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Abstract. Recently, the security of RSA variants with moduli N =
prq, e.g., the Takagi RSA and the prime power RSA, have been actively
studied in several papers. Due to the unusual composite moduli and
rather complex key generations, the analyses are more involved than the
standard RSA. Furthermore, the method used in some of these works
are specialized to the form of composite integers N = prq.
In this paper, we generalize the techniques used in the current best at-
tacks on the standard RSA to the RSA variants. We show that the lattices
used to attack the standard RSA can be transformed into lattices to at-
tack the variants where the dimensions are larger by a factor of (r + 1)
of the original lattices. We believe the steps we took present to be more
natural than previous researches, and to illustrate this point we obtained
the following results:
– Simpler proof for small secret exponent attacks on the Takagi RSA

proposed by Itoh et al. (CT-RSA 2008). Our proof generalizes the
work of Herrmann and May (PKC 2010).

– Partial key exposure attacks on the Takagi RSA; generalizations of
the works of Ernst et al. (Eurocrypt 2005) and Takayasu and Ku-
nihiro (SAC 2014). Our attacks improve the result of Huang et al.
(ACNS 2014).

– Small secret exponent attacks on the prime power RSA; generaliza-
tions of the work of Boneh and Durfee (Eurocrypt 1999). Our attacks
improve the results of Sarkar (DCC 2014, ePrint 2015) and Lu et al.
(Asiacrypt 2015).

– Partial key exposure attacks on the prime power RSA; generaliza-
tions of the works of Ernst et al. and Takayasu and Kunihiro. Our
attacks improve the results of Sarkar and Lu et al.

The construction techniques and the strategies we used are conceptually
easier to understand than previous works, owing to the fact that we
exploit the exact connections with those of the standard RSA.

Keywords: RSA, Takagi RSA, prime power RSA, cryptanalysis, small
secret exponent, partial key exposure, lattices, Coppersmith’s method

1 Introduction

Background. RSA [RSA78] is one of the most well-known cryptosystems. Let
N be the public RSA modulus, a product of two distinct primes p and q with
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the same bit sizes. The public and secret exponents are positive integers such
that ed = 1 mod (p − 1)(q − 1). The RSA cryptosystem has been extensively
studied in numerous papers including lattice based cryptanalysis. In this paper,
we introduce two well-analyzed attacks; small secret exponent attacks and partial
key exposure attacks. Boneh and Durfee [BD00] showed that a public RSA mod-
ulus N can be factorized when a secret exponent d is small, e.g., they proposed
a weaker result d < N0.284 and a stronger result d < N0.292. Several papers
[BM03,EJMW05,SGM10,TK14] have studied the security of RSA when some
portions of the most significant bits (MSBs) or the least significant bits (LSBs)
of d are exposed to attackers. The attack of Ernst et al. [EJMW05] are the best
results for general cases, e.g., the MSBs or the LSBs are exposed for general
sizes of e and d. Although Blömer and May [BM03] and Sarkar et al. [SGM10]
achieved the same result, they are only special cases of Ernst et al., e.g., Blömer
and May’s attack works only with the LSBs and the attack of Sarkar et al. works
only with the MSBs and large e. Takayasu and Kunihiro [TK14] proposed an
improved attack of Ernst et al. for specific parameters, e.g., small d.

There are some variants of RSA. In this paper, we study two of them that
we call the Takagi RSA [Tak98] and the prime power RSA. Both have a public
RSA modulus N = prq for r ≥ 2 with distinct primes p and q with the same bit
sizes. A public and a secret exponent e ≈ Nα and d ≈ Nβ satisfy

ed = 1 mod (p− 1)(q − 1)

for the Takagi RSA and

ed = 1 mod pr−1(p− 1)(q − 1)

for the prime power RSA, respectively. The security of the variants have been
analyzed; May [May04] proposed small secret exponent attacks and partial key
exposure attacks on the prime power RSA, and Itoh et al. [IKK08] proposed small
secret exponent attacks on the Takagi RSA. Recently, the research area becomes
a hot topic and several papers have been published. Huang et al. [HHX+14] pro-
posed partial key exposure attacks on the Takagi RSA. Sarkar [Sar14] proposed
small secret exponent attacks on the prime power RSA, and further improved
the result in [Sar15] with a result for partial key exposure attacks. The result is
better than May for small r. Lu et al. [LZPL15] proposed small secret exponent
attacks and partial key exposure attacks on the prime power RSA that fully
improve May’s attack and are better than Sarkar’s attack for r ≥ 5.

Attacks of May [May04], and Lu et al. [LZPL15] make use of the special
structure of a public modulusN = prq and a key generation equality of the prime
power RSA. Then, their attacks do not work for the standard RSA. However,
a naive approach for the analysis of RSA variants should be generalizations of
the attacks on the standard RSA. By definition, the Takagi RSA and the prime
power RSA become the same as the standard RSA for r = 1. Hence, the attacks
on the variants for r = 1 should completely cover the currently known best
attacks on the standard RSA; the stronger Boneh-Durfee small secret exponent
attack, partial key exposure attacks of Ernst et al., and Takayasu and Kunihiro.
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Since a public modulus N and key generations for the variants are more involved
than the standard RSA, the analyses also become involved. Indeed, almost all the
algorithm constructions and their strategies are too complicated to understand
since the connections with those for the standard RSA are unclear. Moreover,
existing attacks on the variants for r = 1 do not fully cover the currently known
best attacks on the standard RSA.

Our Results. In this paper, we study the security of the Takagi RSA and
the prime power RSA. The main focus of this paper is to generalize the cur-
rently known best attacks on the standard RSA, e.g., small secret exponent
attacks and partial key exposure attacks, to the variants and to exploit the
connections between their algorithm constructions. We show that the lattices
used to attack the standard RSA can be transformed into lattices to attack
the variants with simple operations. More concretely, the lattices used to at-
tack the standard RSA can be transformed into lattices to attack the Takagi
RSA (resp. the prime power RSA) by multiplying {1, q, pq, p2q, . . . , pr−1q} (resp.
{qa, pqa, p2qa, . . . , pr−1qa, pr−1qa+1} with some integer a) to all the polynomials
in the bases. Hence, dimensions of the lattices that we use to attack the variants
are larger by a factor of (r + 1) of the original lattices to attack the standard
RSA. We believe that the connections offer better understanding for our algo-
rithm constructions and enable us to easily generalize other attacks for their
variants. As applications of our generalizations, we obtain the following results:

– In Section 3, we propose a partial key exposure attack on the Takagi RSA
that fully generalizes the attack of Ernst et al. [EJMW05]. Our attack be-
comes the same as Huang et al. [HHX+14] with the exposed LSBs and better
than the attack with the exposed MSBs for all α, β, and r.

– In Section 4, we give a simpler proof for the Itoh et al. small secret exponent
attack on the Takagi RSA that fully generalizes the stronger Boneh-Durfee
attack [BD00]. Our alternative proof fully generalizes that of Herrmann and
May [HM10] for the stronger Boneh-Durfee attack and enables us to under-
stand the Itoh et al. attack in detail. Based on the understanding, we propose
a partial key exposure attack on the Takagi RSA with the exposed LSBs that
fully generalizes Takayasu and Kunihiro’s attack [TK14]. The attack is bet-
ter than our attack in Section 3 and that of Huang et al. [HHX+14] for all
α and r when β is small.

– In Section 5, we propose a small secret exponent attack on the prime power
RSA that fully generalizes the weaker Boneh-Durfee attack [BD00]. To ob-
tain the attack is technically easy since it is an extension of Sarkar’s attack
[Sar15] for arbitrary α. However, the extension reveals an important fact.
Although Sarkar’s attack, which captures only for α = 1, is weaker than Lu
et al. [LZPL15] for r ≥ 5, our attack is better than Lu et al. for all r when
α is small. In addition, we propose a partial key exposure attack that fully
generalizes the Ernst et al. [EJMW05]. Our attack is better than Sarkar’s
result for small α and β, and is better than Lu et al. [LZPL15] for small r.
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– In Section 6, we propose a small secret exponent attack on the prime power
RSA that (almost) fully generalizes the stronger Boneh-Durfee [BD00]. The
attack is better than our attack in Section 5. In addition, we propose a partial
key exposure attack that (almost) fully generalizes Takayasu and Kunihiro
[TK14]. The attack is better than all known attacks for small r and β.

Since the elliptic curve method factorization [Len87] becomes efficient for large
r and Boneh et al. [BDH99] revealed that only a 1/(r + 1) fraction of the most
significant bits of p suffices to factorize the modulus, they are the more important
for small r. Then, we mainly compare our results and previous works for r = 2
and 3 throughout the paper, although we analyze the security for arbitrary r.

Technical Overview. In 1996, Coppersmith introduced lattice based methods
to solve univariate modular equations [Cop96a] and bivariate integer equations
[Cop96b], and they can be extended to more variables with a reasonable as-
sumption (that we discuss later). The method is useful to evaluate the security
of RSA. See [Cop97,Cop01,NS01,May03,May10]. Indeed, small secret exponent
attack was firstly mentioned by Wiener [Wie90]. The attack is based on a con-
tinued fraction approach and works when d < N0.25. Later, Boneh and Durfee
revisited the attack and improved the bound to d < N0.292 using the Cop-
persmith method. Although the original Coppersmith method is conceptually
involved, simpler reformulations have been proposed; for modular equations by
Howgrave-Graham [How97] and for integer equations by Coron [Cor04,Cor07].
In short, the methods construct a lattice whose bases consist of coefficients of
polynomials that have the same roots as the original equations. By finding short
lattice vectors using the LLL reduction, the original equations can be solved.
The methods can solve modular (resp. integer) equations when sizes of roots are
to some extent smaller than the modulus (resp. the norm of polynomial).

To maximize solvable root bounds, appropriate selections of lattice bases are
essential. Jochemsz and May [JM06] proposed a conceptually simple strategy for
the lattice constructions. Although the strategy does not always offer the best
results, usually offers the best or similar bounds. For example, the Boneh-Durfee
weaker result d < N0.284 can be obtained based on the strategy. Especially, the
strategy is the more compatible with integer equations based analysis. To the
best of our knowledge, there are no algorithms solving integer equations outper-
forming the Jochemsz-May strategy; currently known best algorithms solving
any integer equations can be captured by the Jochemsz-May strategy. Further-
more, most algorithms by solving modular equations based on the Jochemsz-May
strategy can also be obtained by solving integer equations based on the strategy
although reverse does not always hold. For example, in the context of partial
key exposure attacks on the standard RSA, Ernst et al. [EJMW05] solved in-
teger equations, whereas Blömer and May [BM03], and Sarkar et al. [SGM10]
solved modular equations, and all these results are captured by the Jochemsz-
May strategy. As we noted, attacks of Blömer and May, and Sarkar et al. are
only the special cases of Ernst et al. However, in the context of security analyses
of the Takagi RSA and the prime power RSA, there are no results known that
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solved integer equations. Therefore, we solve integer equations for the Takagi
RSA (Section 3) and the prime power RSA (Section 5), and fully generalize the
weaker Boneh-Durfee and Ernst et al.

Although the differences are small, there are some results beyond the
Jochemsz-May strategy that solve modular equations, e.g., the stronger Boneh-
Durfee attack d < N0.292 [BD00]. In general, analyses to obtain attacks out-
performing the Jochemsz-May strategy are difficult. Indeed, there are no results
known that attack the Takagi RSA or the prime power RSA outperforming
the Jochemsz-May strategy except the Itoh et al. small secret exponent attack
on the Takagi RSA [IKK08]. In the context of the stronger Boneh-Durfee at-
tack, the proof is involved since determinants of lattices, whose basis matrices
are non-triangular, should be calculated. For the purpose, Boneh and Durfee
introduced geometrically progressive matrix although the notion is unfamiliar.
Since Itoh et al. followed the proof, the analysis is also involved. The fact makes
it difficult to obtain partial key exposure attacks on the Takagi RSA outper-
forming the Jochemsz-May strategy. As the hope of such situations, Herrmann
and May [HM10] gave a simpler proof for the stronger Boneh-Durfee attack.
They used unravelled linearization [HM09] and transformed Boneh and Durfee’s
non-triangular basis matrices to be triangular. The simpler proof offers better
understanding of the attack. Based on the understanding, Takayasu and Kuni-
hiro extended the stronger Boneh-Durfee attack to partial key exposure attacks
outperforming the Jochemsz-May strategy. As the same way, we give a simpler
proof of the Itoh et al. and propose a partial key exposure attack on the Tak-
agi RSA outperforming the Jochemsz-May strategy (Section 4). Moreover, we
analyze better lattice constructions and propose small secret exponent attacks
and partial key exposure attacks on the prime power RSA outperforming the
Jochemsz-May strategy (Section 6).

2 Preliminaries

In the beginning of this section, we formulate the exposed bits that will be used
to analyze partial key exposure attacks. In the remaining of this section, we
introduce tools to solve modular equations and integer equations; lattices and
the LLL algorithm, the overview of the Coppersmith method, and the Jochemsz-
May strategy. The experts of the research area can skip this part.

Exposed Bits. In this paper, we analyze partial key exposure attacks when
some portions of the MSBs or the LSBs are exposed. In this section, we formu-
lated the exposed bits. When the MSBs (resp. LSBs) are exposed, let d0 > Nβ−δ

denote the exposed MSBs (resp. LSBs) and d1 < N δ denote the unknown LSBs
(resp. MSBs). The secret exponent can be written as d = d0M + d1 (resp.
d = d1M +d0) with an integer M = 2⌊δ logN⌋ (resp. M = 2⌊(β−δ) logN⌋). We also
use d̃ to denote d0M (resp. d0).
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Lattices and the LLL Algorithm. Let b1, . . . , bn ∈ Zn′
be linearly inde-

pendent n′-dimensional vectors. All vectors are row representations. The lattice
L(b1, . . . , bn) spanned by the basis vectors b1, . . . , bn is defined as L(b1, . . . , bn) =
{
∑n

j=1 cjbj : cj ∈ Z}. We also use matrix representations B ∈ Zn×n′
for the

bases where each row corresponds to a basis vector b1, . . . , bn. Then, a lattice
spanned by the basis matrix B is defined as L(B) = {cB : c ∈ Zn}. We
call n a rank of the lattice, and n′ a dimension of the lattice. We call the lat-
tice full-rank when n = n′. We define a determinant of a lattice det(L(B)) as
det(L(B)) =

√
det(BBt) where Bt is a traspose of B. By definition, a deter-

minant of a full-rank lattice can be computed as det(L(B)) = | det(B)|.
For a cryptanalysis, to find short lattice vectors is a very important prob-

lem. In 1982, Lenstra, Lenstra, and Lovász [LLL82] proposed a polynomial time
algorithm to find short lattice vectors, called the LLL algorithm.

Propostion 1 (LLL algorithm [LLL82,May03]) Given a matrix B ∈
Zn×n′

, the LLL algorithm finds vectors b′1 and b′2 in a lattice L(B). Euclidean
norms of the vectors are bounded by

∥b′1∥ ≤ 2(n−1)/4(det(L(B)))1/n and ∥b′2∥ ≤ 2n/2(det(L(B)))1/(n−1).

The running time is polynomial time in n, n′, and input length.

Although the outputs of the LLL algorithm are not the shortest lattice vectors
in general, the fact is not the matter when we use the Coppersmith method.

The Coppersmith Methods. Instead of the original Coppersmith method, we
introduce Howgrave-Graham’s reformulation to solve modular equations [How97]
and Coron’s reformulation to solve integer equations [Cor04]. Although Coron’s
method [Cor04] is less efficient than the original Coppersmith method [Cop96b]
and Coron’s method [Cor07], it is simpler to analyze than the other methods.

For a k-variate polynomial h(x1, . . . , xk) =
∑

hi1,...,ikx
i1
1 · · ·xik

k , we define a

norm of a polynomial ∥h(x1, . . . , xk)∥ =
√∑

h2
i1,...,ik

and ∥h(x1, . . . , xk)∥∞ =

maxi1,...,ik |hi1,...,ik |. At first, we show a modular method since an integer method
makes use of the modular method. The Coppersmith method can find solu-
tions (x̃1, x̃2) of a bivariate modular equation h(x1, x2) = 0 mod e when |x̃1| <
X1, |x̃2| < X2, and X1X2 is reasonably smaller than e. Let m be a positive in-
teger. We construct n polynomials h1(x1, x2), . . . , hn(x1, x2) that have the roots
(x̃1, x̃2) modulo em. Then, we construct a matrix B whose rows consist of co-
efficients of h1(x1X1, x2X2), . . . , hn(x1X1, x2X2). Applying the LLL algorithm
to B and we obtain two short vectors b′1 and b′2, and their corresponding poly-
nomials h′(x1, x2) and h′

2(x1, x2). If norms of these polynomials are small, they
have roots (x̃1, x̃2) over the integers. The fact comes from the following lemma.

Lemma 1 ([How97]) Let h(x1, . . . , xk) ∈ Z[x1, . . . , xk] be a polynomial over
the integers that consists of at most n monomials. Let X1, . . . , Xk, and R be
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positive integers. If the polynomial h(x1, . . . , xk) satisfies the following two con-
ditions:
1. h(x̃1, . . . , x̃k) = 0 (mod R), where |x̃1| < X1, . . . , |x̃k| < Xk,
2. ∥h(x1X1, . . . , xkXk)∥ < R/

√
n.

Then, h(x̃1, . . . , x̃k) = 0 holds over the integers.

Therefore, if h′(x1, x2) and h′
2(x1, x2) satisfy Lemma 1, we can compute Gröbner

bases or a resultant of them and easily recover (x̃1, x̃2).
Next, we show an integer case. The Coppersmith method can find solutions

(x̃1, x̃2, x̃3) of a trivariate equation h(x1, x2, x3) = 0 over the integers when
|x̃1| < X1, |x̃2| < X2, |x̃3| < X3, and X1X2X3 is reasonably smaller than
∥h(x1X1, x2X2, x3X3)∥∞. Although we omit details of the method, we set a
reasonable integer R and remaining procedures are almost the same as modular
case by solving a modular equation h(x1, x2, x3) = 0 mod R. New polynomials
h′(x1, x2, x3) and h′

2(x1, x2, x3) obtained by outputs of the LLL algorithm are
provably algebraically independent of h(x1, x2, x3). See [Cor04] for the detail.

We should note that the methods need heuristic argument. There are no
assurance if new polynomials obtained by outputs of the LLL algorithm are al-
gebraically independent. In this paper, we assume that these polynomials are
always algebraically independent and resultants of polynomials will not vanish
since there have been few negative reports that contradict the assumption. More-
over, most our attacks use sublattices of lattices that are used in previous works.
Hence, validities of previous attacks justify validities of our results.

The Jochemsz-May Strategy. We summarize lattice constructions to solve
integer equations based on the Jochemsz-May strategy [JM06]. Let lj denote the
largest exponent of xj in the polynomial h(x1, . . . , xk) =

∑
hi1,...,ikx

i1
1 · · ·xik

k .
We set an (possibly large) integer W such that W ≤ ∥h(x1, . . . , xk)∥∞. Next, we

set an integer R := WX
l1(m−1)+t
1

∏k
u=2 X

lu(m−1)
j with some positive integers m

and t = O(m) such that gcd(R, h0,...,0) = 1. We compute c = h−1
0,...,0 mod R and

h′(x1, . . . , xk) := c · h(x1, . . . , xk) mod R. We define shift-polynomials g and g′

as

g : xi1
1 · · ·xik

k · h(x1, . . . , xk) ·X l1(m−1)+t−i1
1

k∏
u=2

X
lu(m−1)−ij
j for xi1

1 · · ·xik
k ∈ S,

g′ : xi1
1 · · ·xik

k ·R for xi1
1 · · ·xik

k ∈ M\S,

for sets of monomials

S :=
∪

0≤j≤t

{xi1+j
1 · · ·xik

k |xi1
1 · · ·xik

k is a monomial of h(x1, . . . , xk)
m−1},

M :={monomials of xi1
1 · · ·xik

k · h(x1, . . . , xk) for x
i1
1 · · ·xik

k ∈ S}.

All these shift-polynomials g and g′ modulo R have the roots (x̃1, . . . , x̃k) that
are the same as h(x1, . . . , xk). We construct a lattice with coefficients of
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g(x1X1, . . . , xkXk) and g′(x1X1, . . . , xkXk) as the bases. The shift-polynomials
generate a triangular basis matrix. Ignoring low order terms of m, LLL outputs
short vectors that satisfy Lemma 1 when

k∏
j=1

X
sj
j < W |S| for sj =

∑
x
i1
1 ···xik

k ∈M\S

ij .

When the condition holds, we can find all small roots. See [JM06] for the detail.

3 Attacks on the Takagi RSA by Solving Integer
Equations

In this section, we analyze the security of the Takagi RSA by solving integer
equations. In Section 3.1, we give an alternative proof of the Itoh et al. small
secret exponent attack [IKK08] that was proposed by solving modular equations.
In Section 3.2, we propose a partial key exposure attack that fully generalizes
the attack of Ernst et al. [EJMW05].

3.1 Small Secret Exponent Attack

In this section, we revisit the Itoh et al. small secret exponent attacks [IKK08].
The result fully generalizes the weaker Boneh-Durfee [BD00] in the sense that it
completely covers their attack, i.e., β < (7− 2

√
7)/6 for r = 1 and α = 1.

Theorem 1 ([IKK08]) Let N = prq be a public modulus and let e ≈ Nα and
d ≈ Nβ be public exponent and secret exponent of the Takagi RSA, respectively.
If

β <
7− 2

√
1 + 3(r + 1)α

3(r + 1)
for α ≤ 1

r + 1

holds, then the Takagi RSA modulus N can be factorized in polynomial time.

Although the original paper [IKK08] solved modular equations for the attack,
we solve integer equations and give an alternative proof. The proof is convenient
to analyze partial key exposure attacks in Section 3.2. Moreover, we exploit
the exact connection between the algorithm constructions of Itoh et al. and the
weaker Boneh-Durfee.

Alternative Proof of Theorem 1. Looking at a key generation for the Takagi RSA;
ed = 1 + ℓ(p − 1)(q − 1) with some integer |ℓ| ≈ Nα+β−2/(r+1). To recover the
secret exponent d, we use the following polynomial

fT.SSE.i(x, y, z1, z2) = 1 + ex+ y(z1 + 1)(z2 + 1)

whose roots over the integers are (x, y, z1, z2) = (−d, ℓ,−p,−q). The absolute
values are bounded by X := Nβ , Y := Nα+β−2/(r+1), Z1 := 2N1/(r+1), Z2 :=
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2N1/(r+1). We also use a notation Z = Z1 = Z2 for simplicity. We set an (possi-
bly large) integerW such thatW < Nα+β since ∥fT.SSE.i(xX, yY, z1Z1, z2Z2)∥∞
≥ |eX| ≈ Nα+β . Next, we set an integer R := W (XY )m−1Zm+r−1+t with some
integers m = ω(r) and t = τm where τ ≥ 0. We define shift-polynomials gT.SSE.i

and g′T.SSE.i as

gT.SSE.i : x
iXyiY z

iZ1
1 z

iZ2
2 · fT.SSE.i ·Xm−1−iXY m−1−iY Zm+r−1+t−iZ1−iZ2

for xiXyiY z
iZ1
1 z

iZ2
2 ∈ S1 ∪ S2,

g′T.SSE.i : x
iXyiY z

iZ1
1 z

iZ2
2 ·R for xiXyiY z

iZ1
1 z

iZ2
2 ∈ (M1 ∪M2)\(S1 ∪ S2),

for sets of monomials

S1 :=
∪

0≤j≤t

{
xiXyiY z

iZ1
+j

1

∣∣∣∣xiXyiY z
iZ1
1 is a monomial of

fT.SSE.i(x, y, z1, z2)
m−1

}
,

S2 :=
∪

0≤j≤t

xiXyiY z
iZ1
1 z

iZ2
+j

2

∣∣∣∣ xiXyiY z
iZ1
1 z

iZ2
2 is a monomial of

s̃ · fT.SSE.i(x, y, z1, z2)
m−1 for iZ2 ≥ 1

where s̃ = {zr−1
1 z2, z

r−2
1 z2, . . . , z1z2}

 ,

M1 :=

{
xiXyiY z

iZ1
1

∣∣∣∣monomials of xi′Xyi
′
Y z

i′Z1
1 · fT.SSE.i(x, y, z1, z2)

for xi′Xyi
′
Y z

i′Z1
1 ∈ S1

}
,

M2 :=

{
xiXyiY z

iZ1
1 z

iZ2
2

∣∣∣∣monomials of xi′Xyi
′
Y z

i′Z1
1 z

i′Z2
2 · fT.SSE.i(x, y, z1, z2)

for iZ2 ≥ 1 where xi′Xyi
′
Y z

i′Z1
1 z

i′Z2
2 ∈ S2

}
.

By definition of sets of monomial S1, S2,M1, and M2, it follows that

xiXyiyz
iZ1
1 ∈ S1 ⇔ iX = 0, 1, . . . ,m− 1; iY = 0, 1, . . . ,m− 1− iX ;

iZ1 = 0, 1, . . . , iY + t,

xiXyiyz
iZ1
1 z

iZ2
2 ∈ S2 ⇔ iX = 0, 1, . . . ,m− 1; iY = 0, 1, . . . ,m− 1− iX ;

iZ1 = 0, 1, . . . , r − 1; iZ2 = 1, 2, . . . , iY + t+ 1,

xiXyiyz
iZ1
1 ∈ M1 ⇔ iX = 0, 1, . . . ,m; iY = 0, 1, . . . ,m− iX ;

iZ1 = 0, 1, . . . , iY + t,

xiXyiyz
iZ1
1 z

iZ2
2 ∈ M2 ⇔ iX = 0, 1, . . . ,m; iY = 0, 1, . . . ,m− iX ;

iZ1 = 0, 1, . . . , r − 1; iZ2 = 1, 2, . . . , iY + t+ 1.

All these shift-polynomials gT.SSE.i and g′T.SSE.i modulo R have the roots
(x, y, z1, z2) = (−d, ℓ,−p,−q) that are the same as fT.SSE.i(x, y, z1, z2). We re-
place each occurrence of zr1z2 by N and construct a lattice with coefficients of
gT.SSE.i(xX, yY, z1Z1, z2Z2) and g′T.SSE.i(xX, yY, z1Z1, z2Z2) as the bases. The
shift-polynomials generate a triangular basis matrix. Ignoring low order terms
of m, based on the Jochemsz-May strategy [JM06], LLL outputs short vectors
that satisfy Lemma 1 when

X(r+1)( 1
6+

τ
2 )m

3

Y (r+1)( 1
3+

τ
2 )m

3

Z
(r+1)

(
1
6+

τ
2+

τ2

2

)
m3

< W (r+1)( 1
6+

τ
2 )m

3

(1)
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that leads to

0 < −(r + 1)α− (r + 1) (2 + 3τ)β + 3 + 3τ − 3τ2.

To maximize the right hand side of the inequality, we set the parameter τ =
(1− (r + 1)β)/2 and the condition becomes

β <
7− 2

√
1 + 3(r + 1)α

3(r + 1)

as required. To satisfy the restriction τ ≥ 0, the condition β ≤ 1
r+1 should hold.

The condition results in α ≥ 1
r+1 . ⊓⊔

The algorithm construction fully generalizes that of Ernst et al. that is a
partial key exposure extension of the weaker Boneh-Durfee by solving integer
equations, although the connection is hard to follow from the original proof
in [IKK08]. In [EJMW05], Ernst et al. used a similar polynomial as fT.SSE.i

and the condition becomes X( 1
6+

τ
2 )m

3

Y ( 1
3+

τ
2 )m

3

Z

(
1
6+

τ
2+

τ2

2

)
m3

< W ( 1
6+

τ
2 )m

3

.
Clearly, the condition relates to that of (1). The connection comes from our
definition of sets of monomials S1, S2,M1, and M2 that are generalizations of
those of Ernst et al. by a factor of (r + 1). More concretely, each of our S1 and
S2 for iZ1 = 0, 1, . . . , r − 1 play the same role as that for Ernst et al. and so
do M1 and M2 for iZ1

= 0, 1, . . . , r − 1. Hence, our n, sX , sY , and sZ are larger
by a factor of (r + 1) of Ernst et al. As a result, we successfully proposed a
generalization the weaker Boneh-Durfee. In Section 3.2, we use the same sets of
monomials S1, S2,M1, and M2 and construct a generalization of the partial key
exposure attack of Ernst et al.

3.2 Partial Key Exposure Attack

In this section, we propose partial key exposure attacks on the Takagi RSA that
satisfy the following property.

Theorem 2 Let N = prq be a public modulus and let e ≈ Nα and d ≈ Nβ

be public exponent and secret exponent of the Takagi RSA, respectively. When
(β − δ) logN bits of the most significant bits or the least significant bits are
exposed, if

δ <
5− 2

√
−5 + 3(r + 1)(α+ β)

3(r + 1)
for

2

r + 1
≤ α+ β

holds, then the Takagi RSA modulus N can be factorized in polynomial time.

The result fully generalizes Ernst et al. [EJMW05] in the sense that it completely

covers their attack, i.e., β <
(
5− 2

√
−5 + 6(α+ β)

)
/6 for r = 1. When the

LSBs are exposed, our attack becomes the same as Huang et al. [HHX+14].
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Although the attack of Huang et al. with the MSBs is weaker than that with the
LSBs, our attacks work in the same conditions. We can obtain the advantage by
solving integer equations.

Proof of Theorem 2. Looking at a key generation for the Takagi RSA with the

exposed bits (regardless of the MSBs or the LSBs); e
(
d̃+ (d− d̃)

)
= 1 + ℓ(p−

1)(q−1) with some integer |ℓ| ≈ Nα+β−2/(r+1). To recover unknown parts d− d̃,
we use the following polynomial

fT.PKE.i(x, y, z1, z2) = 1− ed̃+ eMx+ y(z1 + 1)(z2 + 1)

where M = 1 (resp. M = 2⌊(β−δ) logN⌋) with the exposed MSBs (resp. LSBs)
whose roots over the integers are (x, y, z1, z2) = (−(d− d̃), ℓ,−p,−q). The abso-
lute values are bounded byX := Nδ, Y := Nα+β−2/(r+1), Z1 := 2N1/(r+1), Z2 :=
2N1/(r+1). We also use a notation Z = Z1 = Z2 for simplicity.

These formulations and those for small secret exponent attacks in Section 3.1
are essentially the same when we use the Jochemsz-May strategy. That means the
Newton polygons of polynomials fT.SSE.i(x, y, z1, z2) and fT.PKE.i(x, y, z1, z2)
are the same, e.g., there are six monomials for variables 1, x, y, yz1, yz2, and
yz1z2. Hence, we use almost the same algorithm construction. We set an (possibly
large) integer W such that W < Nα+β since ∥fT.SSE.i(xX, yY, z1Z1, z2Z2)∥∞ ≥
max{|1− ed̃|, |eMX|} ≈ Nα+β . Next, we set an integer R := W (XY )m−1 ·
Zm+r−1+t with some integers m = ω(r) and t = τm where τ ≥ 0 such that
gcd(R, 1−ed̃) = 1. We compute c = (1−ed̃)−1 mod R and f ′

T.PKE.i(x, y, z1, z2)
:= c · fT.PKE.i(x, y, z1, z2) mod R. We define shift-polynomials gT.PKE.i and
g′T.PKE.i as

gT.PKE.i : x
iXyiY z

iZ1
1 z

iZ2
2 · f ′

T.PKE.i ·Xm−1−iXY m−1−iY Zm+r−1+t−iZ1−iZ2

for xiXyiY z
iZ1
1 z

iZ2
2 ∈ S1 ∪ S2,

g′T.PKE.i : x
iXyiY z

iZ1
1 z

iZ2
2 ·R for xiXyiY z

iZ1
1 z

iZ2
2 ∈ (M1 ∪M2)\(S1 ∪ S2),

for sets of monomials S1, S2,M1, and M2 that are the same as in Section 3.1
where fT.SSE.i is replaced by f ′

T.PKE.i. All these shift-polynomials gT.PKE.i

and g′T.PKE.i modulo R have the roots (x, y, z1, z2) = (−(d− d̃), ℓ,−p,−q) that
are the same as fT.PKE.i(x, y, z1, z2). We replace each occurrence of zr1z2 by
N and construct a lattice with coefficients of gT.PKE.i(xX, yY, z1Z1, z2Z2) and
g′T.PKE.i(xX, yY, z1Z1, z2Z2) as the bases. Hence, ignoring low order terms of m,
based on the Jochemsz-May strategy [JM06], LLL outputs short lattice vectors
that satisfy Lemma 1 when the inequality (1) holds. For partial key exposure
attacks (regardless of the MSBs or the LSBs are exposed), the inequality becomes

0 < −(r + 1) (α+ β)− (r + 1)δ (1 + 3τ) + 3 + 3τ − 3τ2.

To maximize the right hand side of the inequality, we set the parameter τ =
(1− (r + 1)δ)/2 and the condition becomes

δ <
5− 2

√
−5 + 3(r + 1)(α+ β)

3(r + 1)
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Fig. 1. Comparisons of partial key exposure attacks on the Takagi RSA when the MSBs
are exposed for α = 1/(r+1). We compare how much portions of d should be exposed
for β between the attack of Huang et al. [HHX+14] and our Theorem 2. The left figure
is for r = 2 and the right figure is for r = 3.

as required. To satisfy the restriction η ≥ 0, the condition δ ≤ 1
r+1 should hold.

The condition results in 2
r+1 ≤ α+ β. ⊓⊔

As we claimed in Section 3.1, the algorithm construction fully generalizes
Ernst et al.

When the MSBs are exposed, our attack is always better than Huang et

al. [HHX+14] that works when δ <
7−

√
−39+24(r+1)(α+β)

4(r+1) . Figure 1 compare

Theorem 2 and Huang et al. for r = 2 and 3. Our attack is the better for all β,
e.g., our attack works with less partial information.

In Section 4.2, we propose an improved attack when the LSBs are exposed.
It seems that our Theorem 2 with the exposed MSBs is hard to be improved.
Although there exist attacks that are better than Ernst et al. (the other attack
of Ernst et al. [EJMW05] and Takayasu and Kunihiro’s attack [TK14]), by defi-
nition, it seems difficult to generalize the attacks for the Takagi RSA since both
attacks make use of the MSBs of ℓ. To compute the MSBs of ℓ, we have to know
the MSBs of (p − 1)(q − 1). It is possible for the standard RSA since pq = N .
However, it seems difficult for the Takagi RSA. Hence, to improve Theorem 2, we
have to exploit the special structure of the Takagi RSA or improve the attacks
on the standard RSA without the knowledge of the MSBs of ℓ.

4 Attacks on the Takagi RSA by Solving Modular
Equations

In this section, we analyze the security of the Takagi RSA by solving modular
equations. In Section 4.1, we give an alternative proof of the Itoh et al. small
secret exponent attack [IKK08] that is analogous to Herrmann and May [HM10].
In Section 4.2, we propose a partial key exposure attack that fully generalizes
Takayasu and Kunihiro’s result [TK14].
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4.1 Small Secret Exponent Attack

In this section, we prove the following Itoh et al. small secret exponent attack.
The result fully generalizes the stronger Boneh-Durfee [BD00] in the sense that
it completely covers their attack, i.e., β < 1− 1/

√
2 for r = 1 and α = 1.

Theorem 3 ([IKK08]) Let N = prq be a public modulus and let e ≈ Nα and
d ≈ Nβ be public exponent and secret exponent of the Takagi RSA, respectively.
If

β <
2−

√
(r + 1)α

r + 1
for

1

r + 1
≤ α

holds, then the Takagi RSA modulus N can be factorized in polynomial time.

The original proof in [IKK08] is involved since they used geometrically progres-
sive matrix. We use unravelled linearization [HM09] and offer simpler proof.
Moreover, we exploit the exact connection between the algorithm constructions
of Itoh et al. and the stronger Boneh-Durfee.

Alternative Proof of Theorem 3. Looking at a key generation for the Takagi RSA
modulo N = prq, ed = 1+ ℓ(p−1)(q−1) with some integer |ℓ| ≈ Nα+β−2/(r+1).
Itoh et al. [IKK08] considered a polynomial

fT.SSE.m(x, y1, y2) = 1 + x(y1 + 1)(y2 + 1).

The polynomial modulo e has roots (x, y1, y2) = (ℓ,−p,−q). The absolute values
are bounded by X := Nα+β−2/(r+1), Y1 = Y2 := 2N1/(r+1). Let m = ω(r) be an
integer and τ ≥ 0. To solve a modular equation fT.SSE.m(x, y1, y2) = 0 mod e,
we use shift-polynomials

gT.SSE.m(x, y1, y2) = xiXy
iY1
1 y

iY2
2 fu

T.SSE.m(x, y1, y2)e
m−u

with indices in

Ix1 ⇔ u = 0, 1, . . . ,m; iX = 0, 1, . . . ,m− u; iY1 = 0; iY2 = 0, or

Ix2 ⇔ u = 0, 1, . . . ,m; iX = 0, 1, . . . ,m− u; iY1 = 0, 1, . . . , r − 1; iY2 = 1,

Iy1 ⇔ u = 0, 1, . . . ,m; iX = 0; iY1 = 1, 2, . . . , ⌈τu⌉; iY2 = 0, or

Iy2 ⇔ u = 0, 1, . . . ,m; iX = 0; iY1 = 0, 1, . . . , r − 1; iY2 = 2, 3, . . . , ⌈τu⌉.

All these shift-polynomials gT.SSE.m modulo em have the roots (x, y1, y2) =
(ℓ,−p,−q) that are the same as fT.SSE.m. We replace each occurrence of yr1y2
by N and construct a lattice with coefficients of gT.SSE.m(xX, y1Y1, y2Y2) as the
bases.

Here, we observe why the construction offers a bound outperforming the
Jochemsz-May strategy. In the above Iy1 and Iy2, iY1 and iY2 are upper bounded
by ⌈τu⌉ that depend on u. In the Jochemsz-May strategy, the corresponding in-
dices (iZ1 − iY and iZ2 − iY in S1, S2,M1, and M2 in Section 3.1) are bounded
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by t = τm that only depends m. Since the former covers the latter, we can ana-
lyze broader classes of lattice constructions. The restriction of the Jochemsz-May
strategy offers simpler analysis with a triangular basis matrix although that does
not always offer the best bound. Moreover, the parameter is eventually set to
τ = 1− (r + 1)β. The optimization follows from the fact that shift-polynomials
gT.SSE.m with indices in Iy1 and Iy2 reduce the norm of outputs of the LLL algo-
rithm, e.g., the diagonals for the shift-polynomials are smaller than the modulus
em. This observation enables readers to understand our improvements in Section
6 easily.

However, the former selection requires involved analysis since the shift-
polynomials generate non-triangular basis matrices. The dependence of the
Jochemsz-May strategy always generates triangular basis matrices and the analy-
sis is easy. To construct partial key exposure attacks outperforming the Jochemsz-
May strategy, we require better understanding for small secret exponent attacks.
For the purpose, we show an analogous elementary proof to Herrmann and May
[HM10]. Although the above shift-polynomials generate non-triangular basis ma-
trices, we can transform it to be triangular by using unravelled linearization.

Lemma 2 Using a linearization z1 = 1+xy1 and z2 = 1+xy2, the above shift-
polynomials generate a triangular basis matrix. The diagonals of the basis matrix
for gT.SSE.m are

– Xu+iXY u
1 em−u for indices in Ix1,

– Xu+iXY
iY1
1 Y u+1

2 em−u for indices in Ix2,
– Y

iY1
1 Zu

1 e
m−u for indices in Iy1,

– Y
iY1
1 Y2Z

u
2 e

m−u for indices in Iy2.

Indeed, the transformation is analogous to Herrmann and May [HM10], and
show the exact connection with the stronger Boneh-Durfee and the Itoh et
al. attack although the connection is hard to follow from the original proof
[IKK08]. The shift-polynomials for indices in Ix1 and Ix2 for iY1 = 0, 1, . . . , r−1
(resp. Iy1 and Iy2 for iY1 = 0, 1, . . . , r − 1) play the same role as x-shifts
(resp. y-shifts) of the stronger Boneh-Durfee. Ignoring low order terms of m,
the dimension of the lattice is (r + 1)

(
1
2 + τ

2

)
m2, and the determinant of the

basis matrix is X(r+1)( 1
3+

τ
3 )m

3

Y
(r+1)

(
1
6+

τ
3+

τ2

6

)
m3

e(r+1)( 1
3+

τ
6 )m

3

. Notice that
Z1 = Z2 ≈ XY . Again, we stress the connection with the stronger Boneh-
Durfee. In the proof, a dimension of a lattice is

(
1
2 + τ

2

)
m2 and its determinant

is X( 1
3+

τ
3 )m

3

Y

(
1
6+

τ
3+

τ2

6

)
m3

e(
1
3+

τ
6 )m

3

. Hence, it is clear that the algorithm con-
struction of Itoh et al. is a generalization of that for the stronger Boneh-Durfee.
We set the parameter τ = 1 − (r + 1)β, and obtain Theorem 3. Here, we omit
overall calculations since they are completely the same as those in [IKK08]. ⊓⊔

4.2 Partial Key Exposure Attack

In this section, we propose a partial key exposure attack on the Takagi RSA
that satisfies the following property.



15

Theorem 4 Let N = prq be a public modulus and let e ≈ Nα and d ≈ Nβ

be public exponent and secret exponent of the Takagi RSA, respectively. When
(β − δ) logN bits of the least significant bits are exposed, if

δ <
2 + (r + 1)β −

√
−12 + 4(r + 1)α+ 12(r + 1)β − 3(r + 1)2β2

2(r + 1)
and

β ≤
9−

√
−3 + 12(r + 1)α

6(r + 1)

hold, then the Takagi RSA modulus N can be factorized in polynomial time.

The result fully generalizes Takayasu and Kunihiro’s result [TK14] in the sense

that it completely covers their attack, i.e., δ <
(
1 + β −

√
−1 + 6β − 3β2

)
/2

and β < (9−
√
21)/12 for r = 1 and α = 1.

Proof of Theorem 4. Looking at a key generation for the Takagi RSA with the
exposed LSBs; e(d1M + d0) = 1 + ℓ(p − 1)(q − 1) with some integer |ℓ| ≈
Nα+β−2/(r+1). To recover the unknown MSBs of the secret exponent d1, we use
the following polynomials

fT.PKE.m1(x, y1, y2) = 1− ed0 + x(y1 + 1)(y2 + 1) and

fT.PKE.m2(x, y1, y2) = 1 + x(y1 + 1)(y2 + 1)

whose roots with appropriate moduli are (x, y1, y2) = (ℓ,−p,−q), e.g.,
fT.PKE.m1(ℓ,−p,−q) = 0 mod eM and fT.PKE.m2(ℓ,−p,−q) = 0 mod e. The
absolute values are bounded by X := Nα+β−2/(r+1), Y1 = Y2 := 2N1/(r+1). Let
m = ω(r) be an integer and define a function

lr(k) = max

{
0,

k − (r + 1)(β − δ)m

1 + (r + 1)(δ − 2β)

}
.

To solve modular equations fT.PKE.m1(x, y1, y2) = 0 mod eM and
fT.PKE.m2(x, y1, y2) = 0 mod e simultaneously, we use following shift-polynomials

gT.PKE.m1(x, y1, y2) = xiXy
iY1
1 y

iY2
2 fu

T.PKE.m1(x, y1, y2)(eM)m−u,

gT.PKE.m2(x, y1, y2) = y
iY1

+k1

1 y
iY2

+k2

2 f
u−⌈lr(k1+k2)⌉
T.PKE.m1 (x, y1, y2)·

f
⌈lr(k1+k2)⌉
T.PKE.m2 (x, y1, y2)e

m−uMm−(u−⌈lr(k1+k2)⌉).

To construct a lattice we use gT.PKE.m1 with indices in Ix1, Ix2 and gT.PKE.m2

with indices in Iy1, Iy2 where

Ix1 ⇔ u = 0, 1, . . . ,m; iX = 0, 1, . . . ,m− u; iY1 = 0; iY2 = 0,

Ix2 ⇔ u = 0, 1, . . . ,m; iX = 0, 1, . . . ,m− u; iY1
= 0, 1, . . . , r − 1; iY2

= 1,

Iy1 ⇔ u = 0, 1, . . . ,m; iY1 = 0; iY2 = 0;

k1 = 1, 2, . . . , ⌊(r + 1)(β − δ)m+ (1 + (r + 1)(δ − 2β))u⌋; k2 = 0,
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Iy2 ⇔ u = 0, 1, . . . ,m; iY1 = 0, 1, . . . , r − 1; iY2 = 1; k1 = 0;

k2 = 1, 2, . . . , ⌊(r + 1)(β − δ)m+ (1 + (r + 1)(δ − 2β))u⌋.

All these shift-polynomials gT.PKE.m1 and gT.PKE.m2 modulo (eM)m have the
roots (x, y1, y2) = (ℓ,−p,−q) that are the same as fT.PKE.m. We replace each
occurrence of yr1y2 by N and construct a lattice with coefficients of
gT.PKE.m1(xX, y1Y1, y2Y2) and gT.PKE.m2(xX, y1Y1, y2Y2) as the bases.

As in the proof of Theorem 3, the shift-polynomials gT.PKE.m1 with indices in
Ix1 and Ix2 for iY1 = 0, 1, . . . , r−1 (resp. gT.PKE.m2 with indices in Iy1 and Iy2
for iY1 = 0, 1, . . . , r−1) play the same role as x-shifts (resp. y-shifts) of Takayasu
and Kunihiro. The shift-polynomials generate a triangular basis matrix using a
linearization z1 = 1+ xy1 and z2 = 1+ xy2. Assume 1+ (r+1)(δ− 2β) ≥ 0 and
the diagonals of the basis matrix are

– Xu+iXY u
1 em−u for gT.PKE.m1 with indices in Ix1,

– Xu+iXY
iY1
1 Y u+1

2 em−u for gT.PKE.m1 with indices in Ix2,
– Xu−⌈lr(k1)⌉Y

u−⌈lr(k1)⌉+k1

1 Z
⌈lr(k1)⌉
1 em−uMm−(u−⌈lr(k1)⌉)

for gT.PKE.m2 with indices in Iy1,
– Xu−⌈lr(k2)⌉Y

iY1
1 Y

u−⌈lr(k2)⌉+k1+1
2 Z

⌈lr(k2)⌉
2 em−uMm−(u−⌈lr(k2)⌉)

for gT.PKE.m2 with indices in Iy2.
In Iy1 and Iy2, k1 and k2 are upper bounded by ⌊(r+1)(β−δ)m+(1+(r+1)(δ−
2β))u⌋. As Takayasu and Kunihiro, the definition follows from the fact that the
shift-polynomials reduce norms of output vectors by the LLL algorithm.

As the proof of Theorem 3, all these values are larger by a factor of (r + 1)
of Takayasu and Kunihiro’s. Ignoring low order term of m, the LLL algorithm
outputs short vectors that satisfy Lemma 1 when

(r + 1)2δ2 − (r + 1)(2 + (r + 1)β)δ + 4− (r + 1)α− 2(r + 1)β + (r + 1)2β2 > 0.

Hence, we obtain the bound of Theorem 4

δ <
2 + (r + 1)β −

√
−12 + 4(r + 1)α+ 12(r + 1)β − 3(r + 1)2β2

2(r + 1)

as required. To satisfy the restriction 1 + (r + 1)(δ − 2β) ≥ 0, the condition

β ≤ 9−
√

−3+12(r+1)α

6(r+1) should hold. ⊓⊔

When the LSBs are exposed and β ≤ 9−
√

−3+12(r+1)α

6(r+1) , our attack is better

than Huang et al. [HHX+14] that works when δ <
5−2

√
−5+3(r+1)(α+β)

3(r+1) . Figure

2 compare our results and Huang et al. for r = 2 and 3. Our attack is the better
for small β, e.g., our attack works with less partial information.

5 Attacks on the Prime Power RSA by Solving Integer
Equations

In this section, we analyze the security of the prime power RSA by solving integer
equations. In Section 5.1, we propose a small secret exponent attack that fully
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Fig. 2. Comparisons of partial key exposure attacks on the Takagi RSA when the LSBs
are exposed and α = 1/(r+1). We compare how much portions of d should be exposed
for β between the attack of Huang et al. [HHX+14] and our Theorem 4. The left figure
is for r = 2 and the right figure is for r = 3.

generalizes the weaker Boneh-Durfee result [BD00]. In Section 5.2, we propose
a partial key exposure attack that fully generalizes Ernst et al. [EJMW05].

5.1 Small Secret Exponent Attack

In this section, we propose small secret exponent attacks on the prime power
RSA that satisfy the following property.

Theorem 5 Let N = prq be a public modulus for r ≥ 2 and let e ≈ Nα and d ≈
Nβ be public exponent and secret exponent of the prime power RSA, respectively.
If

0 < −r(r + 1)2α+ r(r + 1)(1− β)(2(r + 1) + 3rτ)− 1− 3rη(1 + rη)

− r3(1− η + τ)3 + r2(η − τ)3 where

η =
r(r + 1)(1− β)− 1

2r
and τ = η −

r −
√
−r + (r + 1)2(1− β)

r + 1

for
3r3 + r2 + r − 1

4(r + 1)
≤ α, or

β <
r + (

√
r − 1)2

2r(r + 1)
− α

2
for

r + (
√
r − 1)2

r(r + 1)
< α ≤ 3r3 + r2 + r − 1

4(r + 1)

holds, then prime power RSA modulus N can be factorized in polynomial time.

The result extends Sarkar’s attack [Sar15] for arbitrary α although they solved
modular equations. The result for r = 1 does not cover the weaker Boneh-Durfee
[BD00]. Moreover, the second condition becomes β < 1/4 for r = 1 and α = 1
that is the same as Wiener’s result [Wie90]. Indeed, Sarkar did not claim the
connection with their attack and the weaker Boneh-Durfee at all. However, we
think that the result fully generalizes the weaker Boneh-Durfee. Although we
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should use parameters (η and τ such that η ≥ τ in the following proof) that do
not exactly cover lattices for the weaker Boneh-Durfee to make use of the special
structure of the prime power RSA, the construction is conceptually the same.
Moreover, we will show in Section 5.2 that our construction covers Ernst et al.
[EJMW05] that is a partial key exposure extension of the weaker Boneh-Durfee.
The proof is convenient to analyze partial key exposure attacks in Section 3.2.

Proof of Theorem 5. Looking at a key generation for the prime power RSA;
ed = 1 + ℓpr−1(p − 1)(q − 1) with some integer |ℓ| ≈ Nα+β−1. To recover the
secret exponent d, we use the following polynomial

fPP.SSE.i(x, y, z1, z2) = 1 + ex+ yzr−1
1 (z1 − 1)(z2 − 1)

whose roots over the integers are (x, y, z1, z2) = (−d, ℓ, p, q). The absolute values
are bounded by X := Nβ , Y := Nα+β−1, Z1 := 2N1/(r+1), Z2 := 2N1/(r+1). We
also use a notation Z = Z1 = Z2 for simplicity. We set an (possibly large) in-
teger W such that W < Nα+β since ∥fPP.SSE(xX, yY, z1Z1, z2Z2)∥∞ ≥ |eX| ≈
Nα+β . Next, we set an integer R := W (XY )m−1Zr(m−1−a+t) with some in-
tegers m = ω(r), t = τm, and a = ηm where τ ≥ 0 and η ≥ τ . We define
shift-polynomials gPP.SSE.i and g′PP.SSE.i as

gPP.SSE.i : x
iXyiY z

iZ1
1 z

iZ2
2 · fPP.SSE.i ·Xm−1−iXY m−1−iY Zr(m−1−a+t)−iZ1−iZ2

for xiXyiY z
iZ1
1 z

iZ2
2 ∈ S,

g′PP.SSE.i : x
iXyiY z

iZ1
1 z

iZ2
2 ·R for xiXyiY z

iZ1
1 z

iZ2
2 ∈ M\S,

for sets of monomials

S :=
∪

0≤j≤rt

xiXyiY z
iZ1+j
1 z

iZ2
2

∣∣∣∣ xiXyiY z
iZ1
1 z

iZ2
2 is a monomial of

s̃ · fPP.SSE.i(x, y, z1, z2)
m−1 where

s̃ =
{
za2 , z1z

a
2 , z

2
1z

a
2 , . . . , z

r
1z

a
2 , z

r−1
1 za+1

2

}
 ,

M :=

{
xiXyiY z

iZ1
1 z

iZ2
2

∣∣∣∣monomials of xi′Xyi
′
Y z

i′Z1
1 z

i′Z2
2 · fPP.SSE.i(x, y, z1, z2)

where xi′Xyi
′
Y z

i′Z1
1 z

i′Z2
2 ∈ S

}
,

with an integer a = ηm for η ≥ τ . By definition, it follows that

xiXyiyz
iZ1
1 z

iZ2
2 ∈ S ⇔ iX = 0, 1, . . . ,m− a+ t− 1;

iY = a− t, a− t+ 1, . . . ,m− 1− iX ;

iZ1 = 0, 1, . . . , r(iY − a+ t); iZ2 = 0, and

iX = 0, 1, . . . ,m− 1; iY = 0, 1, . . . ,m− 1− iX ;

iZ1 = max{0, r − iY + r(iZ2 − 1− a)}, . . . , r − 1;

iZ2 = a+ 1, a+ 2, . . . , a+ ⌈(iY + 1)/r⌉, and

iX = 0, 1, . . . ,m− 1; iY = 0, 1, . . . ,m− 1− iX ;

iZ1 = 0, 1, . . . , r − 1;

iZ2 = max{0,−iY + a− t}, . . . , a,
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xiXyiyz
iZ1
1 z

iZ2
2 ∈ M ⇔ iX = 0, 1, . . . ,m− a+ t;

iY = a− t, a− t+ 1, . . . ,m− iX ;

iZ1 = 0, 1, . . . , r(iY − a+ t); iZ2 = 0, and

iX = 0, 1, . . . ,m; iY = 0, 1, . . . ,m− iX ;

iZ1 = max{0, r − iY + r(iZ2 − 1− a)}, . . . , r − 1;

iZ2 = a+ 1, a+ 2, . . . , a+ ⌈(iY + 1)/r⌉, and

iX = 0, 1, . . . ,m; iY = 0, 1, . . . ,m− iX ;

iZ1 = 0, 1, . . . , r − 1;

iZ2 = max{0,−iY + a− t}, . . . , a.

All these shift-polynomials gPP.SSE.i and g′PP.SSE.i modulo R have the roots
(x, y, z1, z2) = (−d, ℓ,−p,−q) that are the same as fPP.SSE.i(x, y, z1, z2). We
replace each occurrence of zr1z2 by N and construct a lattice with coefficients
of gPP.SSE.i(xX, yY, z1Z1, z2Z2) and g′PP.SSE.i(xX, yY, z1Z1, z2Z2) as the bases.
The shift-polynomials generate a triangular basis matrix.

Ignoring low order terms of m, based on the Jochemsz-May strategy [JM06],
LLL outputs short vectors that satisfy Lemma 1 when

X( r+1
6 + r

2 τ)m
3

Y ( r+1
3 + r

2 τ)m
3

Z

(
r2(1−η+τ)3

6

)
m3

1 Z
( 1

6r+
1
2η+

r
2 η

2− r
6 (η−τ)3)m3

2

< W ( r+1
6 + r

2 τ)m
3

(2)

that leads to

0 <− r(r + 1)2α+ r(r + 1)(1− β)(2(r + 1) + 3rτ)

− 1− 3rη(1 + rη)− r3(1− η + τ)3 + r2(η − τ)3. (3)

To maximize the right hand side of the inequality, we set parameters η =
r(r+1)(1−β)−1

2r and τ = η − r−
√

−r+(r+1)2(1−β)

r+1 that results in the first condition
of Theorem 5.

To satisfy the restriction τ ≥ 0, the condition β ≤ r2−r−1+2
√
r

r(r+1) should hold.

The condition results in α ≥ 3r3+r2+r−1
4(r+1) . Other restrictions η ≥ τ and η ≥ 0

always hold.

In the other cases, e.g. α ≤ 3r3+r2+r−1
4(r+1) , we fix the parameter τ = 0. To

maximize the right hand side of the inequality (3), we set the other parameter
η = 1− 1/

√
r and the condition becomes

β <
r + (

√
r − 1)2

2r(r + 1)
− α

2

as required. Since the prime power RSA satisfies α + β > 1 by definition, α >
r+(

√
r−1)2

r(r+1) should hold. ⊓⊔

This attack is an extension of Sarkar’s attack [Sar15] for arbitrary α. However,
the extension offers an advantage of the approach although Sarkar did not claim.
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Lu et al. [LZPL15] claimed that their attack, which works when β < r(r−1)
(r+1)2 , is

better than Sarkar’s attack for r ≥ 5. Indeed, the attack of Lu et al. is better
than Theorem 5 for α = 1 (that is equivalent to Sarkar’s attack). However, our
attack becomes better than the attack of Lu et al. for small α. Considering the
restriction α + β > 1, although the attack of Lu et al. works when α > 3r+1

(r+1)2 ,

our attack works when α > r+(
√
r−1)2

r(r+1) . Hence, our attack works for smaller α

than Lu et al. In Section 6.1, we propose further (although slight) improvements
and compare our results and Lu et al.

We note that the restriction η ≥ τ comes from the fact that we can obtain bet-
ter results than η < τ for small secret exponent attacks on the prime power RSA
for r ≥ 2. As we claimed, the algorithm construction fully generalizes the weaker
Boneh-Durfee. That means the weaker Boneh-Durfee result can be obtained by
setting η < τ . The connection is hard to follow from Sarkar’s proof [Sar15] and
they did not claim it. As our previous proofs, the construction comes from our
definition of sets of monomials S and M that play the same roles as those for
Ernst et al. that is a partial key exposure extension of the weaker Boneh-Durfee.
More concretely, each of our S for s̃ =

{
za2 , z1z

a
2 , z

2
1z

a
2 , . . . , z

r−1
1 za2 , z

r−1
1 za+1

2

}
play the same role as that for Ernst et al. and so do M . However, our n, sX , sY ,
and sZ do not become larger by a factor of (r + 1) of those of Ernst et al for
the asymmetry of p and q for the prime power RSA key generation. So far, the
asymmetry made it difficult to exploit the connection between the standard RSA
and the prime power RSA, and to generalize attacks on the standard RSA to
the prime power RSA.

5.2 Partial Key Exposure Attack.

In this section, we propose partial key exposure attacks on the prime power RSA
that satisfy the following property.

Theorem 6 Let N = prq be a public modulus and let e ≈ Nα and d ≈ Nβ

be public exponent and secret exponent of prime power RSA, respectively. When
(β − δ) logN bits of the most significant bits or the least significant bits are
exposed, if

0 < −r(r + 1)2(α+ β) + r(r + 1)(1− δ)((r + 1) + 3rτ) + r(r + 1)2 − 1

− 3rη(1 + rη)− r3(1− η + τ)3 + r2(η − τ)3 where

η =
r(r + 1)(1− δ)− 1

2r
and τ = η −

r −
√
−r + (r + 1)2(1− δ)

r + 1

for 1 < α+ β ≤ 3r3 + r2 + 5r − 1

4r(r + 1)
, or

δ < 1−
r +

√
12r2(r + 1)(α+ β)− r(9r2 + 14r − 3)

3r(r + 1)

for
3r3 + r2 + 5r − 1

4r(r + 1)
≤ α+ β
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holds, then prime power RSA modulus N can be factorized in polynomial time.

The result fully generalizes Ernst et al. [EJMW05] in the sense that it completely

covers their attack, i.e., β <
(
5− 2

√
−5 + 6(α+ β)

)
/6 for r = 1. Moreover, we

exploit the exact connection between the algorithm constructions of Theorem 6
and the Ernst et al.

Proof of Theorem 6. Looking at a key generation for prime power RSA with the
exposed bits (regardless of the MSBs or the LSBs); e(d̃+(d− d̃)) = 1+ℓpr−1(p−
1)(q − 1) with some integer |ℓ| ≈ Nα+β−1. To recover unknown parts d− d̃, we
use the following polynomial

fPP.PKE.i(x, y, z1, z2) = 1− ed̃+ eMx+ yzr−1
1 (z1 − 1)(z2 − 1)

where M = 1 (resp. M |2⌊(β−δ) logN⌋) with the exposed MSBs (resp. LSBs) whose
roots over the integers are (x, y, z1, z2) = (−(d− d̃), ℓ, p, q). The absolute values
are bounded by X := Nδ, Y := Nα+β−1, Z1 := 2N1/(r+1), Z2 := 2N1/(r+1). We
also use a notation Z = Z1 = Z2 for simplicity.

These formulations and that for small secret exponent attacks in Section 5.1
are essentially the same when we use the Jochemsz-May strategy. That means the
Newton polygons of polynomials fPP.PKE.i(x, y, z1, z2) and fPP.PKE.i(x, y, z1, z2)
are the same, e.g., there are six monomials for variables 1, x, yzr−1

1 , yzr1 , yz
r−1
1 z2,

and y. Hence, we use almost the same algorithm construction. We set an (possibly
large) integerW such thatW < Nα+β since ∥fPP.PKE.i(xX, yY, z1Z1, z2Z2)∥∞ ≥
max{|1− ed̃|, |eMX|} ≈ Nα+β . Next, we set an integer R := W (XY )m−1 ·
Zr(m−1−a+t) with some integers m = ω(r) and t = τm where τ ≥ 0 such that
gcd(R, 1−ed̃) = 1. We compute c = (1−ed̃)−1 mod R and f ′

PP.PKE.i(x, y, z1, z2)
:= c · fPP.PKE.i(x, y, z1, z2) mod R. We define shift-polynomials gPP.PKE.i and
g′PP.PKE.i as

gPP.PKE.i : x
iXyiY z

iZ1
1 z

iZ2
2 · f ′

PP.PKE.i ·Xm−1−iXY m−1−iY Zr(m−1−a+t)−iZ1
−iZ2

for xiXyiY z
iZ1
1 z

iZ2
2 ∈ S,

g′PP.PKE.i : x
iXyiY z

iZ1
1 z

iZ2
2 ·R for xiXyiY z

iZ1
1 z

iZ2
2 ∈ M\S,

for sets of monomials S and M that are the same as in Section 5.1 where
fPP.SSE.i is replaced by f ′

PP.PKE.i. All these shift-polynomials gPP.PKE.i and

g′PP.PKE.i modulo R have the roots (x, y, z1, z2) = (−(d− d̃), ℓ,−p,−q) that are
the same as fPP.PKE.i(x, y, z1, z2). Hence, based on the Jochemsz-May strategy
[JM06], LLL outputs short lattice vectors that satisfy Lemma 1 when the in-
equality (2) holds. For partial key exposure attacks (regardless of the MSBs or
the LSBs are exposed), the inequality leads to

0 <− r(r + 1)2(α+ β) + r(r + 1)(1− δ)((r + 1) + 3rτ) + r(r + 1)2

− 1− 3rη(1 + rη)− r3(1− η + τ)3 + r2(η − τ)3.

To maximize the right hand side of the inequality, we set parameters η =
r(r+1)(1−δ)−1

2r and τ = η − r−
√

−r+(r+1)2(1−δ)

r+1 that results in the first condition
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of Theorem 6. To satisfy the restriction η ≥ τ , the condition δ ≥ 1
r+1 should

hold. The condition results in α+β ≤ 3r3+r2+5r−1
4r(r+1) . Notice that other restrictions

τ ≥ 0 and η ≥ 0 always hold.

For smaller α+β, we use the other lattice construction that fully generalizes
Ernst et al. However, the construction is essentially the same as previous one as
we noted in the proof of Theorem 5. Indeed, we use the same shift-polynomials
gPP.PKE.i and g′PP.PKE.i with the same sets of monomials S and M . The only
difference is a restriction of parameters η ≤ τ . Hence, by definition, it follows
that

xiXyiyz
iZ1
1 z

iZ2
2 ∈ S ⇔ iX = 0, 1, . . . ,m− a+ t− 1;

iY = a− t, a− t+ 1, . . . ,m− 1− iX ;

iZ1 = 0, 1, . . . , r(iY − a+ t); iZ2 = 0, and

iX = 0, 1, . . . ,m− 1; iY = 0, 1, . . . ,m− 1− iX ;

iZ1 = max{0, r − iY + r(iZ2 − 1− a)}, . . . , r − 1;

iZ2 = a+ 1, a+ 2, . . . , a+ ⌈(iY + 1)/r⌉, and

iX = 0, 1, . . . ,m− 1; iY = 0, 1, . . . ,m− 1− iX ;

iZ1 = 0, 1, . . . , r − 1;

iZ2 = max{0,−iY + a− t}, . . . , a,

xiXyiyz
iZ1
1 z

iZ2
2 ∈ M ⇔ iX = 0, 1, . . . ,m− a+ t;

iY = a− t, a− t+ 1, . . . ,m− iX ;

iZ1 = 0, 1, . . . , r(iY − a+ t); iZ2 = 0,

iX = 0, 1, . . . ,m; iY = 0, 1, . . . ,m− iX ;

iZ1 = max{0, r − iY + r(iZ2 − 1− a)}, . . . , r − 1;

iZ2 = a+ 1, a+ 2, . . . , a+ ⌈(iY + 1)/r⌉, and

iX = 0, 1, . . . ,m; iY = 0, 1, . . . ,m− iX ;

iZ1 = 0, 1, . . . , r − 1;

iZ2 = max{0,−iY + a− t}, . . . , a.

All these shift-polynomials gPP.PKE.i and g′PP.PKE.i modulo R have the
roots (x, y, z1, z2) = (−d, ℓ,−p,−q) that are the same as fPP.PKE.i(x, y, z1, z2).
We replace each occurrence of zr1z2 by N and construct a lattice with coefficients
of gPP.PKE.i(xX, yY, z1Z1, z2Z2) and g′PP.SSE.i(xX, yY, z1Z1, z2Z2) as the bases.
The shift-polynomials generate a triangular basis matrix.

Ignoring low order terms of m, based on the Jochemsz-May strategy [JM06],
LLL outputs short vectors that satisfy Lemma 1 when

X( r+1
6 + r

2 τ)m
3

Y ( r+1
3 + r

2 τ)m
3

Z

(
r2(1+τ−η)3

6 − r2(τ−η)3

6

)
m3

1 Z
( 1

6r+
1
2η+

r
2 η

2)m3

2

< W ( r+1
6 + r

2 τ)m
3
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Fig. 3. Comparisons of partial key exposure attacks on the prime power RSA when the
MSBs are exposed for α = 1. We compare how much portions of d should be exposed
for β between the attack of Lu et al. [LZPL15], Sarkar [Sar15], and our Theorem 6.
The left figure is for r = 2 and the right figure is for r = 3.

that leads to

0 <− (r + 1)2(α+ β) + (2(r + 1)2 + 3r(r + 1)τ)− δ((r + 1)2 + 3r(r + 1)τ)

− r2(1 + τ − η)3 + r2(τ − η)3 − 1

r
− 3η − 3rη2.

To maximize the right hand side of the inequality, we set parameters η =
r(r+1)(1−δ)−1

2r and τ = η + (r+1)(1−δ)−r
2r and the condition becomes

δ < 1−
r +

√
12r2(r + 1)(α+ β)− r(9r2 + 14r − 3)

3r(r + 1)

as required. To satisfy the restriction η ≤ τ , the condition δ ≤ 1
r+1 should hold.

The condition results in 3r3+r2+5r−1
4r(r+1) ≤ α + β. Notice that other restrictions

τ ≥ 0 and η ≥ 0 always hold. ⊓⊔

When the MSBs are exposed, our attack is better than that of Sarkar when
α+β is small and is better than that of Lu et al. when r is small. Figure 3 compare
Theorem 6 and those of Lu et al. and Sarkar for r = 2 and 3. Our attack is the
better for small β, e.g., our attack works with less partial information.

In Section 6.2, we propose an improved attack with the LSBs. However, it
seems that our Theorem 6 with the exposed MSBs also has room for improve-
ments. As opposed to the Takagi RSA, and as the standard RSA, we can compute
the MSBs of ℓ since we know the MSBs of pr−1(p− 1)(q− 1). Indeed, the result
of Sarkar makes use of the fact and generalize the other attack of Ernst et al. In
addition, there exists better attacks by Takayasu and Kunihiro for small β. To
generalize the attack to the prime power RSA remains as a future work.
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6 Attacks on the Prime Power RSA by Solving Modular
Equations

In this section, we analyze the security of prime power RSA by solving mod-
ular equations. In Section 6.1, we propose a small secret exponent attack that
(almost) fully generalizes the stronger Boneh-Durfee result [BD00]. In Section
6.2, we propose a partial key exposure attack that (almost) fully generalizes
Takayasu and Kunihiro’s result [TK14].

6.1 Small Secret Exponent Attack

In this section, we propose small secret exponent attacks on the prime power
RSA that satisfy the following property.

Theorem 7 Let N = prq be a public modulus and let e ≈ Nα and d ≈ Nβ be
public exponent and secret exponent of prime power RSA, respectively. If

β < 1−
−r +

√
4r(r + 1) + 4r2(3r + 4)(r + 1)2α

r(3r + 4)(r + 1)
for

α ≥ 9(r + 1)2

(r + 2)2(3r + 4)
− 1

r(r + 1)(3r + 4)
, or

β <
7r2 + 17r + 9−

√
36r4 + 204r3 + 376r2 + 292r + 84 + 4r(r + 1)2(r + 3)α

r(r + 1)

for α >
−4r2 − 8r − 3 + 2

√
(r + 1)(4r3 + 15r2 + 10r + 3)

r(r + 1)

holds, then prime power RSA modulus N can be factorized in polynomial time.

The result (almost) fully generalizes the stronger Boneh-Durfee [BD00] in the
sense that it is better than the weaker Boneh-Durfee and weaker than the
stronger Boneh-Durfee for r = 1, i.e., β < (15 − 2

√
30)/14 = 0.28896 · · · . Since

the results of Theorem 7 are better than those of Theorem 5, they are outper-
forming the Jochemsz-May.

Proof of Theorem 7. Looking at a key generation for the prime power RSA;
ed = 1 + ℓpr−1(p − 1)(q − 1) with some integer |ℓ| ≈ Nα+β−1. To recover the
secret exponent d, we use the following polynomial

fPP.SSE.m(x, y1, y2) = 1 + xyr−1
1 (y1 − 1)(y2 − 1).

The polynomial modulo e has roots (x, y1, y2) = (ℓ, p, q). The absolute values are
bounded by X := Nα+β−1, Y1 = Y2 := 2N1/(r+1). Let m = ω(r) and a = ηm be
integers. To solve a modular equation fPP.SSE.m(x, y1, y2) = 0 mod e, we use
shift-polynomials

gPP.SSE.m(x, y1, y2) = xiXy
iY1
1 y

a+iY2
2 fu

PP.SSE.m(x, y1, y2)e
m−u
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with indices in

Ix1 ⇔ u = 0, 1, . . . ,m; iX = 0, 1, . . . ,m− u; iY1 = 0, 1, . . . , r − 1; iY2 = 0,

Ix2 ⇔ u = 0, 1, . . . ,m; iX = 0, 1, . . . ,m− u; iY1 = r − 1; iY2 = 1,

Iy ⇔ u = 0, 1, . . . ,m; iX = 0; iY1 = 1, 2, . . . , ⌊(1− (r + 1)β)u⌋+ ra; iY2 = 0.

All these shift-polynomials gPP.SSE.m modulo em have the roots (x, y1, y2) =
(ℓ,−p,−q) that are the same as fPP.sse.m(x, y1, y2). We replace each occurrence
of yr1y2 byN and construct a lattice with coefficients of gPP.SSE.m(xX, y1Y1, y2Y2)
as the bases.

As in the proof of Theorem 5, the shift-polynomials gPP.SSE.m with indices
in Ix1 for iY1 = 0, 1, . . . , r − 1 and Ix2 play the same role as x-shifts of the
stronger Boneh-Durfee by a factor of (r + 1). Although gPP.SSE.m with indices
in Iy plays the same role as y-shifts of the stronger Boneh-Durfee by a factor of r
since iY1 is upper bounded by ⌊(1−(r+1)β)u⌋+ra that depends on u. However,
there are no additional y-shifts which play the same role as the stronger Boneh-
Durfee. Notice that all polynomials are multiplied by ya2 and the operation plays
the same role as the y-shifts of the weaker Boneh-Durfee. Hence, our Theorem 7
(almost) fully generalizes the stronger Boneh-Durfee and is always better than
Theorem 5. We do not know how to fully generalize the stronger Boneh-Durfee
and we think there may be room for improvements.

Assume that ⌊(1− (r + 1)β)u⌋+ ra ≥ 0, e.g., η ≥ ((r + 1)β − 1)/r, and the
shift-polynomials generate triangular basis matrix with diagonals

– Xu+iXY
max{0,r(u−a)+iY1

}
1 Y

max{a−⌊u+iY1
/r⌋,0}

2 em−u for indices in Ix1,
– Xu+iXY

a+⌈(u+1)/r⌉
2 em−u for indices in Ix2,

– XuY
ru+iY1
1 em−u for indices in Iy.

In Iy, iY1 is upper bounded by ⌊(1 − (r + 1)β)u⌋ + ra. The definition follows
from the fact that the shift-polynomials reduce norms of outputs by the LLL
algorithm, e.g., the diagonals for the shift-polynomials are smaller than em.

Ignoring low order terms of m, the LLL algorithm outputs short lattice vec-
tors that satisfy Lemma 1 when (det(L))1/n < em that leads to

0 <− r(r + 1)2α− 1− 3rη(1 + rη)

+ r(r + 1)(2 + 3rη)(1− δ) + r(r + 1)2(1− δ)2.

To maximize the right hand side of the inequality, we set the parameter η =
r(r+1)(1−β)−1

2r and the condition becomes

β < 1−
−r +

√
4r(r + 1) + 4r2(3r + 4)(r + 1)2α

r(3r + 4)(r + 1)

as required. To satisfy the restriction η ≥ ((r + 1)β − 1)/r, the condition β <
r(r+1)+1
(r+2)(r+1) should hold. The condition results in 9(r+1)2

(r+2)2(3r+4) −
1

r(r+1)(3r+4) ≤ α.
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Fig. 4. Comparisons of small secret exponent attacks on the prime power RSA. We
compare recoverable values β for α between the attack of Lu et al. [LZPL15] and our
Theorem 7. The left figure is for r = 2 and the right figure is for r = 3.

For smaller α, we propose an alternative lattice construction. We use the
same shift-polynomials gPP.SSE.m(x, y1, y2) with indices in

Ix1 ⇔ u = 0, 1, . . . ,m; iX = 0, 1, . . . ,m− u; iY1 = 0, 1, . . . , r − 1; iY2 = 0,

Ix2 ⇔ u = 0, 1, . . . ,m; iX = 0, 1, . . . ,m− u; iY1 = r − 1; iY2 = 1,

I ′
y ⇔ u = 0, 1, . . . ,m; iX = 0; iY1 = 1, 2, . . . , ⌊r(a− ηu)⌋; iY2 = 0.

We replace each occurrence of yr1y2 by N and construct a lattice with coeffi-
cients of gPP.SSE.m(xX, y1Y1, y2Y2) as the bases. Assume 0 ≤ η and the shift-
polynomials generate a triangular basis matrix with the same diagonals as pre-
vious ones.

As previous cases, we should define I ′
y such that the shift-polynomials re-

duce norms of outputs by the LLL algorithm, e.g., the diagonals for the shift-
polynomials are smaller than em. However, that is not the case and the definition
is a suboptimal. Therefore, we think there may be room for improvements.

Ignoring low order terms of m, the LLL algorithm outputs short vectors that
satisfy Lemma 1 when (det(L))1/n < em that leads to

0 < −r(r + 1)2α+ r(1− β)
(
2(r + 1)2 + r(r + 1)η

)
− r3(1− η)2 − 1− 3rη(1 + rη).

To maximize the right hand side of the inequality, we set the parameter η =
r(r+1)(1−β)+2r2−3

2r2+6r and the condition becomes

β <
7r2 + 17r + 9−

√
36r4 + 204r3 + 376r2 + 292r + 84 + 4r(r + 1)2(r + 3)α

r(r + 1)

as required. To satisfy α+ β > 1, the condition α >
−4r2−8r−3+2

√
(r+1)(4r3+15r2+10r+3)

r(r+1) should hold. The restriction η ≥ 0 always

holds. ⊓⊔
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Table 1. Comparisons of small secret exponent attacks on the prime power RSA. We
compare recoverable values β for α between the attack of Lu et al. [LZPL15], our
Theorem 5, and Theorem 7. The left table is for r = 5 and the right table is for r = 6.

α [LZPL15] Theorem 5 Theorem 7

1 0.5555 0.5442 0.5495

0.9 0.5555 0.5670 0.5730

0.8 0.5555 0.5911 0.5979

0.7 0.5555 0.6167 0.6244

0.6 0.5555 0.6442 0.6528

0.5 0.5555 0.6741 0.6837

0.4 – 0.7073 0.7179

0.3 – 0.7452 0.7561

α [LZPL15] Theorem 5 Theorem 7

1 0.6122 0.5738 0.5798

0.9 0.6122 0.5950 0.6017

0.8 0.6122 0.6174 0.6248

0.7 0.6122 0.6412 0.6494

0.6 0.6122 0.6668 0.6759

0.5 0.6122 0.6946 0.7046

0.4 0.6122 0.7254 0.7364

0.3 – 0.7607 0.7724

0.2 – 0.8036 0.8106

Since Theorem 7 works when α >
−4r2−8r−3+2

√
(r+1)(4r3+15r2+10r+3)

r(r+1) , it

works for smaller α than Theorem 5. Indeed, Theorem 7 is (although slightly)
always better than Theorem 5. Figure 4 compare Theorem 7 and Lu et al. for
r = 2 and 3. Theorem 7 is the better for all α and the differences become larger
for smaller α. Moreover, Table 1 compare Lu et al., Theorem 5, and Theorem 7
for r = 5 and 6. When α = 1, Lu et al. is the best. However, our attack becomes
the better for smaller α.

6.2 Partial Key Exposure Attack

In this section, we propose small secret exponent attacks on the prime power
RSA that satisfy the following property.

Theorem 8 Let N = prq be a public modulus and let e ≈ Nα and d ≈ Nβ

be public exponent and secret exponent of prime power RSA, respectively. When
(β − δ) logN bits of the least significant bits are exposed, if

δ < 1−
r(2r + 1) + 2

√
r(r + 1)(r(r + 1)(3r + 4)(α+ β)− 3r3 − 6r2 − 4r + 1)

r(r + 1)(3r + 4)

for
30r3 + 51r2 + 25r − 4

4r(r + 1)(3r + 4)
≤ α+ β

holds, then prime power RSA modulus N can be factorized in polynomial time.

As Theorem 7, the result (only almost) fully generalizes Takayasu and Kunihiro’s
attack. However, the result is better than Theorem 6 with the exposed LSBs.
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Proof of Theorem 8. Looking at a key generation for prime power RSA with
the exposed LSBs; e(d1M + d0) = 1 + ℓpr−1(p − 1)(q − 1) with some integer
|ℓ| ≈ Nα+β−1. To recover the unknown MSBs of the secret exponent d1, we use
the following polynomials

fPP.PKE.m(x, y1, y2) = 1− ed0 + xyr−1
1 (y1 − 1)(y2 − 1)

whose roots modulo e are (x, y1, y2) = (ℓ, p, q).
To solve a modular equation fPP.PKE.m(x, y1, y2) = 0 mod e, we use the

following shift-polynomials

gPP.PKE.m(x, y1, y2) = xiXy
iY1
1 y

a+iY2
2 fu

PP.SSE.m(x, y1, y2)(eM)m−u

with indices in

Ix1 ⇔ u = 0, 1, . . . ,m; iX = 0, 1, . . . ,m− u; iY1 = 0, 1, . . . , r − 1; iY2 = 0,

Ix2 ⇔ u = 0, 1, . . . ,m; iX = 0, 1, . . . ,m− u; iY1 = r − 1; iY2 = 1,

Iy ⇔ u = 0, 1, . . . ,m; iX = 0; iY1 = 1, 2, . . . , ⌊((r + 1)(1− δ)− 1)u⌋+ ra; iY2 = 0.

All these shift-polynomials modulo (eM)m have roots (x, y1, y2) = (ℓ, p, q) that
are the same as gPP.PKE.m. We replace each occurrence of yr1y2 by N and con-
struct a lattice with coefficients of gPP.PKE.m(xX, y1Y1, y2Y2) as the bases. The
shift-polynomials generate a triangular basis matrix with diagonals

– Xu+iXY
max{0,r(u−a)+iY1

}
1 Y

max{a−⌊u+iY1
/r⌋,0}

2 (eM)m−u with indices in Ix1,
– Xu+iXY

a+⌈(u+1)/r⌉
2 (eM)m−u with indices in Ix2,

– XuY
ru+iY1
1 (eM)m−u with indices in Iy.

In Iy, iY1 is upper bounded by ⌊((r + 1)(1 − δ) − 1)u⌋ + ra. The definition
follows from the fact that the shift-polynomials reduce norms of outputs by the
LLL algorithm, e.g., the diagonals for the shift-polynomials are smaller than the
modulus (eM)m.

Ignoring low order terms of m, the LLL algorithm outputs short vectors that
satisfy Lemma 1 when (det(L))1/n < (eM)m that leads to

0 <− r(r + 1)2(α+ β − 1)− 1− 3rη(1 + rη)

− r(r + 1)(r − 1− 3rη)(1− δ) + r(r + 1)2(1− δ)2.

To maximize the right hand side of the inequality, we set the parameter η =
r(r+1)(1−δ)−1

2r and the condition becomes

δ < 1−
r(2r + 1) + 2

√
r(r + 1)(r(r + 1)(3r + 4)(α+ β)− 3r3 − 6r2 − 4r + 1)

r(r + 1)(3r + 4)

as required. To satisfy the restriction η ≥ 0, δ ≤ 1 − 1
r(r+1) should hold. The

condition results in 30r3+51r2+25r−4
4r(r+1)(3r+4) ≤ α+ β. ⊓⊔

When the LSBs are exposed, our attack is better than that of Lu et al. when
r is small. Figure 5 compare Theorem 8 and Lu et al. for r = 2 and 3. Our attack
is the better for all β, e.g., our attack works with less partial information.
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Fig. 5. Comparisons of partial key exposure attacks on the prime power RSA for α = 1
when the least significant bits are exposed. We compare how much portions of d should
be exposed for β between the attack of Lu et al. [LZPL15] and our Theorem 8. The
left figure is for r = 2 and the right figure is for r = 3.
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