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Abstract. Key-insulated encryption is one of the effective solutions to
a key exposure problem. Recently, identity-based encryption (IBE) has
been used as one of fundamental cryptographic primitives in a wide range
of various applications, and it is considered that the identity-based key-
insulated security has a huge influence on the resulting applications. At
Asiacrypt’05, Hanaoka et al. proposed an identity-based hierarchical key-
insulated encryption (hierarchical IKE) scheme. Although their scheme
is secure in the random oracle model, it has a “hierarchical key-updating
structure,” which is attractive functionality that enhances key exposure
resistance.
In this paper, we first propose the hierarchical IKE scheme without ran-
dom oracles. Our hierarchical IKE scheme is secure under the symmetric
external Diffie–Hellman (SXDH) assumption, which is known as the sim-
ple and static one. Furthermore, when the hierarchy depth is one (i.e.
not hierarchical case), our scheme is the first IKE scheme that achieves
constant-size parameters including public parameters, secret keys, and
ciphertexts.

Keywords: Key-insulated encryption, identity-based hierarchical key-insulated
encryption, hierarchical identity-based encryption, asymmetric pairing.

1 Introduction

1.1 Background

A key exposure problem is unavoidable since human errors cannot seem to be
eliminated in the future, and many researchers have tackled this problem in
modern cryptography area so far. Key-insulation, which is introduced by Dodis
et al. [12], is one solution to this problem. Specifically, they proposed public
key encryption with the key-insulated property, which is called public-key-based
key-insulated encryption (PK-KIE). In PK-KIE, a user has two kinds of secret
keys, so-called a decryption key and a helper key. The decryption key is used
for decrypting ciphertexts and assumed to be stored in a powerful but insecure
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device such as laptops and smartphones. Meanwhile, the helper key is used for
updating the decryption key and assumed to be stored in a physically-secure
but computationally-limited device such as USB pen drives. Traditionally, in
key-insulated cryptography, the following two kinds of security notions are con-
sidered:

1. If a number of decryption keys are exposed, the fact does not affect decryp-
tion keys at other time-periods.

2. Even if a helper key is exposed, the security is not compromised unless at
least one decryption key is exposed.

We say a key-insulated system is secure if it satisfies 1; and it is strongly secure
if it satisfies both 1 and 2. Specifically, the lifetime of the system is divided
into discrete time-periods, and the user can decrypt the ciphertext encrypted at
some time-period t by using a decryption key updated at the same time-period
t. Therefore, even if the decryption key at t is exposed, the fact does not affect
decryption keys at other time-periods, and hence the impact of the exposure can
be significantly reduced.

Following a seminal work by Dodis et al. [12], symmetric-key-based key-
insulated encryption [14], key-insulated signatures [13], and parallel key-insulated
encryption [17, 18, 23] have been proposed so far. In addition to key-insulated
cryptography, researchers have tackled the key exposure problem in various fla-
vors. In forward-secure cryptography [1, 8], users update their own secret keys at
the beginning of each time-period. Even if the secret key is exposed, an adversary
cannot get any information of ciphertexts encrypted at previous time-periods.
Intrusion-resilient cryptography [10, 11, 20] realizes both key-insulated security
and forward security simultaneously at the sacrifice of efficiency and practicality.

In this paper, we focus on the key-insulation paradigm in the identity-based
setting. Since identity-based encryption (IBE) has been used as one of funda-
mental cryptographic primitives in a wide range of various applications, we
believe that the identity-based key-insulated security has a huge influence on
the resulting applications. Also, developing key-insulated cryptography in the
identity-based area is the first step to consider the key-insulated security in
the attribute-based [3, 26] and functional encryption [7] settings. Thus, we con-
sider that it is important to consider the identity-based key-insulated security.
However, in the IBE context, there are only few researches on key-insulation.
Hanaoka et al. [19] proposed the first identity-based (hierarchical) key-insulated
encryption (IKE) scheme in the random oracle model. In their hierarchical IKE
scheme, the key-updating mechanism has the hierarchical structure (and the
scheme does not have a delegating property). Namely, not only a decryption key
but also a helper key can be updated by a higher-level helper key. Since this “hi-
erarchy” is not the same as that of hierarchical IBE (HIBE) [16], only applying
techniques used in the HIBE context is insufficient for constructing secure (in
particular, strongly secure) IKE schemes. The hierarchical property is attractive
since it enhances resistance to key exposure and there seem to be various ap-
plications due to progress in information technology (e.g., the popularization of
smartphones). Let us consider an example: Suppose that each employee has a
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smartphone for business use, a laptop, and a PC at his office. A decryption key
is stored in the smartphone, and it is updated by a 1-st level helper key stored
in his laptop every day. However, the 1-st level helper key might be leaked since
he carries around the laptop, and connects to the Internet via the laptop. Thus,
the 1-st level helper key is also updated by a 2-nd level helper key stored in his
PC every two–three months. Since the PC is not completely isolated from the
Internet, every half a year, his boss updates the 2-nd level helper key is updated
by 3-rd level helper key stored in an isolated private device. Thus, we believe
hierarchical IKE has many potential applications.

After the proposal of hierarchical IBE by Hanaoka et al., two (not hierar-
chical) IKE schemes with additional properties in the standard model were pro-
posed. One is the so-called parallel IKE scheme, which was proposed by Weng
et al. [31]. The other is the so-called threshold IKE scheme, which was proposed
by Weng et al. [32]. These two schemes enhance the resistance to helper key
exposure by splitting a helper key into multiple ones. However, once the (di-
vided) helper key is leaked, the security cannot be recovered. We now emphasize
that the hierarchical key-updating structure is useful since even if some helper
key is exposed, the helper key can be updated. However, there have been no
hierarchical IKE schemes without random oracles so far.

1.2 Our Contribution

In this paper, our aim is to construct a hierarchical IKE scheme such that:
(1) we can prove the security in the standard model from simple computational
assumptions; and (2) when the hierarchy depth is one (i.e., not hierarchical case),
the scheme achieves all constant-size parameters including public parameters,
secret keys, and ciphertexts.

As a result, we propose the first hierarchical IKE scheme in the standard
model. Specifically, we construct the hierarchical IKE scheme from the symmet-
ric external Diffie–Hellman (SXDH) assumption, which is a static and simple
one. Further, the proposed scheme achieves the constant-size parameters when
the hierarchy is one, whereas public parameters of the (not hierarchical) ex-
isting scheme [32] depend on sizes of identity spaces (also see Section 4.1 for
comparison). This is due to differences of base IBE schemes of each scheme.
Our (hierarchical) IKE scheme is based on the Jutla–Roy IBE [22] and its vari-
ant [25], whereas the existing scheme (but not hierarchical one) [32] is based
on the Waters IBE [29]. In the following, we explain why a naive solution is
insufficient and why achieving (1) and (2) is challenging.

Why a (trivial) hierarchical IKE scheme from HIBE is insufficient.4

One may think that a hierarchical IKE scheme can be easily obtained from
an arbitrary HIBE scheme. However, the resulting IKE scheme is insecure in
our security model, which was first formalized in [19]. The reason for this is
that our security model includes the strong security model, and hence the fact
4 This fact was also mentioned in [19].
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makes a hierarchical IKE scheme from HIBE insecure. More specifically, a trivial
construction is as follows. Let skI be a secret key for some identity I in HIBE,
and hk

(ℓ)
I be an ℓ-th level helper key for I in IKE. We set skI as hk

(ℓ)
I , and

lower-level helper and decryption keys can be obtained from skI by regarding
time-periods as descendants’ identity. However, it is easy to see that if ℓ-th level
helper key is exposed, then an adversary can obtain all lower-level keys, and
thus, the resulting scheme does not meet the strong security. In fact, Bellare and
Palacio [2] showed that not strongly secure PK-KIE is equivalent to IBE for a
similar reason.

Difficulties in constructing a constant-size IKE scheme from simple
computational assumptions. The main difficulty in constructing an IKE
scheme is that an adversary can get various keys regarding a target identity I∗,
whereas in (H)IBE, the adversary cannot get any information on a secret key
for I∗. This point makes a construction methodology non-trivial. Actually, it
seems difficult to apply the Waters dual-system IBE [30] (and its variant [24]) as
the underlying basis of IKE schemes. Technically, in their scheme each of secret
keys and ciphertexts contains some random exponent, so-called tagK and tagC ,
respectively. In their proof, these tags for some I are needed to be generated by
inputting I into some pairwise independent function, which is embedded into
public parameters in advance. This generating procedure is necessary for cancel-
lation of values and hence the security proof. Although it holds tagK = tagC for
the same identity I, the proof works well since it is enough to generate only tagK

for all identities I ̸= I∗ and only tagC for the target identity I∗. However, in the
IKE setting, not only tagC but also tagK for I∗ have to be generated since an
adversary can get leaked decryption and helper keys for I∗, and hence, the proof
does not go well. To overcome this challenging point, we set (the variant of) the
Jutla–Roy IBE [22, 25], which is another type of constant-size IBE schemes, as
the basis of our IKE scheme, and thus we can realize the first constant-size IKE
scheme under the SXDH assumption. Further, we can also obtain the hierarchical
IKE scheme by extending the technique into the hierarchical setting.

Organization of this paper. In Section 2, we describe the notation used in this
paper, asymmetric pairings, complexity assumptions, and functions which map
time to discrete time-periods. In Section 3, we give a model and security defini-
tion of hierarchical IKE. In Section 4, we propose a direct construction of our
hierarchical IKE scheme, and give the efficiency comparison among our scheme
and existing schemes. In Section 5, we show the security proof of our scheme.
In Section 6, we show a CCA-secure hierarchical IKE scheme. In Section 7, we
conclude this paper.

2 Preliminaries

Notation. In this paper, “probabilistic polynomial-time” is abbreviated as “PPT”.
Let Zp := {0, 1, . . . , p − 1} and Z×

p := Zp \ {0}. If we write (y1, y2, . . . , ym) ←
A(x1, x2, . . . , xn) for an algorithm A having n inputs and m outputs, it means



Identity-based Hierarchical Key-insulated Encryption 5

to input x1, x2, . . . , xn into A and to get the resulting output y1, y2, . . . , ym.
We write (y1, y2, . . . , ym)← AO(x1, x2, . . . , xn) to indicate that an algorithm A
that is allowed to access an oracle O takes x1, x2, . . . , xn as input and outputs
(y1, y2, . . . , ym). If X is a set, we write x

$←X to mean the operation of picking
an element x of X uniformly at random. We use λ as a security parameter. M
and I denote sets of plaintexts and IDs, respectively, which are determined by
a security parameter λ.

Bilinear Group. A bilinear group generator G is an algorithm that takes a secu-
rity parameter λ as input and outputs a bilinear group (p, G1, G2, GT , g1, g2, e),
where p is a prime, G1, G2, and GT are multiplicative cyclic groups of order p, g1

and g2 are (random) generators of G1 and G2, respectively, and e is an efficiently
computable and non-degenerate bilinear map e : G1×G2 → GT with the follow-
ing bilinear property: For any u, u′ ∈ G1 and v, v′ ∈ G2, e(uu′, v) = e(u, v)e(u′, v)
and e(u, vv′) = e(u, v)e(u, v′), and for any u ∈ G1 and v ∈ G2 and any a ∈ Zp,
e(ua, v) = e(u, va) = e(u, v)a.

A bilinear map e is called symmetric or a “Type-1” pairing if G1 = G2.
Otherwise, it is called asymmetric. In the asymmetric setting, e is called a “Type-
2” pairing if there is an efficiently computable isomorphism either from G1 to
G2 or from G2 to G1. If no efficiently computable isomorphisms are known, then
it is called a “Type-3” pairing. In this paper, we focus on the Type-3 pairing,
which is the most efficient setting (For details, see [9, 15]).

Symmetric External Diffie–Hellman (SXDH) Assumption. We give the
definition of the decisional Diffie–Hellman (DDH) assumption in G1 and G2,
which are called the DDH1 and DDH2 assumptions, respectively.

Let A be a PPT adversary and we consider A’s advantage against the DDH1
problem as follows.

AdvDDH1
G,A (λ) :=

∣∣∣∣∣∣∣∣∣∣
Pr

 b′ = b

D := (p, G1, G2, GT , g1, g2, e)← G,
c1, c2

$← Zp, b
$← {0, 1},

if b = 0 then T := gc1c2
1 ,

else T
$← G1,

b′ ← A(λ,D, g1, g2, g
c1
1 , gc2

1 , T )

− 1
2

∣∣∣∣∣∣∣∣∣∣
.

Definition 1 (DDH1 Assumption). The DDH1 assumption relative to a gen-
erator G holds if for all PPT adversaries A, AdvDDH1

G,A (λ) is negligible in λ.

Similarly, we define the DDH2 problem. Let A be a PPT adversary and we
consider A’s advantage against the DDH2 problem as follows.

AdvDDH2
G,A (λ) :=

∣∣∣∣∣∣∣∣∣∣
Pr

 b′ = b

D := (p, G1, G2, GT , g1, g2, e)← G,
c1, c2

$← Zp, b
$← {0, 1},

if b = 0 then T := gc1c2
2 ,

else T
$← G2,

b′ ← A(λ,D, g1, g2, g
c1
2 , gc2

2 , T )

− 1
2

∣∣∣∣∣∣∣∣∣∣
.
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Fig. 1. Intuition of time-period map functions.

Definition 2 (DDH2 Assumption). The DDH2 assumption relative to a gen-
erator G holds if for all PPT adversaries A, AdvDDH2

G,A (λ) is negligible in λ.

Definition 3 (SXDH Assumption). We say that the SXDH assumption rel-
ative to a generator G holds if both the DDH1 and DDH2 assumptions relative
to G hold.

Time-period Map Functions. In this paper, we deal with several kinds of
time-periods since we consider that update intervals of each level key are dif-
ferent. For example, in some practical applications, it might be suitable that a
decryption key (i.e. 0-th level key) and a 1-st level helper key should be updated
every day and every three months, respectively. To describe such different up-
date intervals of each level key, we use functions, which is so-called time-period
map functions. This functions were also used in [19]. Now, let T be a (possibly
infinite) set of time, and Tj (0 ≤ j ≤ ℓ − 1) be a finite set of time-periods. We
assume |T0| ≥ |T1| ≥ · · · ≥ |Tℓ−1|. This means that a lower-level key is updated
more frequently than the higher-level keys. Then, we assume there exists a func-
tion Tj (0 ≤ j ≤ ℓ − 1) which map time time ∈ T to a time-period tj ∈ Tj .
For the understanding of readers, by letting time = 9:59/7th/Oct./2015 and
ℓ := 4, we give an example in Figure 1 and below. For example, we have
T0(time) = t

(19)
0 = 1st-15th/Oct./2015, T1(time) = t

(10)
1 = Oct./2015,

T2(time) = t
(5)
2 = Oct.-Dec./2015, and T3(time) = t

(2)
3 = Jul.-Dec./2015.

Namely, in this example, it is assumed that the decryption key, and 1-st, 2-nd,
and 3-rd helper keys are updated every half a month, every month, every three
months, and every half a year. Further, we can also define a function Tℓ such
that Tℓ(time) = 0 for all time ∈ T .

3 Identity-based Hierarchical Key-insulated Encryption

3.1 The Model

In ℓ-level hierarchical IKE, a key generation center (KGC) generates an initial
decryption key dkI,0 and ℓ initial helper keys hk

(1)
I,0 , . . . , hk

(ℓ)
I,0 as a secret key for a
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user I. Suppose that all time-period map functions T0, . . . , Tℓ−1 are available to
all users. The key-updating procedure when the user wants to get a decryption
key at current time time ∈ T from the initial helper keys is as follows. The ℓ-th
level helper key hk

(ℓ)
I,0 is a long-term one and is never updated. First, the user

generates key update δ
(ℓ−1)
tℓ−1

for the (ℓ − 1)-th level helper key from hk
(ℓ)
I,0 and

a time-period tℓ−1 := Tℓ−1(time) ∈ Tℓ−1. Then, the (ℓ − 1)-th level helper key
hk

(ℓ−1)
I,0 can be updated by the key update δ

(ℓ−1)
tℓ−1

, and the user get the helper

key hk
(ℓ−1)
I,tℓ−1

at the time-period tℓ−1. Similarly, the i-th level helper key hk
(i)
I,ti

at

the time-period ti := Ti(time) ∈ Ti can be obtained from hk
(i)
I,0 and δ

(i)
ti

, where

δ
(i)
ti

is generated from the (i+1)-th level helper key hk
(i+1)
I,ti+1

. The user can finally
get the decryption key dkI,t0 at a time-period t0 := T0(time) ∈ T0 from the
1-st level helper key hk

(1)
I,T1(time)

. Anyone can encrypt a plaintext M with the
identity I and current time time∗, and the user can decrypt the ciphertext C
with his decryption key dkI,t0 only if t0 = T0(time∗). At time′ ∈ T , the user
can update the time-period of the decryption key from any time-period t0 to
t′0 := T0(time′) ∈ T0 by using key update δ

(0)
T0(time′)

. The key update δ
(0)
T0(time′)

can be obtained from hk
(1)
I,t′1

only if t′1 = T1(time′). If not, it is necessary to get

δ
(1)
T1(time′)

and update hk
(1)
I,t′1

. In this manner, the decryption and helper keys are
updated.

An ℓ-level hierarchical IKE scheme ΠIKE consists of six-tuple algorithms
(PGen, Gen, ∆-Gen, Upd, Enc, Dec) defined as follows. For simplicity, we omit a
public parameter in the input of all algorithms except for the PGen algorithm.

– (pp,mk) ← PGen(λ, ℓ): A probabilistic algorithm for parameter generation.
It takes a security parameter λ and the maximum hierarchy depth ℓ as input,
and outputs a public parameter pp and a master key mk.

– (dkI,0, hk
(1)
I,0 , . . . , hk

(ℓ)
I,0)← Gen(mk, I): An algorithm for user key generation.

It takes mk and an identity I ∈ I as input, and outputs an initial secret
key dkI,0 associated with I and initial helper keys hk

(1)
I,0 , . . . , hk

(ℓ)
I,0, where

hk
(i)
I,0 (1 ≤ i ≤ ℓ) is assumed to be stored user’s i-th level private device.

– δ
(i−1)
Ti−1(time)

or ⊥ ← ∆-Gen(hk
(i)
I,ti

, time): An algorithm for key update gener-

ation. It takes an i-th helper key hk
(i)
I,ti

at a time period ti ∈ Ti and current

time time as input, and outputs key update δ
(i−1)
Ti−1(time)

if ti = Ti(time);
otherwise, it outputs ⊥.

– hk
(i)
I,τi
← Upd(hk

(i)
I,ti

, δ
(i)
τi ): A probabilistic algorithm for decryption key gen-

eration. It takes an i-th helper key hk
(i)
I,ti

at a time-period ti ∈ Ti and key

update δ
(i)
τi at a time-period τ ∈ Ti as input, and outputs a renewal i-th

helper key hk
(i)
I,τi

at τ . Note that for any t0 ∈ T0, hk
(0)
I,t0 means dkI,t0 .

– ⟨C, time⟩ ← Enc(I, time, M): A probabilistic algorithm for encryption. It
takes an identity I, current time time, and a plaintext M ∈ M as input,
and outputs a pair of a ciphertext and current time ⟨C, time⟩.
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– M or ⊥ ← Dec(dkI,t0 , ⟨C, time⟩): A deterministic algorithm for decryption.
It takes dkI,t0 and ⟨C, time⟩ as input, and outputs M or ⊥, where ⊥ indicates
decryption failure.

In the above model, we assume that ΠIKE meets the following correctness prop-
erty: For all security parameter λ, all ℓ := poly(λ), all (mk, pp)← PGen(λ, ℓ), all
M ∈ M, all (dkI,0, hk

(1)
I,0 , . . . , hk

(ℓ)
I,0) ← Gen(mk, I), and all time ∈ T , it holds

that M ← Dec(dkI,T0(time), Enc(I, time,M)), where dkI,T0(time) is generated as
follows: For i = ℓ, . . . , 1, hk

(i−1)
I,Ti−1(time)

← Upd(hk
(i−1)
I,ti−1

,∆-Gen(hk
(i)
I,Ti(time)

, time)),

where some ti ∈ Ti and hk
(0)
I,T0(time)

:= dkI,T0(time).

3.2 Security Definition

We consider a security notion for indistinguishability against key exposure and
chosen plaintext attack for IKE (IND-KE-CPA). Let A be a PPT adversary, and
A’s advantage against IND-KE-CPA security is defined by

AdvIND-KE-CPA
ΠIKE,A (λ) :=∣∣∣∣∣∣∣∣Pr

 b′ = b

(pp,mk)← PGen(λ),
(M∗

0 , M∗
1 , I∗, time∗, state)← AKG(·),KI(·,·,·)(find, pp),

b
$← {0, 1}, C∗ ← Enc(I∗, time∗,M∗

b ),
b′ ← AKG(·),KI(·,·,·)(guess, C∗, state)

− 1
2

∣∣∣∣∣∣∣∣ .

where KG(·) and KI (·, ·, ·) are defined as follows.

KG(·): For a query I ∈ I, it stores and returns (dkI,0, hk
(1)
I,0 , . . . , hk

(ℓ)
I,0) by run-

ning Gen(mk, I).
KI (·, ·, ·): For a query (i, I, time) ∈ {0, 1, . . . , ℓ}×I×T , it returns hk

(i)
I,Ti(time)

by

running δ
(j−1)
Tj−1(time)

← ∆-Gen(hk
(j)
I,Tj(time)

, time) and hk
(j−1)
I,Tj−1(time)

← Upd(hk
(j−1)
I,t ,

δ
(j−1)
Tj−1(time)

) for j = ℓ, . . . , i+1 (if (dkI,0, hk
(1)
I,0 , . . . , hk

(ℓ)
I,0) is not stored, it first

generates and stores them by running Gen).

I∗ is never issued to the KG oracle. A can issue any queries (i, I, time) to the
KI oracle if there exists at least one special level j ∈ {0, 1, . . . , ℓ} such that

1. For any time ∈ T , (j, I∗, time) is never issued to KI.
2. For any (i, time) ∈ {0, 1, . . . , j − 1} × T such that Ti(time) = Ti(time∗),

(i, I∗, time) is never issued to KI.

In Figure 2, we give intuition of keys that A can obtain by issuing to the KI
oracle. In this example, let ℓ = 4 and a special level j = 2.

Definition 4 (IND-KE-CPA [19]). An IKE scheme ΠIKE is said to be IND-
KE-CPA secure if for all PPT adversaries A, AdvIND-KE-CPA

ΠIKE ,A (λ) is negligible in
λ.
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time*

: Decryption and  helper keys that A can obtain

1

0

2

3

4

Level

Fig. 2. Pictorial representation of secret keys for I∗ that A can obtain by issuing to
KI.

Remark 1. As also noted in [19], there is no need to consider key update expo-
sure explicitly (i.e. consider an oracle which returns any key update as much as
possible) since in the above definition, A can get such key update from helper
keys obtained from the KI oracle.

Remark 2. As explained in Section 1, in key-insulated cryptography including
the public key setting [2, 12, 17] and the identity-based setting [19, 31, 32], two
kinds of security notions have been traditionally considered: standard security
and strong security. In most of previous works [2, 12, 17–19, 23, 31, 32], authors
have considered how their scheme could achieve the strong security. We note
that IND-KE-CPA security actually includes the strong security, and the fact is
easily checked by setting ℓ = 1.

By modifying the above IND-KE-CPA game so that A can access to the
decryption oracle Dec(·, ·), which receives (I, ⟨C, time⟩) and returns M or ⊥, we
can also define indistinguishability against key exposure and chosen ciphertext
attack for IKE (IND-KE-CCA). A is not allowed to isuue (I ∗, ⟨C∗, time⟩) such
that T0(time) = T0(time∗) to Dec. Let AdvIND-KE-CCA

ΠIKE ,A (λ) be A’s advantage
against IND-KE-CCA security.

Definition 5 (IND-KE-CCA [19]). An IKE scheme ΠIKE is said to be IND-
KE-CCA secure if for all PPT adversaries A, AdvIND-KE-CCA

ΠIKE ,A (λ) is negligible
in λ.

4 Our Construction

Our basic idea is a combination of (the variant of) the Jutla–Roy HIBE [22,
25] and threshold secret sharing schemes [4, 27]. A secret B is divided into ℓ
shares β0, . . . , βℓ−1, and both the secret and shares are used in exponent of a
generator g2 ∈ G2. B is embedded into the exponent of a secret key for I∗ of the
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Jutla–Roy HIBE, and the resulting key is an ℓ-th level initial helper key hk
(ℓ)
I,0.

Roughly speaking, B works as “noise”. Other initial helper keys hk
(i)
I,0 and an

initial decryption key contain g−βi

2 and g−β0
2 , respectively. As a lower-level key

is generated, shares are eliminated from the secret B, and finally B is entirely
removed when generating (or updating) a decryption key. Intuitively, since no
secret keys at some special level j ∈ {0, . . . , ℓ} are exposed, an adversary cannot
get all βi. Hence, he cannot generate valid decryption keys that can decrypt the
challenge ciphertext for I∗ at time∗.

An IKE scheme ΠIKE =(PGen, Gen, ∆-Gen, Upd, Enc, Dec) is constructed
as follows.

- PGen(λ, ℓ): It runs (G1, G2, GT , p, g1, g2, e)← G. It chooses x0, y0, {(x1,j , y1,j)}ℓj=0,

x2, y2, x3, y3
$← Zp and α

$← Z×
p , and sets

z = e(g1, g2)−x0α+y0 , u1,j := g
−x1,jα+y1,j

1 (0 ≤ j ≤ ℓ),

w1 := g−x2α+y2
1 , h1 := g−x3α+y3

1 .

It outputs

pp := (g1, g
α
1 , {u1,j}ℓj=0, w1, h1, g2, {(g

x1,j

2 , g
y1,j

2 )}ℓj=0, g
x2
2 , gx3

2 , gy2
2 , gy3

2 , z),

mk := (x0, y0).

- Gen(mk, ID): It chooses β0, . . . , βℓ−1, r
$← Zp, and let B :=

∑ℓ−1
i=0 βi. It

computes

Rj := g
−βj

2 (0 ≤ j < ℓ),

D1 := (gy2
2 )r, D′

1 := gy0
2

(
(gy1,ℓ

2 )Igy3
2

)r

,

D2 := (gx2
2 )−r, D′

2 := g−x0
2

(
(gx1,ℓ

2 )Igx3
2

)−r

,

D3 := gr+B
2 ,

Kj := (gy1,j

2 )r (0 ≤ j ≤ ℓ− 1), K ′
j := (gx1,j

2 )−r (0 ≤ j ≤ ℓ− 1).

It outputs

dkI,0 := R0, hk
(i)
I,0 := Ri (1 ≤ i ≤ ℓ− 1),

hk
(ℓ)
I,0 := (D1, D

′
1, D2, D

′
2, D3, {(Kj ,K

′
j)}ℓ−1

j=0).

- ∆-Gen(hk
(i)
I,ti

, time): If ti ̸= Ti(time), it outputs ⊥. Otherwise, parse hk
(i)
I,ti

as (Ri, D1, D
′
1, D2, D

′
2, D3, {(Kj ,K

′
j)}

i−1
j=0).

5 It chooses r̂ ← Zp, and let tj :=
5 In the case i = ℓ, Rℓ means an empty string, namely we have hk

(ℓ)
I,0 := (D1, D

′
1, D2,

D′
2, D3, {(Kj , K

′
j)}ℓ−1

j=0).
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Tj(time) (i− 1 ≤ j ≤ ℓ− 1). It computes

d̂1 := D1(g
y2
2 )r̂, d̂′1 := D′

1(Ki−1)ti−1

(
(gy1,ℓ

2 )I
ℓ−1∏

j=i−1

(
(gy1,j

2 )tj
)
gy3
2

)r̂

,

d̂2 := D2(gx2
2 )−r̂, d̂′

2 := D′
2(K

′
i−1)

ti−1

(
(gx1,ℓ

2 )I
ℓ−1∏

j=i−1

(
(gx1,j

2 )tj
)
gx3
2

)−r̂

,

d̂3 := D3g
r̂
2,

k̂j := Kj(g
y1,j

2 )r̂ (0 ≤ j ≤ i− 2), k̂′
j := K ′

j(g
x1,j

2 )−r̂ (0 ≤ j ≤ i− 2).

It outputs δ
(i−1)
ti−1

:= (d̂1, d̂
′
1, d̂2, d̂

′
2, d̂3, {(k̂j , k̂

′
j)}

i−2
j=0).

6

- Upd(hk
(i)
I,ti

, δ
(i)
τi ): Parse hk

(i)
I,ti

and δ
(i)
τi as (Ri, D1, D

′
1, D2, D

′
2, D3, {(Kj ,K

′
j)}

i−1
j=0)

and (d̂1, d̂
′
1, d̂2, d̂

′
2, d̂3, {(k̂j , k̂

′
j)}

i−1
j=0), respectively. It computes D3 := d̂3Ri,

and sets (Dj , D
′
j) := (d̂j , d̂

′
j) (j = 1, 2) and (Kj ,K

′
j) := (k̂j , k̂

′
j) (0 ≤ j ≤

i− 1). Finally, it outputs hk
(i)
I,τi

:= (Ri, D1, D
′
1, D2, D

′
2, D3, {(Kj ,K

′
j)}

i−1
j=0).

- Enc(I, time,M): It chooses s, tag
$← Zp. For M ∈ GT , it computes

C0 := Mzs, C1 := gs
1, C2 := (gα

1 )s, C3 :=
(ℓ−1∏

j=0

(
u

tj

1,j

)
uI

1,ℓw
tag
1 h1

)s

,

where tj := Tj(time) (0 ≤ j ≤ ℓ− 1). It outputs C := (C0, C1, C2, C3, tag).
- Dec(dkI,t0 , ⟨C, time⟩): If t0 ̸= T0(time), then it outputs ⊥. Otherwise, parse

dkI,t0 and C as (R0, D1, D
′
1, D2, D

′
2, D3) and (C0, C1, C2, C3, tag), respec-

tively. It computes

M =
C0e(C3, D3)

e(C1, D
tag
1 D′

1)e(C2, D
tag
2 D′

2)
.

We show the correctness of our ΠIKE. Suppose that r denotes internal ran-
domness of hk

(ℓ)
I,0, which are generated when running Gen(mk, I), and r(j) denotes

internal randomness of δ
(j−1)
I,tj−1

(1 ≤ j ≤ ℓ), which is generated when running ∆-

Gen(hk
(j)
I,tj

, time). Then we can write dkI,τ0 := (R0, D1, D
′
1, D2, D

′
2, D3) as

D1 := gy2r̃
2 , D′

1 := g
y0+r̃(Iy1,ℓ+

∑ℓ−1
j=0

(
tjy1,j

)
+y3)

2 ,

D2 := gx2r̃
2 , D′

2 := g
−x0−r̃(Ix1,ℓ+

∑ℓ−1
j=0

(
tjx1,j

)
+x3)

2 , D3 := gr̃
2,

where r̃ := r +
∑ℓ

i=1 r(j).

6 In the case i = 1, {(k̂j , k̂
′
j)}ℓ−1

j=0 means an empty string, namely we have δ
(0)
I,t0

:= (d̂1,

. . . , d̂5).
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Scheme #pp #dk #hki #C Enc. Cost Dec. Cost Assumption

Ours (3ℓ + 13)|G| 6|G| (2i + 6)|G| 4|G| + |Zp| [0, 0, ℓ + 4, 1] [3, 0, 2, 0] SXDH

Table 1. Parameters evaluation of our ℓ-level hierarchical IKE scheme. G1, G2, and
GT are cyclic groups of order p, and |G| denotes the bit-length of a group element
in G1, G2, or GT , for simplicity. |M| and |Zp| also denote the bit-length of plaintext
and an element in Zp, respectively. #pp, #dk, #hki, and #C denote sizes of public
parameters, decryption keys, i-th helper keys, and ciphertexts, respectively. In com-
putational cost analysis, [·, ·, ·, ·] means the number of [pairing, multi-exponentiation,
regular exponentiation, fixed-based exponentiation]. For comparison we mention that
relative tunings for the various operations are as follows: [pairing≈ 5, multi-exp≈ 1.5,
regular-exp:= 1, fixed-based-exp≪ 0.2].

Suppose that dkI,t0 = (R0, D1, D
′
1, D2, D

′
2, D3) and C = (C0, C1, C2, C3, tag)

are correctly generated. Then, we have

C0e(C3, D3)
e(C1, D

tag
1 D′

1)e(C2, D
tag
2 D′

2)

= Me(g1, g2)(−x0α+y0)s

· e(g
s(
∑ℓ−1

j=0 tj(−x1,jα+y1,j)+I(−x1,ℓα+y1,ℓ)+tag(−x2α+y2)−x3α+y3)

1 , gr̃
2)

e(gs
1, g

y2r̃tag+y0+r̃(Iy1,ℓ+
∑ℓ−1

j=0

(
tjy1,j

)
+y3)

2 )e(gαs
1 , g

−x2r̃tag−x0−r̃(Ix1,ℓ+
∑ℓ−1

j=0

(
tjx1,j

)
+x3)

2 )

= Me(g1, g2)(−x0α+y0)s
1

e(gs
1, g

y0
2 )e(gαs

1 , g−x0
2 )

= M.

We obtain the following theorem. The proof is postponed to Section 5.

Theorem 1. If the SXDH assumption holds, then the resulting ℓ-level hierar-
chical IKE scheme ΠIKE is IND-KE-CPA secure.

4.1 Parameters Evaluation and Comparison

First, we show the parameter sizes and computational costs of our hierarchical
IKE scheme in Table 1.

Also, an efficiency comparison between our IKE scheme and the existing IKE
schemes [19, 32] is given in Table 2. In fact, the WLC+08 scheme [32] has the
threshold property and does not have a hierarchical structure, and therefore, we
set the threshold value is one in the WLC+08 scheme and the hierarchy depth
is one in the HHSI05 scheme [19] and our scheme for the fair comparison. The
HHSI05 scheme meets the IND-KE-CCA security, however the scheme is secure
only in the random oracle model (ROM). Both the WLC+08 scheme and ours
meet the IND-KE-CPA security in the standard model (i.e. without random
oracles). Although assumptions behind these schemes (i.e. the computational
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Scheme #pp #dk #hk #C Enc. Cost Dec. Cost Assumption

HHSI05 [19]
(ℓ = 1)

2|G| 3|G| |G| 3|G| + |M| [1, 0, 2, 1] [4, 0, 2, 1]
CBDH
(in ROM)

WLC+08 [32] (2n + 5)|G| 4|G| 2|G| 4|G| [0, 1, 3, 1] [3, 0, 0, 0] DBDH

Ours (ℓ = 1) 16|G| 6|G| 7|G| 4|G| + |Zp| [0, 0, 5, 1] [3, 0, 2, 0] SXDH

Table 2. Efficiency comparison between our construction and existing schemes. The
notation used here is the same as that in Table 1 except for #hk, which denotes
the helper key size. What n appears in public-parameter sizes means that the public-
parameter size depends on the size of its identity space.

bilinear Diffie–Hellman (CBDH), decisional bilinear Diffie–Hellman (DBDH),7

and SXDH assumptions) are different, they all are static and simple. We em-
phasize that the threshold structure does not strengthen the underlying DBDH
assumption of the WLC+08 scheme since the structure was realized via only
threshold secret sharing techniques [4, 27]. Note that we do not take into ac-
count the parallel IKE scheme [31] since the model of the scheme is slightly
different from those of the above schemes. However, the public parameter size
of the parallel IKE scheme also depends on the size of its identity space, and
we mention that this is due to the underlying Waters IBE [29], not due to the
parallel property.

As can be seen, we first achieve the IKE scheme with constant-size parameters
in the standard model. Again, we also get the first IKE scheme in the hierarchical
setting without random oracles.

5 Proof of Security

We describe how semi-functional ciphertexts and secret keys are generated as
follows.

Semi-functional Ciphertext: Parse a normal ciphertext C as (C0, C1, C2, C3,

tag). A semi-functional ciphertext C̃ := (C̃0, C̃1, C̃2, C̃3, t̃ag) is computed as
follows:

C̃0 := C0e(g1, g2)−x0µ = Me(g1, g2)−x0(αs+µ)+y0s,

C̃1 := C1,

C̃2 := C2g
µ
1 = gαs+µ

1 ,

C̃3 := C3

(
(gx1,ℓ

1 )I
ℓ−1∏
j=0

(
(gx1,j

1 )tj
)
(gx2

1 )taggx3
1

)−µ

7 The formal definitions of the CBDH and DBDH assumptions are given in Ap-
pendix A.
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= C3g
−µ(Ix1,ℓ+

∑ℓ−1
j=0(tjx1,j)+x2tag+x3)

1

= g
−(αs+µ)(Ix1,ℓ+

∑ℓ−1
j=0(tjx1,j)+x2tag+x3)

1 g
s(Iy1,ℓ+

∑ℓ−1
j=0(tjy1,j)+y2tag+y3)

1 ,

and t̃ag := tag, where µ
$← Zp.

Semi-functional Decryption and Helper Key: Parse a normal helper key
hk

(i)
I,ti

as (Ri, D1, D
′
1, D2, D

′
2, D3, {(Kj ,K

′
j)}

i−1
j=0). A semi-functional helper

key h̃k
(i)

I,ti
:= (R̃i, D̃1, D̃

′
1, D̃2, D̃

′
2, D̃3, {(K̃j , K̃

′
j)}

i−1
j=0) is computed as follows:

Ri := R̃i,

D̃1 := D1g
γ
2 = gy2r+γ

2 ,

D̃′
1 := D1g

γϕ
2 = g

y0+r(Iy1,ℓ+
∑ℓ−1

j=i (tjy1,j)+y3)+γϕ

2 ,

D̃2 := D2g
− γ

α
2 = g

−rx2− γ
α

2 ,

D̃′
2 := D2g

− γϕ
α

2 = g
−x0−r(Ix1,ℓ+

∑ℓ−1
j=i (tjx1,j)+x3)− γϕ

α

2 ,

D̃3 := D3,

K̃j := Kjg
γϕj

2 = g
ry1,j+γϕj

2 (0 ≤ j ≤ i− 1),

K̃ ′
j := K ′

jg
−

γϕj
α

2 = g
−rx1,j−

γϕj
α

2 (0 ≤ j ≤ i− 1),

where γ, ϕ, {ϕj}i−1
j=0

$← Zp. Note that hk
(0)
I,t0 means dkI,t0 for any t0 ∈ T0. In

particular, h̃k
(0)

I,t0 (= d̃kI,t0) is called a semi-functional decryption key. We
also note that in order to generate the semi-functional decryption or helper
key, g

1
α
2 is needed in addition to the public parameter.

A semi-functional ciphertext can be decrypted with a normal key. This fact can
be easily checked by

e(g
µ(Iy1,ℓ+

∑ℓ−1
j=0(tjy1,j)+y2tag+y3)

1 , D3)e(g1, g2)−x0µ

e(gµ
1 , Dtag

1 D′
1)

= 1.

Also, a normal ciphertext can be decrypted with a semi-functional decryption

key since it holds e(C1, g
γtag
2 gγϕ

2 )e(C2, g
− γ

α tag

2 g
− γϕ

α
2 ) = 1.

A helper or decryption key obtained by running the ∆-Gen and Upd algo-
rithms with a semi-functional helper key is also semi-functional.

Proof (of Theorem 1). Based on [22, 25], we prove the theorem through a se-
quence of games. We first define the following games:

GameReal: This is the same as the IND-KE-CPA game described in Section 3.
Game0: This is the same as GameReal except that the challenge ciphertext is

semi-functional.
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Gamek (1 ≤ k ≤ q): This is the same as Game0 except for the following mod-
ification: Let q be the maximum number of identities issued to the KG or
KI oracles, and Ii (1 ≤ i ≤ q) be an i-th identity issued to the oracles.
If queries regarding the first k identities I1, . . . , Ik are issued, then semi-
functional decryption and/or helper keys are returned. The rest of keys (i.e.,
keys regarding Ik+1, . . . , Iq) are normal.

GameFinal: This is the same as Gameq except that the challenge ciphertext is a
semi-functional one of a random element of GT .

Let SReal, Sk (0 ≤ k ≤ q), and SFinal be the probabilities that the event b′ = b
occurs in GameReal, Gamek, and GameFinal, respectively. Then, we have

AdvIND-KE-CPA
ΠIKE ,A (λ) ≤ |SReal − S0|+

q∑
i=1

|Si−1 − Si|+ |Sq − SFinal|+ |SFinal −
1
2
|.

The rest of the proof follows from the following lemmas.

Lemma 1. If the DDH1 assumption holds, then it holds that |SReal − S0| ≤
AdvDDH1

G,B (λ).

Proof. At the beginning, a PPT adversary B receives an instance (g1, g
c1
1 , gc2

1 , g2, T )
of the DDH1 problem. Then, B randomly chooses x0, y0, {(x1,j , y1,j)}ℓj=0, x2, y2, x3,

y3
$← Zp, and creates

z := e(gc1
1 , g2)−x0e(g1, g2)y0 , u1,j := (gc1

1 )−x1,j g
y1,j

1 (0 ≤ j ≤ ℓ),

w1 := (gc1
1 )−x2gy2

1 , h1 := (gc1
1 )−x3gy3

1 .

B sends pp := (g1, g
α
1 , {u1,j}ℓj=0, w1, h1, g2, {(g

x1,j

2 , g
y1,j

2 )}ℓj=0, g
x2
2 , gx3

2 , gy2
2 , gy3

2 , z)
to A. Note that B knows a master key mk := (x0, y0) and we implicitly set
α := c1.

B can simulate the KG and KI oracles since B knows the master key.

In the challenge phase, B receives (M∗
0 ,M∗

1 , I∗, time∗) from A. B chooses
d

$← {0, 1}. B chooses tag
$← Zp, and let t∗j := Tj(time∗) (0 ≤ j ≤ ℓ − 1). B

computes

C∗
0 := Mde(T, g2)−x0e(gc2

1 , g2)y0 , C∗
1 := gc2

1 , C∗
2 := T,

C∗
3 := T−I∗x1,ℓ−

∑ℓ−1
j=0(t

∗
j x1,j)−x2tag

∗−x3(gc2
1 )I

∗y1,ℓ+
∑ℓ−1

j=0(t
∗
j y1,j)+y2tag

∗+y3 .

B sends C∗ := (C∗
0 , C∗

1 , C∗
2 , C∗

3 , tag∗) to A.
If b = 0, then the above ciphertext is normal by setting s := c2. If b = 1,

then the above ciphertext is semi-functional since it holds

C∗
0 = Mde(g1, g2)−x0(c1c2+µ)+y0c2 = Mde(g1, g2)−x0(αs+µ)+y0s,

C∗
2 = gc1c2+µ

1 = gαs+µ
1 ,

C∗
3 = g−(c1c2+µ)(I∗x1,ℓ+

∑ℓ−1
j=0(t

∗
j x1,j)+x2tag

∗+x3)g
c2(I

∗y1,ℓ+
∑ℓ−1

j=0(t
∗
j y1,j)+y2tag

∗+y3)

1
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= g−(αs+µ)(I∗x1,ℓ+
∑ℓ−1

j=0(t
∗
j x1,j)+x2tag

∗+x3)g
s(I∗y1,ℓ+

∑ℓ−1
j=0(t

∗
j y1,j)+y2tag

∗+y3)

1 .

After receiving d′ from A, B sends b′ = 1 to the challenger of the DDH1
problem if d′ = d. Otherwise, B sends b′ = 0 to the challenger. ⊓⊔

Lemma 2. For every k ∈ {1, . . . , q}, if the DDH2 assumption holds, then it
holds that |Sk−1 − Sk| ≤ AdvDDH2

G,B (λ).

Proof. At the beginning, a PPT adversary B receives an instance (g1, g2, g
c1
2 , gc2

2 , T )
of the DDH2 problem. Then, B randomly chooses x′

0, y0, {(x′
1,j , y

′
1,j , y

′′
1,j)}ℓj=0, x

′
2, x

′
3,

y′
3, y

′′
3

$← Zp and α
$← Z×

p , and (implicitly) sets

x0 :=
x′

0 + y0

α
, x1,j :=

x′
1,j + y1,j

α
, where y1,j := y′

1,j + c2y
′′
1,j (0 ≤ j ≤ ℓ),

x2 :=
x′

2 + c2

α
, y2 := c2,

x3 :=
x′

3 + y3

α
, where y3 := y′

3 + c2y
′′
3 .

B creates

z := e(g1, g2)−x′
0 , u1,j := g

−x′
1,j

1 (0 ≤ j ≤ ℓ), w1 := g
−x′

2
1 , h1 := g

−x′
3

1 ,

g
x1,j

2 := g
x′
1,j+y′

1,j
α

2 (gc2
2 )

y′′
1,j
α (0 ≤ j ≤ ℓ), g

y1,j

2 := g
y′
1,j

2 (gc2
2 )y′′

1,j (0 ≤ j ≤ ℓ),

gx2
2 := g

x′
2

α
2 (gc2

2 )
1
α , gy2

2 := gc2
2 , gx3

2 := g
x′
3+y′

3
α

2 (gc2
2 )

y′′
3
α , gy3

2 := g
y′
3

2 (gc2
2 )y′′

3 .

B sends pp := (g1, g
α
1 , {u1,j}ℓj=0, w1, h1, g2, {(g

x1,j

2 , g
y1,j

2 )}ℓj=0, g
x2
2 , gy2

2 , gx3
2 , gy3

2 , z)
to A. Note that B knows a master key mk := (x0, y0).

We show how B simulates the KG and KI oracles. Let Ii (1 ≤ i ≤ q) be
an i-th identity issued to the oracles. Without loss of generality, we consider A
issues all identities Ii ̸= I∗ to the KG oracle, and issues only queries regarding
I∗ to the KI oracle.

KG oracle. B creates k − 1 semi-functional decryption and helper keys, and
embeds T into the k-th keys. The rest of keys are normal.

Case i < k: After receiving Ii, B creates and returns semi-functional keys. Since
B knows the master key and α, B can create both normal and semi-functional
keys.

Case i = k: After receiving Ik, B creates semi functional keys by embedding T

as follows: B chooses β0, . . . , βℓ−1
$← Zp and sets B :=

∑ℓ−1
j=0 βj . B computes

Rj := g
−βj

2 (0 ≤ j < ℓ),
D1 := T,
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D′
1 := gy0

2 (gc1
2 )Iky′

1,ℓ+y′
3T Iky′′

1,ℓ+y′′
3 ,

D2 :=
(
(gc1

2 )x′
2T

)− 1
α

,

D′
2 := g

− x′
0

α
2 (gc1

2 )−
Ik(x′

1,ℓ+y′
1,ℓ)+x′

3+y′
3

α g
− y0

α
2 T−

Iky′′
1,ℓ+y′′

3
α ,

D3 := gc1
2 gB

2 ,

Kj := (gc1
2 )y′

1,j (T )y′′
1,j (0 ≤ j ≤ ℓ− 1),

K ′
j := (gc1

2 )−
x′
1,j+y′

1,j
α T−

y′′
1,j
α (0 ≤ j ≤ ℓ− 1).

B sets dkI,0 := R0, hk
(i)
I,0 := Ri (1 ≤ i ≤ ℓ− 1), hk

(ℓ)
I,0 := (D1, D

′
1, D2, D

′
2, D3,

{(Kj ,K
′
j)}

ℓ−1
j=0). If b = 0, then it is easy to see that the above keys are normal

by setting r := c1. If b = 1, then the above ciphertext is semi-functional since
it holds

D1 :=T = gc1c2+γ
2 = gy2r+γ

2 ,

D′
1 :=gy0

2 (gc1
2 )Iky′

1,ℓ+y′
3T Iky′′

1,ℓ+y′′
3

=g
y0+c1(Ik(y′

1,ℓ+c2y′′
1,ℓ)+y′

3+c2y′′
3 )

2 g
γ(Iky′′

1,ℓ+y′′
3 )

2 = g
y0+r(Iky1,ℓ+y3)
2 gγϕ

2 ,

D2 :=
(
(gc1

2 )x′
2T

)− 1
α

= g
− c1(x′

2+c2)
α

2 g
− γ

α
2 = g−rx2

2 g
− γ

α
2 ,

D′
2 :=g

− x′
0

α
2 (gc1

2 )−
Ik(x′

1,ℓ+y′
1,ℓ)+x′

3+y′
3

α g
− y0

α
2 T−

Iky′′
1,ℓ+y′′

3
α

=g
−

(x′
0+y0)+c1(Ik(x′

1,ℓ+y′
1,ℓ+c2y′′

1,ℓ)+(x′
3+y′

3+c2y′′
3 ))

α
2 g

−
γ(Iky′′

1,ℓ+y′′
3 )

α
2

=g
−x0−r(Ikx1,ℓ+x3)
2 g

− γϕ
α

2 ,

Kj :=(gc1
2 )y′

1,j (T )y′′
1,j = g

c1(y
′
1,j+c2y′′

1,j)

2 g
γy′′

1,j

2 = g
ry1,j

2 g
γϕj

2 (0 ≤ j ≤ ℓ− 1),

K ′
j :=(gc1

2 )−
x′
1,j+y′

1,j
α T−

y′′
1,j
α

=g
−

c1(x′
1,j+y′

1,j+c2y′′
1,j)

α
2 g

−
γy′′

1,j
α

2 = g
−rx1,j

2 g
−

γϕj
α

2 (0 ≤ j ≤ ℓ− 1),

where T := gc1c2+γ
2 , r := c1, ϕ := Iky′′

1,ℓ + y′′
3 , and ϕj := y′′

1,j (0 ≤ j ≤ ℓ− 1).
Since y′′

1,j and y′′
3 are chosen uniformly at random, ϕ and ϕj are also uniformly

distributed.

Case i > k: After receiving Ii, B creates and returns normal keys by using the
master key.

KI oracle. Suppose that A issues k − 1 identities I1, . . . , Ik−1 to the KG or-
acle, and then issues a query (i, I∗, time) (i.e., I∗(= Ik)) to the KI oracle.
Note that for some special level j ∈ {0, . . . , ℓ}, A cannot issue time such that
Ti(time) = Ti(time∗) if i < j (B does not need to know where level is special
one in advance). B creates and stores semi-functional decryption and helper keys
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(d̃I∗,0, h̃k
(1)

I∗,0, . . . , h̃k
(ℓ)

I∗,0) as in the case i = k of the KG oracle. We also note that
from the second query, B answers queries by using the stored keys. Then, B re-
peatedly runs δ

(j−1)
tj−1

← ∆-Gen(hk
(j)
I∗,tj

, time∗) and hk
(j−1)
I∗,t∗j−1

Upd(hk
(j−1)
I∗,0 , δ

(j−1)
tj−1

)
for j = ℓ, . . . , i + 1, where tℓ := 0 and tj := Tj(time) (0 ≤ j ≤ ℓ− 1). Again, the
key generated by semi-functional helper keys is also semi-functional. B returns
hk

(i)
I∗,ti

to A.

In the challenge phase, B receives (M∗
0 ,M∗

1 , I∗, time∗) from A. B chooses
d

$← {0, 1}, and sets t∗j := Tj(time∗) (0 ≤ j ≤ ℓ − 1). However, B cannot
create the semi-functional ciphertext for I∗ without knowledge of c2 (and hence
y1,j (0 ≤ j ≤ ℓ) and y3). To generate the semi-functional ciphertext without the
knowledge, B sets

t̃ag
∗

:=−
ℓ−1∑
j=0

(t∗jy
′′
1,j)− I∗y′′

1,ℓ − y′′
3 .

Since y′′
1,0, . . . , y

′′
1,ℓ and y′′

3 are chosen uniformly at random, probability distri-
bution of t̃ag

∗
is also uniformly at random from A’s view.8 Then, B chooses

s, µ
$← Zp, and computes

C̃∗
0 :=M∗

d zse(g1, g2)−x0µ = M∗
d e(g1, g2)−x0(αs+µ)+y0s,

C̃∗
1 :=gs

1,

C̃∗
2 :=gαs+µ

1

C̃∗
3 :=

(ℓ−1∏
j=0

(
u

t∗j
1,j

)
uI

1,ℓw
t̃ag

∗

1 h1

)s

g
µ(y′

3+
∑ℓ−1

j=0(t
∗
j y′

1,j)+I∗y′
1,ℓ)

1

=
(ℓ−1∏

j=0

(
u

t∗j
1,j

)
uI

1,ℓw
t̃ag

∗

1 h1

)s

· gµ(
∑ℓ−1

j=0(t
∗
j (y′

1,j+c2y′′
1,j))+I∗(y′

1,ℓ+c2y′′
1,ℓ)+c2t̃ag

∗
+y′

3+c2y′′
3 )

1

· g−c2µ(
∑ℓ−1

j=0(t
∗
j y′′

1,j)+I∗y′′
1,ℓ+t̃ag

∗
+y′′

3 )

1

=
(ℓ−1∏

j=0

(
u

t∗j
1,j

)
uI

1,ℓw
t̃ag

∗

1 h1

)s

g
µ(
∑ℓ−1

j=0(t
∗
j y1,j)+I∗y1,ℓ+y2t̃ag

∗
+y3)

1 .

B sends C̃∗ := (C̃∗
0 , C̃∗

1 , C̃∗
2 , C̃∗

3 , t̃ag
∗
) to A.

After receiving d′ from A, B sends b′ = 1 to the challenger of the DDH2
problem if d′ = d. Otherwise, B sends b′ = 0 to the challenger. ⊓⊔
8 The fact that the formula in such a form is uniformly distributed was traditionally

studied in the context of unconditionally secure authentication protocols (e.g., [5,
21, 28]).
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Lemma 3. |Sq − SFinal| ≤ q
p .

Proof. We modify the setup procedure and the semi-functional keys genera-
tion procedure in Gameq, and the modification turns out GameFinal. We show
that before and after the modification are statistically indistinguishable without
probability q

p .

In the setup phase, we randomly choose x′
0, y0, {(x′

1,j , y1,j)}ℓj=0, x
′
2, y2, x

′
3, y3

$←
Zp and α

$← Z×
p , and set

x0 :=
x′

0 + y0

α
, x1,j :=

x′
1,j + y1,j

α
(0 ≤ j ≤ ℓ), x2 :=

x′
2 + y2

α
, x3 :=

x′
3 + y3

α
.

B creates

z := e(g1, g2)−x′
0 , u1,j := g

−x′
1,j

1 (0 ≤ j ≤ ℓ), w1 := g
−x′

2
1 , h1 := g

−x′
3

1 ,

g
x1,j

2 := g
x′
1,j+y1,j

α
2 (0 ≤ j ≤ ℓ), gx2

2 := g
x′
2+y2

α
2 , gx3

2 := g
x′
3+y3

α
2 .

We set pp := (g1, g
α
1 , {u1,j}ℓj=0, w1, h1, g2, {(g

x1,j

2 , g
y1,j

2 )}ℓj=0, g
x2
2 , gy2

2 , gx3
2 , gy3

2 , z)
and mk := (x0, y0).

When generating (initial) semi-functional keys, we choose β0, . . . , βℓ−1, r, ϕ
′, ϕ′

0, . . . ,

ϕ′
ℓ−1, γ

$← Zp, and (implicitly) set B :=
∑ℓ−1

j=0 βi, ϕ′ := y0 + r(Iy1,ℓ + y3) + γϕ,
and ϕ′

j := ry1,j + γϕj (0 ≤ j ≤ ℓ− 1). We compute

R̃j :=g
−βj

2 (0 ≤ j ≤ ℓ− 1),

D̃1 :=gy2r+γ
2 ,

D̃′
1 :=gϕ′

2 = g
y0+r(Iy1,ℓ+y3)+γϕ
2 ,

D̃2 :=g
−r

x′
2+y2

α − γ
α

2 = g
−rx2− γ

α
2 ,

D̃′
2 :=g

− 1
α (ϕ′+x′

0+r(x′
3+Ix′

1,ℓ))

2

=g
− 1

α (x′
0+y0+rI(x′

1,ℓ+y1,ℓ)+γϕ+r(x′
3+y3))

2 = g
−x0−r(Ix1,ℓ+x3)− γϕ

α
2 ,

D̃3 :=gr+B
2 ,

K̃j :=g
ϕ′

j

2 = g
ry1,j+γϕj

2 (0 ≤ j ≤ ℓ− 1),

K̃ ′
j :=g

−
rx′

1,j+ϕ′
j

α
2 = g

−
r(x′

1,j+y1,j)+γϕj

α
2 = g

−rx1,j−
γϕj

α
2 (0 ≤ j ≤ ℓ− 1).

We set dkI,0 := R̃0, hk
(j)
I,0 := R̃j (1 ≤ j ≤ ℓ−1), and hk

(ℓ)
I,0 := (D̃1, D̃

′
1, D̃2, D̃

′
2, D̃3,

{(K̃j , K̃
′
j)}

ℓ−1
j=0). We emphasize that although the above secret keys are well-

formed, y0, {y1,j}ℓj=0, and y3 are not used in the above procedure.
On the other hand, the first component of the challenge ciphertext is gen-

erated as C̃∗
0 := Mbz

se(g1, g2)−x0µ = Mbe(g1, g2)−x0(αs+µ)+y0 . This means that
y0, which is independent of secret keys and public parameters, masks C̃∗

0 , and
hence C̃∗

0 becomes the ciphertext of a random element of GT .
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Since γ is chosen uniformly at random, ϕ and ϕj are distributed uniformly at
random if γ ̸= 0. An event that γ = 0 occurs with probability 1/p. Every query
regarding Ii (1 ≤ i ≤ q) may cause this event, and hence, we have |Sq−SFinal| ≤
q
p . ⊓⊔

Proof of Theorem 1. From Lemmas 1, 2, and 3, we have AdvIND-KE-CPA
ΠIKE ,A (λ) ≤

|SReal − S0| +
∑q

i=1 |Si−1 − Si| + |Sq − SFinal| + |SFinal − 1
2 | ≤ AdvDDH1

G,B (λ) + q ·
AdvDDH2

G,B (λ) + q
p . ⊓⊔

6 Chosen-Ciphertext Security

Boneh et al. [6] proposed an well-known transformation from ℓ + 1-level CPA-
secure HIBE (and one-time signature (OTS)) to ℓ-level CCA-secure HIBE. We
cannot apply this transformation to a hierarchical IKE scheme in a generic way
since it does not have delegating functionality. However, we can apply their tech-
niques to the underlying Jutla–Roy HIBE of our hierarchical IKE, and therefore
we obtain CCA-secure scheme. We show the detailed construction as follows. We
assume a verification key vk is appropriately encoded as an element of Zp when
it is used in exponent of ciphertexts.

Let ΠOTS = (KGen, Sign, Ver) be an OTS scheme.9 An ℓ-level hierarchical
IKE scheme ΠIKE =(PGen, Gen, ∆-Gen, Upd, Enc, Dec) is constructed as follows.

- PGen(λ, ℓ): It runs (G1, G2, GT , p, g1, g2, e)← G. It chooses x0, y0, {(x1,j , y1,j)}ℓj=0,

x̂1, ŷ1, x2, y2, x3, y3
$← Zp and α

$← Z×
p , and sets

z = e(g1, g2)−x0α+y0 , u1,j := g
−x1,jα+y1,j

1 (0 ≤ j ≤ ℓ),

û1 := g−x̂1α+ŷ1
1 , w1 := g−x2α+y2

1 , h1 := g−x3α+y3
1 .

It outputs

pp := (g1, g
α
1 , {u1,j}ℓj=0, û1, w1, h1, g2, {(g

x1,j

2 , g
y1,j

2 )}ℓj=0,

gx̂1
2 , gŷ1

2 , gx2
2 , gx3

2 , gy2
2 , gy3

2 , z),
msk := (x0, y0).

- Gen(mk, ID): It chooses β0, . . . , βℓ−1, r
$← Zp, and let B :=

∑ℓ−1
i=0 βi. It

computes

Rj := g
−βj

2 (0 ≤ j < ℓ),

D1 := (gy2
2 )r, D′

1 := gy0
2

(
(gy1,ℓ

2 )Igy3
2

)r

,

D2 := (gx2
2 )−r, D′

2 := g−x0
2

(
(gx1,ℓ

2 )Igx3
2

)−r

,

9 The formal description of the OTS is given in Appendix A.
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D3 := gr+B
2 ,

Kj := (gy1,j

2 )r (0 ≤ j ≤ ℓ− 1), K ′
j := (gx1,j

2 )−r (0 ≤ j ≤ ℓ− 1),

Kvk := (gŷ1
2 )r, K ′

vk := (gx̂1
2 )−r.

It outputs

dkI,0 := R0, hk
(i)
I,0 := Ri (1 ≤ i ≤ ℓ− 1),

hk
(ℓ)
I,0 := (D1, D

′
1, D2, D

′
2, D3, {(Kj ,K

′
j)}ℓ−1

j=0,Kvk,K ′
vk).

- ∆-Gen(hk
(i)
I,ti

, time): If ti ̸= Ti(time), it outputs ⊥. Otherwise, parse hk
(i)
I,ti

as
(Ri, D1, D

′
1, D2, D

′
2, D3, {(Kj ,K

′
j)}

i−1
j=0, Kvk,K ′

vk). It chooses r̂ ← Zp, and
let tj := Tj(time) (i− 1 ≤ j ≤ ℓ− 1). It computes

d̂1 := D1(g
y2
2 )r̂, d̂′1 := D′

1(Ki−1)ti−1

(
(gy1,ℓ

2 )I
ℓ−1∏

j=i−1

(
(gy1,j

2 )tj
)
gy3
2

)r̂

,

d̂2 := D2(gx2
2 )−r̂, d̂′

2 := D′
2(K

′
i−1)

ti−1

(
(gx1,ℓ

2 )I
ℓ−1∏

j=i−1

(
(gx1,j

2 )tj
)
gx3
2

)−r̂

,

d̂3 := D3g
r̂
2,

k̂j := Kj(g
y1,j

2 )r̂ (0 ≤ j ≤ i− 2), k̂′
j := K ′

j(g
x1,j

2 )−r̂ (0 ≤ j ≤ i− 2),

k̂vk := Kvk(gŷ1
2 )r̂, k̂′

vk := K ′
vk(gx̂1

2 )r̂.

It outputs δ
(i−1)
ti−1

:= (d̂1, d̂
′
1, d̂2, d̂

′
2, d̂3, {(k̂j , k̂

′
j)}

i−2
j=0, k̂vk, k̂′

vk).

- Upd(hk
(i)
I,ti

, δ
(i)
τi ): Parse hk

(i)
I,ti

and δ
(i)
τi as (Ri, D1, D

′
1, D2, D

′
2, D3, {(Kj ,K

′
j)}

i−1
j=0,

Kvk,K ′
vk) and (d̂1, d̂

′
1, d̂2, d̂

′
2, d̂3, {(k̂j , k̂

′
j)}

i−1
j=0, k̂vk, k̂vk), respectively. It com-

putes D3 := d̂3Ri, and sets (Dj , D
′
j) := (d̂j , d̂

′
j) (j = 1, 2), (Kj , K

′
j) :=

(k̂j , k̂
′
j) (0 ≤ j ≤ i − 1), and (Kvk,K ′

vk) := (k̂vk, k̂′
vk). Finally, it outputs

hk
(i)
I,τi

:= (Ri, D1, D
′
1, D2, D

′
2, D3, {(Kj , K

′
j)}

i−1
j=0,Kvk,K ′

vk).

- Enc(I, time,M): It first runs (vk, sk) ← KGen(λ). It chooses s, tag
$← Zp.

For M ∈ GT , it computes

C0 := Mzs, C1 := gs
1, C2 := (gα

1 )s, C3 :=
(ℓ−1∏

j=0

(
u

tj

1,j

)
uI

1,ℓû
vk
1 w

tag
1 h1

)s

,

where tj := Tj(time) (0 ≤ j ≤ ℓ−1). It also runs σ ← Sign(sk, (C0, C1, C2, C3,
tag)), and outputs C := (vk, C0, C1, C2, C3, tag, σ).

- Dec(dkI,t0 , ⟨C, time⟩): If t0 ̸= T0(time), then it outputs ⊥. Otherwise, parse
dkI,t0 and C as (R0, D1, D

′
1, D2, D

′
2, D3,Kvk,K ′

vk) and (vk, C0, C1, C2, C3,
tag, σ), respectively. If Ver(vk, C0, C1, C2, C3, tag, σ) → 0, then it outputs
⊥. Otherwise, it computes

D̂′
1 := D′

1(Kvk)vk, D̂′
2 := D′

2(K
′
vk)vk.
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Finally, it outputs

M =
C0e(C3, D3)

e(C1, D
tag
1 D̂′

1)e(C2, D
tag
2 D̂′

2)
.

The correctness of the above IKE scheme ΠIKE can be checked as in our CPA-
secure IKE scheme described in Section 4.

We obtain the following theorem. The proof is omitted since this theorem
can be easily proved by combining Boneh et al.’s techniques [6] and our proof
techniques of Theorem 1.

Theorem 2. If the underlying OTS scheme ΠOTS is sUF-OT secure and the
SXDH assumption holds, then the resulting ℓ-level hierarchical IKE scheme ΠIKE

is IND-KE-CCA secure.

7 Conclusion

In this paper, we first proposed hierarchical IKE scheme in the standard model.
When the hierarchy is one, our scheme achieves constant-size parameters includ-
ing public parameters, decryption and helper keys, and ciphertexts, and hence
our scheme is more efficient than the existing scheme [32] in the sense of param-
eter sizes. Our scheme is based on the Jutla–Roy HIBE [22] (and its variant [25])
and techniques of threshold secret sharing schemes [4, 27].
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A Definitions

We give the formal definitions of the CBDH and DBDH assumptions and OTS.
In the following, we assume the Type-1 pairing (i.e., G := G1 = G2).

Computational Bilinear Diffie–Hellman (CBDH) Assumption. Let A
be a PPT adversary and we consider A’s advantage against the CBDH problem
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as follows.

AdvCBDH
G,A (λ) := Pr

T = e(g, g)c1c2c3

(p, G, GT , g, e)← G,
c1, c2, c3

$← Zp,
T ← A(λ, g, gc1 , gc2 , gc3)

 .

Definition 6. The CBDH assumption relative to a generator G holds if for all
PPT adversaries A, AdvCBDH

G,A (λ) is negligible in λ.

Decisional Bilinear Diffie–Hellman (DBDH) Assumption. Let A be a
PPT adversary and we consider A’s advantage against the DBDH problem as
follows.

AdvDBDH
G,A (λ) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr


b′ = b

(p, G, GT , g, e)← G,
c1, c2, c3

$← Zp,

b
$← {0, 1},

if b = 1 then W := ê(g, g)c1c2c3 ,

else W
$← GT ,

b′ ← A(λ, g, gc1 , gc2 , gc3 ,W )


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Definition 7. The DBDH assumption relative to a generator G holds if for all
PPT adversaries A, AdvDBDH

G,A (λ) is negligible in λ.

One-time signature. An OTS scheme ΠOTS consists of three-tuple algorithms
(KGen, Sign, Ver) defined as follows.

– (vk, sk)← KGen(λ): It takes a security parameter λ and outputs a pair of a
public key and a secret key (vk, sk).

– σ ← Sign(sk,m): It takes the secret key sk and a message m ∈ M and
outputs a signature σ.

– 1 or 0 ← Ver(vk, m, σ): It takes the public key vk and a pair of a message
and a signature (m, σ), and then outputs 1 or 0.

We assume that ΠOTS meets the following correctness property: For all λ ∈ N, all
(vk, sk)← KGen(λ), and all m ∈M, it holds that 1← Ver(vk, (m, Sign(sk,m))).

We describe the notion of strong unforgeability against one-time attack (sUF-
OT). Let A be a PPT adversary, and A’s advantage against sUF-OT security is
defined by

AdvsUF-OT
ΠOTS,A (λ) :=

Pr
[

1← Ver(vk, m∗, σ∗) ∧ (m∗, σ∗) ̸= (m,σ) (vk, sk)← KGen(λ),
(m∗, σ∗)← ASign(·)(vk)

]
.

Sign(·) is a signing oracle which takes a message m as input, and then returns
σ by running Sign(sk, m). A is allowed to access to the above oracle only once.

Definition 8. An OTS scheme ΠOTS is said to be sUF-OT secure if for all
PPT adversaries A, AdvsUF-OT

ΠOT S ,A(λ) is negligible in λ.


