
1. Increment k;
2. Depending on k:

(a) If k = k1, define h = w and append (id, h,⊥) to Hist[H];

(b) Else (if k 6= k1), define h = u−j r2 mod N with r
R← (Z/NZ)× and

j
R← {0, 1} and append (id, h, r) to Hist[H];

3. Return h.
Extraction queries When A queries oracle EXTRACT on some id, D checks

whether there is an entry of the form (id, h, r) in Hist[H]. If not, it calls
H(id) so that there is an entry. Let (id, h, r) denote the entry in Hist[H]
corresponding to id. Depending on it, D does the following:
1. If r 6= ⊥ then return r;
2. If r = ⊥ then abort.

We now analyze the success probability of D in solving the QR challenge.
Since u is an element in JN \ QRN , the resulting mpk appear as valid system
parameters. Three subcases can be distinguished.



Subcase i The first subcase supposes w = H(id∗) ∈ QRN . The condition w =
H(id∗) requires that id∗ is the k1-th query to H. Further, since H(id∗) ∈
QRN , Lemma 1 teaches that Cb = (cb, c̄b) is a valid ciphertext for b. Namely,
component cb correctly decrypts to (−1)b and component c̄b is of no use.
Hence, D returns 1 exactly when A wins in the IND-ID-CPA game, provided
that there is no abort. But since A is not allowed to submit id∗ to EXTRACT

(and so there is no abort when id∗ is the k1-th query), we get Pr[D(w, u,N) =
1 | w ∈ QRN ∧ w = H(id∗)] = ε.

Subcase ii The second subcase supposes w = H(id∗) ∈ JN \ QRN . Since
H(id∗) ∈ JN \ QRN , Lemma 1 teaches that Cb = (cb, c̄b) is a valid cipher-

text for (−1)(1−b) —it is worth noticing that
(
t̄
N

)
= (−1)1−b. Hence, D

returns 1 exactly when A looses in the IND-ID-CPA game. We therefore get
Pr[D(w, u,N) = 1 | w ∈ JN \QRN ∧ w = H(id∗)] = 1− ε.

Subcase iii The last subcase supposes w 6= H(id∗). In this case D returns a
random bit, regardless of w. Therefore, we have Pr[D(w, u,N) = 1 | w ∈
QRN ∧ w 6= H(id∗)] = Pr[D(w, u,N) = 1 | w ∈ JN \ QRN ∧ w 6= H(id∗)] =
1/2.

We so obtain:

Pr
[
D(w, u,N) = 1 | w ∈ QRN

]
= Pr

[
w = H(id∗)

]
· Pr
[
D(w, u,N) = 1 | w ∈ QRN ∧ w = H(id∗)

]
+ Pr

[
w 6= H(id∗)

]
· Pr
[
D(w, u,N) = 1 | w ∈ QRN ∧ w 6= H(id∗)

]
=

1

qH1

· ε+

(
1− 1

qH1

)
· 1

2
=

1

2
+
ε− 1

2

qH1

and similarly,

Pr
[
D(w, u,N) = 1 | w ∈ JN \QRN

]
=

1

qH1

· (1− ε) +

(
1− 1

qH1

)
· 1

2

=
1

2
+

1
2 − ε
qH1

.

Putting all together, we get:∣∣Pr
[
D(w, u,N) = 1 | w ∈ QRN

]
− Pr

[
D(w, u,N) = 1 | w ∈ JN \QRN

]∣∣
=

2

qH1

∣∣∣∣ε− 1

2

∣∣∣∣
which must be negligible by the QR assumption. As a consequence, |ε− 1

2 | must
be negligible, which means that the scheme is IND-ID-CPA secure under the QR
assumption.

A.2 Second case: u is random

In this case, the proof can be obtained along the lines of the proof offered in [8,
Appendix B.2] for the Boneh-Gentry-Hamburg scheme. The proof features a



tight reduction. It however crucially requires that parameter u is defined as a
random element in JN \QRN .

B Arithmetic in ZN,∆

As mentioned in § 4.2, each element u of the group ZN,∆ = Fp,∆ × Fq,∆ can
be uniquely represented by a pair [up, uq] with up ∈ Fp,∆ and uq ∈ Fq,∆, and
∞ = [∞p,∞q]. There is a slight complication when doing arithmetic in ZN,∆
as we need to deal with the elements of the form [up,∞q] or [∞p, uq]. This can
be circumvented by adopting a projective representation. An element u ∈ ZN,∆
can be written as a pair (U : Z). We say that two elements u = (U : Z) and
u′ = (U ′ : Z ′) are equivalent if there exists some λ ∈ (Z/NZ)× such that
U ′ = λU and Z ′ = λZ. Hence, from the definition of ψ−1, we can represent
ZN,∆ as

ZN,∆ =
{

(δ(v + 1) : v − 1) | v ∈ (Z/NZ)×
}
.

The neutral element is ∞ = (1 : 0). The inverse of an element (U : Z) is
(−U : Z). The product of two elements (U1 : Z1), (U2, Z2) ∈ ZN,∆ is given by

(U1 : Z1) ~ (U2, Z2) = (U1U2 +∆Z1Z2 : U1Z2 + U2Z1) .

Observe that the group law is complete with the projective representation: it
works for all inputs.

Another way to deal with the elements of the form [up,∞q] or [∞p, uq] is
simply to ignore them and to work in the subset

Z̃N,∆ =
(
(Fp,∆ \ {∞p})× (Fq,∆ \ {∞q})

)
∪ {∞} (5)

= {u ∈ Z/NZ | gcd(u2 −∆,N) = 1} ∪ {∞} . (6)

Wherever it is defined, the ~-law in Z̃N,∆ coincides with the group law on ZN,∆:

u1 ~ u2 =

{
u1u2+∆
u1+u2

(mod N) if u1 6= −u2

∞ otherwise
.

(If u1 =∞ then u1 ~ u2 = u2; if u2 =∞ then u1 ~ u2 = u1.)

C Some Variants of Cocks’ Scheme

The HOM is dependent of the cryptosystem. We propose below some variants
of Cocks’ scheme that leads to better efficiency. In particular, obtaining the
encryption of the complementary value is almost free.



C.1 Basic scheme

SETUP(1κ) Given a security parameter κ, SETUP generates an RSA modulus N =
pq where p and q are prime. It also selects an element u ∈ JN \ QRN . The
public system parameters are mpk = {N, u,H} where H is a cryptographic
hash function mapping bit-strings to JN ; i.e., H : {0, 1}∗ → JN . The master
secret key is msk = {p, q}.

EXTRACTmsk(id) Given identity id, key derivation algorithm EXTRACT sets Rid =

H(id). If Rid ∈ QRN it computes rid = Rid
1/2 mod N ; otherwise it computes

rid = (uRid)
1/2 mod N . EXTRACT returns user’s private key usk = {rid}.

ENCRYPTmpk(id,m) To encrypt a message m ∈ {±1} for a user with identity
id, ENCRYPT defines Rid = H(id). It chooses at random t, t̄ ∈ Z/NZ and
computes

ε = m ·
(
t

N

)
, c = t+

Rid

t
mod N , ε̄ = m ·

(
t̄

N

)
, c̄ = t̄+

uRid

t̄
mod N .

The returned ciphertext is C = (ε, c, ε̄, c̄).
DECRYPTusk(C) From usk = {rid} and C = (ε, c, ε̄, c̄), if rid

2 ≡ H(id) (mod N),
DECRYPT sets ν = ε and γ = c; otherwise it sets ν = ε̄ and γ = c̄. Next it

computes τ =
(
γ+2rid
N

)
using secret key rid and returns plaintext m = ν · τ .

Homomorphic computation Let C1 = (ε1, c1, ε̄1, c̄1) and C2 = (ε2, c2, ε̄2, c̄2)
be the respective encryption of messages m1 and m2 for a user with identity
id. Then, letting Rid = H(id) and R̄id = u · H(id) mod N , we get that C3 =
(ε3, c3, ε̄3, c̄3) with

ε3 = ε1 · ε2 ·
(
c1 + c2

N

)
, c3 =

c1c2 + 4Rid

c1 + c2
mod N ,

ε̄3 = ε̄1 · ε̄2 ·
(
c̄1 + c̄2

N

)
, and c̄3 =

c̄1c̄2 + 4R̄id

c̄1 + c̄2
mod N

is the encryption of message m3 = m1 ·m2 (for the user with identity id).

Complementary encryption Given the encryption of a message m ∈ {±1},
it is easy to get the encryption of the complementary value. If C = (ε, c, ε̄, c̄) is
the encryption of m ∈ {±1} then C ′ = (−ε, c,−ε̄, c̄) is the encryption of −m.

C.2 Compact variant

As an illustration, suppose that Rid = H(id) ∈ QRN in the previous scheme. If
C = (ε, c) with ε = m ·

(
t
N

)
and c = t + Rid/t mod N is a valid encryption for

message m ∈ {±1} then so is C ′ := (ε′, c′) where ε′ = ε ·
(
−1
N

)
and c′ = N − c.



Indeed, letting t′ = −t mod N , we have

c′ ≡ −c ≡ −
(
t+

Ri
t

)
≡ t′ + Ri

t′
(mod N) and

ε′ = m ·
(
t′

N

)
= m ·

(
−t
N

)
= ε ·

(
−1

N

)
.

One of the two equivalent ciphertexts C = (ε, c) and C ′ = (ε′, c′) is (at least)
one bit shorter than the other one.

As a result, if ` represents the bit-length of RSA modulus N this allows
reducing the size a whole ciphertext to at most 2` bits, as in Cocks’ scheme.

SETUP(1κ) Given a security parameter κ, SETUP generates an RSA modulus N =
pq where p and q are prime. It also selects an element u ∈ JN \ QRN . The
public system parameters are mpk = {N, u,H} where H is a cryptographic
hash function mapping bit-strings to JN ; i.e., H : {0, 1}∗ → JN . The master
secret key is msk = {p, q}.

EXTRACTmsk(id) Given identity id, key derivation algorithm EXTRACT sets Rid =

H(id). If Rid ∈ QRN it computes rid = Rid
1/2 mod N ; otherwise it computes

rid = (uRid)
1/2 mod N . EXTRACT returns user’s private key usk = {rid}.

ENCRYPTmpk(id,m) To encrypt a message m ∈ {±1} for a user with identity
id, ENCRYPT defines Rid = H(id). It chooses at random t, t̄ ∈ Z/NZ and
computes

ε′ = m ·
(
t

N

)
, c′ = t+

Rid

t
mod N , ε̄′ = m ·

(
t̄

N

)
, c̄′ = t̄+

uRid

t̄
mod N .

Define c = min(c′, N − c′) and c̄ = min(c̄′, N − c̄′). If c = c′ then define

ε = ε′; otherwise define ε = ε′ ·
(
−1
N

)
. Similarly, if c̄ = c̄′ then define ε̄ = ε̄′;

otherwise define ε̄ = ε̄′ ·
(
−1
N

)
. The returned ciphertext is C = (ε, c, ε̄, c̄).

DECRYPTusk(C) From usk = {rid} and C = (ε, c, ε̄, c̄), if rid
2 ≡ H(id) (mod N),

DECRYPT sets ν = ε and γ = c; otherwise it sets ν = ε̄ and γ = c̄. Next it

computes τ =
(
γ+2rid
N

)
using secret key rid and returns plaintext m = ν · τ .

Remark 8. Assuming that primes p and q satisfy the extra condition p ≡ q

(mod 4) (for example if N = pq is a Blum integer) —in which case
(
−1
N

)
= 1—

the encryption algorithm can then form the ciphertext C = (ε, c, ε̄, c̄) more

simply by defining ε = m ·
(
t
N

)
and ε̄ = m ·

(
t̄
N

)
.

D Public-Key Encryption with Keyword Search

A prominent application of anonymous IBE scheme resides in public-key encryp-
tion with keyword search (or PEKS) [6]. Basically, PEKS is a form of encryption



that allows searching on data that is encrypted using a public-key system. A typ-
ical application is for an email gateway to test whether or not the keyword “ur-
gent” is present in an email. The gateway then routes the email if it is the case. Of
course the gateway should only learn whether the word “urgent” is present but
nothing else about the email. In the email use-case, another practical application
is to test the sender’s name of the email and to route the emails accordingly.
Further applications for PEKS can be found in [6] and [1]. Of particular interest
is the concept of temporarily searchable encryption [1, Section 6].

D.1 Definition

A public-key encryption with keyword search scheme [7] is defined as a tuple of
four algorithms (KEYGEN, PEKS, TRAPDOOR, TEST):

Key generation The key generation algorithm KEYGEN is a randomized algo-
rithm that takes as input some security parameter 1κ and outputs a matching

pair (upk, usk) of public key and private key: (upk, usk)
R← KEYGEN(1κ).

Public-key encryption with keyword search (PEKS) Let W denote the
keyword space. The PEKS algorithm PEKS takes as input a public key upk
and a keyword w ∈ W, and returns a searchable ciphertext S. We write
S ← PEKSupk(w).

Trapdoor The trapdoor algorithm TRAPDOOR takes as input the private key usk
(corresponding to upk) and a keyword w, and returns a trapdoor Tw for
keyword w. We write Tw ← TRAPDOORusk(w).

Test The test algorithm TEST takes as input a searchable ciphertext S and a
trapdoor Tw, and returns a bit b. A bit b with 1 means “accept” or “yes”,
and a bit b with 0 means “reject” or “no”. We write b← TEST(S, Tw).

It is required that TEST(PEKSupk(w), TRAPDOORusk(w)) = 1 for all keywords
w ∈W.

D.2 Public-key encryption with keyword search from quadratic
residuosity

In a PEKS scheme, a sender can send messages in encrypted form to a receiver
so that the receiver can allow a designated proxy to search keywords in the
encrypted messages without incurring any (additional) loss of privacy. In [6],
Boneh et al. suggest the following methodology:

– The sender encrypts the message being sent with a (regular) public-key cryp-
tosystem;

– She appends to the resulting ciphertext a PEKS for each keyword.

In more detail, to encrypt a message m with searchable keywords w1, . . . , wn for
the receiver with public key upk, the sender computes and sends

c = ENCRYPTupk(m) , S1 = PEKSupk(w1) , . . . , Sn = PEKSupk(wn) .



The whole ciphertext is C = {c, S1, . . . , Sn}. Now if the receiver has given a
proxy a trapdoor Twj for keyword wj then this proxy can test whether the
corresponding plaintext m contains the keyword wj , but nothing more.

A conversion to turn an anonymous identity-based scheme (under certain
conditions) into a PEKS scheme is developed in [6]. Some subsequent refinements
are described in [1]. Applied to the scheme of § 6.2 as a building block, we so
obtain a PEKS scheme based on the quadratic residuosity. For slightly better
efficiency, instead of verifying whether xi = µ−1(νi · τi) (∈ {0, 1}), for 0 ≤ i ≤
k − 1, the TEST algorithm equivalently verifies whether τi = νi · (1 − 2xi). In
detail, the scheme is as follows.

KEYGEN(1κ) Given a security parameter κ, KEYGEN generates an RSA modulus
N = pq where p and q are prime. It defines a security parameter k depending
on κ. It also selects an element u ∈ JN \ QRN and a global integer d. The
user’s public key is upk = {N, k, u, d,Hd} where Hd is a cryptographic hash
function mapping bit-strings to JN as per Eq. (4). The user’s private key is
usk = {p, q}.

PEKSupk(w) To encrypt a keyword w ∈ {0, 1}∗, PEKS selects a k-bit integer x =∑k−1
i=0 xi2

i (with xi ∈ {0, 1}). It defines R = Hd(w).
For i = 0, . . . , k − 1, it does the following:
1. choose at random ti, t̄i ∈ Z/NZ;
2. let

εi = (−1)xi
(
ti
N

)
, ci

(0) = ti + R
ti

mod N , ci
(1) = ci

(0)d+4R
ci(0)+d

mod N ,

ε̄i = (−1)xi
(
t̄i
N

)
, c̄i

(0) = t̄i + uR
t̄i

mod N , c̄i
(1) = c̄i

(0)d+4uR
c̄i(0)+d

mod N ;

3. choose random bits β1,i, β2,i ∈ {0, 1} and set ci = ci
(β1,i) and c̄i = c̄i

(β2,i).
PEKS returns the searchable ciphertext S = {x, ε0, c0, ε̄0, c̄0, . . . , εk−1, ck−1,
ε̄k−1, c̄k−1}.

TRAPDOORusk(w) Given keyword w, trapdoor algorithm TRAPDOOR setsR = H(w).
If R ∈ QRN it computes Tw = R1/2 mod N ; otherwise it computes Tw =
(uR)1/2 mod N . TRAPDOOR returns Tw.

TEST(S, Tw) For keyword w, TEST uses the trapdoor Tw. Let R = Hd(w). Given
a searchable ciphertext S = {x, ε0, c0, ε̄0, c̄0, . . . , εk−1, ck−1, ε̄k−1, c̄k−1}, if
Tw

2 ≡ R (mod N), TEST sets νi = εi, γi = ci for 0 ≤ i ≤ k − 1, and ∆ = R;
otherwise it sets νi = ε̄i, γi = c̄i for 0 ≤ i ≤ k − 1, and ∆ = uR.
Next, for i = 0, . . . , k − 1, it does the following:

1. set σi =
(
γi

2−4∆

N

)
;

2. set

τi =


(
γi+2Tw
N

)
if σi = 1(

(γi+2Tw)(d−2Tw)(d−γi)
N

)
if σi = −1

;

3. set bi = 1 if τi = νi · (1− 2xi); set bi = 0 otherwise;
TEST returns 1 if and only if bi = 1 for all 0 ≤ i ≤ k − 1; and 0 otherwise.



E A Remark on Boneh-Gentry-Hamburg Abstract IBE
System

Cocks’ scheme was subsequently revisited by Boneh, Gentry, and Hamburg [8].
The advantage of their scheme resides in the length of the ciphertexts. While
the encryption of an `-bit message requires 2` · log2N bits with Cocks’ scheme,
ciphertext size in Boneh-Gentry-Hamburg scheme is about `+ log2N bits.

This section simplifies the abstract IBE system with short ciphertexts as
presented in [8, Section 3].

E.1 Description

SETUP and EXTRACT are similar to Cocks’ scheme. ENCRYPT and DECRYPT re-
quire a deterministic algorithm Q taking as input an RSA modulus N and
three elements u,R, S ∈ Z/NZ and returning four IBE-compatible polynomials
f, g, f̄ , τ ∈ Z/NZ[X]. Polynomials f, f̄ , g, τ are said IBE-compatible if and only
if the following conditions are met:

c1. If R,S ∈ QRN then f(r)g(s) ∈ QRN for all square roots r of R and s of S;

c2. If R ∈ QRN then f(r)f(−r)S ∈ QRN for all square roots r of R;

c3. If uR, S ∈ QRN then f̄(r̄)g(s)τ(s) ∈ QRN for all square roots r̄ of uR and
s of S;

c4. If uR ∈ QRN then f̄(r̄)f̄(−r̄)S ∈ QRN for all square roots r̄ of uR;

c5. If S ∈ QRN then τ(s)τ(−s)u ∈ QRN for all square roots s of S;

c6. Polynomial τ is independent of R.

In more detail, the Boneh-Gentry-Hamburg scheme goes as follows.

SETUP(1κ) Given a security parameter κ, SETUP generates an RSA modulus N =
pq where p and q are prime. It also generates a random element u ∈ JN\QRN .
The public system parameters are {N, u,H,Q} where H is a cryptographic
hash function mapping bitstrings to JN . The master secret key is msk =
{p, q}.

EXTRACTmsk(id) Using hash function H, EXTRACT sets Rid = H(id). If Rid ∈ QRN
it computes rid = Rid

1/2 mod N ; otherwise it computes rid = (uRid)
1/2 mod

N . EXTRACT returns user’s private key usk = {rid}.
ENCRYPT(id,m) To encrypt a message m ∈ {±1} for user with identity id,

ENCRYPT

– chooses at random s ∈ Z/NZ and computes S = s2 mod N ;

– runs Q(N, u,Rid, S) where Rid = H(id) to obtain g and τ ;

– computes k =
(
τ(s)

N

)
;

– forms w = m ·
(
g(s)

N

)
;

– returns ciphertext C = (S, k, w).



DECRYPT(usk, C) To decrypt C = (S, k, w), intended for user with identity id,
DECRYPT runsQ(N, u,Rid, S) to obtain f and f̄ . Plaintextm is then recovered
as

m =

w ·
(
f(rid)

N

)
if rid

2 ≡ Rid (mod N)

w · k ·
(
f̄(rid)

N

)
otherwise

,

using the user’s private key usk = {rid}.

The correctness of the decryption follows from conditions c1–c6 imposed to
polynomials f, f̄ , g, τ .

The encryption of an `-bit message m = (m1,m2, . . . ,m`) ∈ {±1}` pro-
ceeds broadly in the same way except that the user’s private key is now usk =
{rid,1, rid,2, . . . , rid,`} where rid,j

2 ≡ Rid,j (mod N) if Rid,j ∈ QRN and rid,j
2 ≡

uRid,j (mod N) if Rid,j ∈ JN \ QRN , and where Rid,j = H(id, j) for 1 ≤ j ≤ `.
In other words, identity id is hashed ` times so as to produce ` values Rid,j

for 1 ≤ j ≤ `. Now, each pair (S,Rid,j) (with the same S) is used to encrypt

one message bit mj ; namely, wj = mj ·
(
gj(s)

N

)
where gj is obtained by running

Q(N, u,Rid,j , S). By the last condition, polynomial τ is always the same for all
values of Rid,j . The ciphertext corresponding to message m = (m1,m2, . . . ,m`)
is therefore given by C = {S, k, (w1, w2, . . . , w`)}. Plaintext message m is re-
covered from C bit-by-bit using private key usk = {rid,1, rid,2, . . . , rid,`} as mj =

wj ·
(
f(rid,j)

N

)
if rid,j

2 ≡ Rid,j (mod N) and as mj = wj · k ·
(
f̄(rid,j)

N

)
otherwise,

for 1 ≤ j ≤ `.

E.2 A simplified abstract IBE

As described in the previous section, the abstract Boneh-Gentry-Hamburg sys-
tem makes use of polynomials f, f̄ , g, τ ∈ Z/NZ[X]. To simplify the notation, we
consider one-bit messages but the discussion readily extends to `-bit messages,
` > 1.

We observe that polynomials f and f̄ are evaluated at rid and that polyno-
mials g and τ are evaluated at s. Furthermore, we note that the values of Rid

and of S are publicly known. So, letting δ denote the degree of polynomial f
and f(X) =

∑δ
k=0 fkX

k with fk ∈ Z/NZ, we can write

f(rid) =

δ∑
k=0

fk rid
k = Arid +B (mod N) (7)

where

A =
∑

0≤k≤δ
k odd

fk rid
(k−1) =



∑
0≤k≤δ
k odd

fk Rid
(k−1)/2 (mod N) if rid

2 ≡
Rid (mod N)∑

0≤k≤δ
k odd

fk (uRid)
(k−1)/2 (mod N) otherwise



and

B =
∑

0≤k≤δ
k even

fk rid
k =



∑
0≤k≤δ
k even

fk Rid
k/2 (mod N) if rid

2 ≡ Rid (mod N)

∑
0≤k≤δ
k even

fk (uRid)
k/2 (mod N) otherwise

.

There is therefore no loss of generality to consider degree-1 polynomials for f .
The same conclusion holds for polynomials f̄ (evaluated at rid), and for polyno-
mials g and τ (evaluated at s).

As a result, we define f(X) = f1X+f0, f̄(X) = f̄1X+f̄0, g(X) = g1X+g0,
and τ(X) = τ1X + τ0. These four polynomials returned by public algorithm Q
must be IBE-compatible.

For example, given Rid and S, one can select parameters f0, f1, g0, g1 ∈ Z/NZ
such that

2f0g0 ∈ QR(N) and Rid

(
f1
f0

)2
+ S

(
g1
g0

)2
= 1 (mod N) . (8)

This ensures that compatibility conditions c1 and c2 are satisfied.

Proof. Multiplying the second equation through f0
2 yields Sf0

2( g1g0

)2
= f0

2 −
Ridf1

2 = f(rid)f(−rid) for any square root rid of Rid. Consequently, we have

f(rid)f(−rid)S =
(
Sf0

g1
g0

)2 ∈ QR(N). We also have
(
rid

f1
f0

+ s g1g0 + 1
)2

=

Rid

(
f1
f0

)2
+ S

(
g1
g0

)2
+ 1 + 2rids

f1
f0

g1
g0

+ 2rid
f1
f0

+ 2s g1g0 = 2
f0g0

(f0g0 + ridsf1g1 +

ridf1g0 + sg1f0) = 2
f0g0

f(rid)g(s) for any square root rid of Rid and any square

root s of S. Since 2f0g0 ∈ QR(N), it thus follows that f(rid)g(s) = 2f0g0
4

(
rid

f1
f0

+

s g1g0 + 1
)2 ∈ QR(N), as required. ut

We also define polynomial ḡ ∈ Z/NZ[X] given by ḡ(X) = ḡ1X + ḡ0 where
ḡ1 = g1τ0 + g0τ1 mod N and ḡ0 = g1τ1S+ g0τ0 mod N . It is worth noticing that
evaluated at s we have ḡ(s) ≡ g(s)τ(s) (mod N). Analogously, we require

2f̄0ḡ0 ∈ QR(N) and uRid

( f̄1

f̄0

)2
+ S

(
ḡ1
ḡ0

)2

= 1 (mod N) (9)

so as to fulfill compatibility conditions c3 and c4. Compatibility conditions c5
and c6 are automatically satisfied from the product formula in [8, Lemma 5.1]. If
(f0, f1, g0, g1) is a solution to Eq. (8) and if (α, β) is a solution to uα2 +Sβ2 = 1
then (f̄0, f̄1, ḡ0, ḡ1) is a solution to Eq. (9) provided that

f̄1

f̄0

=

f1
f0
α

S g1g0 β + 1
(mod N) and

ḡ1

ḡ0

def≡ g1τ0 + g0τ1
g1τ1S + g0τ0

≡
g1
g0

+ β

S g1g0 β + 1
(mod N)

(10)
with 2f̄0ḡ0 ∈ QR(N).

The instantiation presented in [8, Section 4] corresponds to the choice f0 = 1,
f1 = x, g0 = 2, g1 = 2y, f̄0 = Syβ + 1, f̄1 = xα, τ0 = 1 and τ1 = β, for some
(x, y) satisfying Ridx

2 + Sy2 = 1 (mod N) and (α, β) satisfying uα2 + Sβ2 = 1
(mod N).
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