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Abstract. This paper concerns the possibility of developing a coherent
theory of security when feasibility is associated with ezpected probabilis-
tic polynomial-time (ezpected PPT). The source of difficulty is that the
known definitions of ezpected PPT strategies (i.e., ezpected PPT inter-
active machines) do not support natural results of the type presented
below. To overcome this difficulty, we suggest new definitions of ezpected
PPT strategies, which are more restrictive than the known definitions
(but nevertheless extend the notion of ezpected PPT non-interactive al-
gorithms). We advocate the conceptual adequacy of these definitions, and
point out their technical advantages. Specifically, identifying a natural
subclass of black-box simulators, called normal, we prove the following
two results:

1. Security proofs that refer to all strict PPT adversaries (and are
proven via normal black-box simulators) extend to provide security
with respect to all adversaries that satisfy the restricted definitions
of expected PPT.

2. Security composition theorems of the type known for strici PPT
hold for these restricted definitions of ezpected PPT, where security
means simulation by normal black-box simulators.

Specifically, a normal black-box simulator is required to make an ex-
pected polynomial number of steps, when given oracle access to any
strategy, where each oracle call is counted as a single step. This natural
property is satisfies by most known simulators and is easy to verify.

1 An Opinionated Introduction

The title of this introduction and the use of first person singular are meant to
indicate that this introduction is more opinionated than is customary in our
field. Nevertheless, I will try to distinguish facts from my opinions by use of
adequate phrases.

In my opinion, the first question that should be asked when suggesting and/or
reviewing a definition is what is the purpose of the definition. When reviewing
an existing definition, a good way to start is to look into the history of the
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definition, since the purpose may be more transparent in the initial works than
in follow-up ones.

Before turning to the history and beyond, let me state that I assume that the
reader is familiar with the notion of zero-knowledge and the underlying simula-
tion paradigm (see, e.g., [GO1, Sec. 4.3.1]). In fact, some familiarity with general
secure multi-party computation (e.g., at the overview level of [G04, Sec. 7.1]) is
also useful. Indeed, this paper is not intended for the novice: it deals with subtle
issues that the novice may (or even should) ignore.

This is a trimmed version of my technical report [GO06]. In particular, Sec-
tions 4-6 were omitted.

1.1 The history of related definitions

To the best of my recall, the first appearance in cryptography of the notion of
expected (rather than strict) probabilistic polynomial-time was in the seminal
work of Goldwasser, Micali, and Rackoff [GMR]. The reason was that the simu-
lators presented in that paper (for the Quadratic Residuosity and the Quadratic
Non-Residuosity interactive proofs) were only shown to run in ezpected prob-
abilistic polynomial-time.! Recall that these simulators were used in order to
simulate the interaction of arbitrary strict probabilistic polynomial-time (adver-
sarial) verifiers with the honest prover.

At first, the discrepancy between the expected probabilistic polynomial-time
allowed to the simulator and the restriction of the adversary to strict proba-
bilistic polynomial-time did not bother anybody. One reason for this lack of
concern seems to be that everybody was overwhelmed by the new fascinating
notion of zero-knowledge proofs, its mere feasibility and its wide applicability
(as demonstrated by [GMR,GMW]). But as time passed, some researchers be-
came bothered by this discrepancy, which seemed to violate (at least to some
extent) the intuition underlying the definition of zero-knowledge. Specifically, re-
lating the complexity of the simulation to the complexity of the adversary is the
essence of the simulation paradigm and the key to the conclusion that the adver-
sary gains noting by the interaction (since it can obtain the same, essentially as
easily, without any interaction). But may we consider expected polynomial-time
and strict (probabilistic) polynomial-time as being the same complexity?

The original feeling was that the discrepancy between strict and expected
polynomial-time is not very significant, and I do hold this view to this very day.
After all, everybody seems quite happy with replacing one polynomial (bound

! Note that while a small definitional variation (cf. [G01, Sec. 4.3.1.1] versus [GO1,
Sec. 4.3.1.6]) suffices for obtaining a strict probabilistic polynomial-time (perfect)
simulation for the QR protocol, this does not seem to be the case when the QNR
protocol is concerned. The same dichotomy is manifested between the Graph Iso-
morphism and Graph 3-Colorability protocols (of [GMW]) on one hand and the
constant-round zero-knowledge proof of [GK96] on the other hand. The dichotomy
arises from two different simulation techniques; the first is tailored for “challenge-
response” protocols, while the second refers to the use of “proofs-of-knowledge”
(which may be implicit and trivial (as in [GK96])).



of the running time) by another, at least as a very first approximation of the
intuitive notion of similar complexity.? Still, I cannot deny that there is some-
thing unpleasing about this discrepancy. Following [KLO05], let me refer to this
issue as an aesthetic consideration.

Jumping ahead in time, let me mention a more acute consideration articu-
lated in [KLO5]: A different handling of adversaries and simulations (e.g., the dis-
crepancy between expected polynomial-time and strict probabilistic polynomial-
time) raises technical difficulties and, in particular, stands in the way of various
desired composition theorems (e.g., of the type presented in [GO94,C00]). But
let me get back to the story.

Faced with the aforementioned aesthetic consideration, a few researchers sug-
gested a simple solution: extending the treatment of adversaries to ones running
in expected polynomial-time. This suggestion raised a few problems, the first be-
ing how to define expected polynomial-time interactive machines? (In addition,
there are other problems, which I will discussed later.)

Feige’s proposal [F90] was to consider the running-time of the adversary when
it interacts with the honest party that it attacks, and require that the adver-
sary runs in expected polynomial-time (in such a random interaction). My own
proposal was to allow only adversaries that run in expected polynomial-time re-
gardless with whom they interact; that is, the adversary is required to run in ex-
pected polynomial-time when interacting with any other strategy. Feige objected
to my proposal saying that it unduly restricts the adversary, which is designed
to attack a specific strategy and thus should be efficient only when attacking
this strategy. My own feeling was that it is far more important to maintain a
coherent theory by using a “stand-alone” notion of expected polynomial-time;
that is, a notion that categorizes strategies regardless of their aim (e.g., without
reference to whether or not these strategies model adversaries (and which strate-
gies these adversaries attack)). The rationale underlying this feeling is discussed
in Section 1.2. (Furthermore, Feige’s definition also extends the standard defini-
tion of strict probabilistic polynomial-time adversaries by allowing adversaries
that may not even halt when interacting with strategies other the those they
were designed to attack (see proof of Proposition 5).)

In any case, a major problem regarding the suggestion of extending the treat-
ment of adversaries to ones running in expected polynomial-time is whether such
an extension is at all possible. One specific key question is whether known simula-
tors can handle expected polynomial-time adversaries. As pointed out in [KLO05],
in some cases (e.g., the simulator of [GK96]), the answer is negative even if one
uses the more restricted notion of expected polynomial-time adversaries (which
refers to interaction with any possible strategy). Another important question
is whether composition theorems that are known to hold for strict probabilistic

It is telling that my advocacy of knowledge tightness [GO1, Sec. 4.4.4.2], a notion
aimed at quantitatively bounding the ratio of the running times of the simulator
and adversary, has never gain much attention. (And yes, I am aware of the recent
work of Micali and Pass [MPO06] that introduces and advocates an even more refined
notion.)



polynomial-time (strategies and simulators) can be extended to the case of ex-
pected polynomial-time (strategies and simulators).

Indeed, the “question of composition” became a major concern in the 1990’s
and motivated a re-examination of many aspects of the theory of cryptography.
Here I refer specifically to the Sequential Composition Theorem of Canetti [C00],
which supports modular construction of protocols, and to the Concurrent Com-
position Theorem of Canetti [CO1], which is aimed at preserving security in
settings where numerous executions of arbitrary protocols are taking place con-
currently. These composition results were obtained when modeling adversaries
as strict probabilistic polynomial-time strategies and allowing only strict prob-
abilistic polynomial-time simulators. One consequence of the lack of analogous
results for the case of erpected polynomial-time was that the modular construc-
tion of secure protocol had to avoid protocols that were only known to be sim-
ulateable in ezpected polynomial-time.3

Recently, Katz and Lindell [KLO05] initiated a study of the possibility of sim-
ulating expected polynomial-time adversaries and/or obtaining composition the-
orems (or sufficiently good alternatives) for the erpected polynomial-time case.
They showed that in some cases (e.g., when the simulator satisfies some ad-
ditional properties and/or under some super-polynomial intractability assump-
tions) such partial results can be obtained.* These results do not provide a
“free” transformation from the strict probabilistic polynomial-time model to
the ezpected polynomial-time model, where “free” means without referring to
additional assumptions. In my opinion, as long as this is the state of affairs, one
better look for alternative directions.

1.2 Towards new definitions

My starting point (or thesis) is that we should not care about expected polynomial-
time adversaries per se. As hinted by my historical account, researchers were
perfectly happy with strict probabilistic polynomial-time adversaries and would
have probably remained so if it were not for the introduction of expected polynomial-
time simulators. Indeed, at the end of the day, the user (especially a non-
sophisticated one) should care about what an adversary can obtained within
a specific time (or various possible amounts of work), where the term ‘obtain’
incorporates also a quantification of the success probability. I claim that our goal
as researchers is to provide such statements (or rather techniques for providing

3 For example, relatively efficient proofs-of-knowledge (which only guarantee expected
polynomial-time extraction) were avoided (e.g., in [G04, Sec. 7.4.1.3]) and strong
proofs-of-knowledge (cf. [GO1, Sec. 4.7.6]) were used instead.

* Roughly speaking, the two main results of [KLO05] refers to versions of computational
indistinguishability that are required to hold with respect to super-polynomial-time
observers. This means that for obtaining (ordinary) computational security, some-
where along the way, one needs to make a super-polynomial-time intractability as-
sumption. Also note that the simulators constructed in [KLO05] use the corresponding
adversaries in a “slightly non-black-box” manner in the sense that they terminate
executions (of these adversaries) that exceed a specific number of steps.



such statements), and that ezpected polynomial-time machines may appear in
the analysis only as intermediate steps (or mental experiments).

My thesis is further enforced by the confusing and unintuitive nature of ex-
pected running-time especially when applied in the context of cryptography®
and by numerous annoying phenomena related to expected-time complexity. In
particular, note that, unlike strict polynomial-time, expected polynomial-time
is a highly non-robust notion that is not preserved under changes of computa-
tional model and standard algorithmic compositions.® These “features” are an
artifact of the “bad interaction” between the expectation operator and many
non-linear operators: for example, for a random variable X, we cannot upper-
bound E[X?] as a function of E[X]. Thus, if X is a random variable that repre-
sents the running-time of some process I (where the probability space is that of
the internal coin tosses of IT), then we cannot bound the expected running-time
of various modest variants of IT (e.g., which square its running-time) in terms
of the expected running-time of IT. (See Footnote 25, which refers to a natural
case in which this problem arises.)

The foregoing reservations regarding expected polynomial-time are of lesser
concern when expected running-time is only used as an intermediate step (rather
than as a final statement). Taking this approach to its extreme, I claim that for
this purpose (of an intermediate step) it is legitimate to use any (reasonable) def-
inition of expected polynomial-time strategies, and that among such possibilities
we better select a definition that supports the desired results (e.g., simulation of
corresponding adversaries and composition theorems). Thus, we should seek a
definition of expected polynomial-time strategies that enjoys the following prop-
erties:

1. The definition should include all strict probabilistic polynomial-time strate-
gies (but should not extend “much beyond that”; e.g., super-polynomial-time
computations may only occur with negligible probability).

2. When applied to non-interactive strategies (i.e., stand-alone algorithms) the

definition of expected polynomial-time strategies should yield the standard
notion of expected polynomial-time.
This property is not only a matter of aesthetic considerations but is rather
important for composition theorems (as desired in Property 3b). Further-
more, when applied to the context of zero-knowledge, the current property
implies that expected polynomial-time simulators are deemed admissible by
this definition.”

% Indeed, things become even worse if we bear in mind the need to keep track of
both the running-time and the success probability (which should be calculated with
respect to various strict time bounds). That is, I claim that providing only the
expected running-time and the overall success probability is quite meaningless, since
the success is likely to be correlated with the running-time.

5 See analogous discussion of average-case complexity in [G97].

" In fact, we should strengthen Property 2 by requiring that also in the context of
secure multi-party computation (where the simulators are themselves interactive
machines) the known “expected polynomial-time” simulators (of strict probabilistic
polynomial-time) are deemed admissible by the selected definition.



3. The definition should allow to derive the results that we seek:
(a) Known simulators that handle strict probabilistic polynomial-time ad-
versaries should also handle adversaries that satisfy the definition.®
(b) The definition should support natural composition theorems (e.g., of the
type proven by Canetti [COO]).

With the foregoing properties in mind, let me suggest a couple of new definitions
of expected polynomial-time strategies. These definitions will be more restrictive
than the existing definitions of this notion (which were reviewed in Section 1.1).

1.3 The new definitions

Looking at the problem of simulating an “expected polynomial-time” adversary
(cf. [KLO5)), it becomes evident that the source of trouble is the fact that the
bound on the running-time of the adversary (w.r.t any real interaction) is no
longer guaranteed when the adversary is invoked by a simulator. The point
being that the queries made by the simulator may have a different distribution
than the messages sent in any real interaction (especially, since some of these
queries may not appear in the transcript output by the simulator). Furthermore,
the simulator is resetting the adversary, which may allow it to find queries that
are correlated to the adversary’s internal coin tosses in ways that are unlikely
to happen in any real interaction (see examples in [KLO05] and in the proof of
Proposition 5). Such queries may cause the adversary to run for a number of
steps that is not polynomial on the average. Indeed, this problem does not occur
in the case of strict probabilistic polynomial-time adversaries because in that
case we have an absolute bound on the number of steps taken by the adversary,
regardless of which messages it receives.

Let me stress that assuming that the adversary runs in expected polynomial-
time when interacting with any other party does not solve the problem, because
the distribution of the simulator’s queries may not correspond to the distribution
of an interaction with any standard interactive machine. The simulator’s queries
correspond to a “reset attack” on the adversary, where reset attack are as defined
in [CGGM] (except that here they are applied on the adversary’s strategy rather
than on the honest party’s strategy). Specifically, in a reset attack, the internal
coin tosses of the strategy are fixed (to a random value) and the attacker may
interact several times with the resulting residual (deterministic) strategy.

The forgoing discussion suggests a simple fix to the problem. Just define
expected polynomial-time strategies as ones that run in expected polynomial-
time under any reset attack that interact with them for a polynomial number of
times. Actually, we should allow attacks that interact with these strategies for
an expected polynomial number of times.? (See Definition 3.)

8 Actually, we may relax this condition by allowing a modification of the simulator
but not of the protocol and/or the underlying intractability assumptions.

® When measuring the expected number of interactions, I refer to a variant of Feige’s
notion of expected complexity with respect to the designated machine. Indeed, this
widens the class of possible (reset) attackers, which further limits the class of admis-
sible strategies (i.e., those that are expected polynomial-time under such attackers).



It seems that any (black-box) simulator that handles strict probabilistic
polynomial-time adversaries can also handle adversaries that run in expected
polynomial-time under the foregoing definition. After all, this definition was
designed to support such a result. However, I was not able to prove this result
without further restricting the class of simulators (in a natural way). For details,
see Section 1.4.

But before turning to the results, let me suggest an even more restricted
notion of expected polynomial-time strategies. I suggest to consider strategies
that run in expected polynomial-time when interacting with any (“magical”)
machine that receives the strategy’s internal coin tosses as side information. Ar-
guably, this is the most restricted (natural) notion of expected polynomial-time
strategies (which, when applied to non-interactive machines, coincides with the
standard definition of expected polynomial-time). Needless to say, this definition
(which is more restrictive than the aforementioned resetting definition) also sup-
ports the extension of simulators that handle strict probabilistic polynomial-time
adversaries to handle adversaries satisfying the current definition.

Clearly, both definitions satisfy the first two desirable properties stated in
Section 1.2. As for the third desirable property, it at the focus of the next sub-
section.

1.4 The main results

The main results establish the third desirable property for both definitions, while
assuming that the provided simulators (i.e., the simulators provided by the cor-
responding hypothesis) belong to a natural subclass of black-box simulators.
Indeed, one could hope that these results would hold for all (universal) simula-
tors or at least for all black-box simulators.'?

The issue at hand is the definition of efficient black-box simulators. Since
black-box simulators are typically given oracle access to an efficient strategy,
some texts only refer to what happens in such a case (and mandate that the
overall simulation be efficient, where one also accounts for the steps of the strat-
egy). A more natural and robust definition mandates that the number of steps
performed by the black-box simulator itself be feasible, when the simulator is
given oracle access to any strategy. Specifically, I consider black-box simulators
that, make an expected number of steps that is upper-bounded by a polynomial
in the length of the input, where each oracle call is counted as a single step, and
call such a simulator normal. Indeed, the known (black-box) simulations includ-
ing those that run in ezpected polynomial-time (e.g., [GK96]) are normal. For
further discussion see the beginning of Section 3.

As stated in Section 1.3, the new definitions (or actually the “resetting-based”
one) were devised to support the first main result (stated in [G06, Thm. 10]). This

10 Recall that a universal simulator is a universal machine that is given that the code
of the adversary that it simulates. In contrast, a black-box simulator is only given
oracle access to the corresponding strategy.



result asserts that any normal black-bozx simulator that handles strict probabilis-
tic polynomial-time adversaries can also handle adversaries that run in erpected
polynomial-time under the new definition(s). In particular, it implies that nor-
mal black-box zero-knowledge protocols remain simulateable when attacked by
adversaries that satisfy the new definition(s) of expected polynomial-time. This
applies, in particular, to the proof system of [GK96], for which analogous ( “free”)
results were not known under the previous definitions of expected polynomial-
time.!!

Note that the fact that the aforementioned (normal black-box) simulations
run in ezpected polynomial-time also when given access to any ezpected polynomial-
time adversary is quite obvious from the new definition(s). This follows from the
fact that normal black-box simulators invoke the adversary strategy for an ez-
pected polynomial number of times, while the “resetting-based definition” upper-
bounds the total ezpected time consumed by the adversary in such invocations.
What should be shown is that, also in this case, the corresponding simulation
produces good output (i.e., indistinguishable from the real interaction). This can
be shown by using a rather straightforward “truncation” argument.'?

Let us now turn to the question of composition, starting with the sequential
composition of zero-knowledge protocols. The known result (of [GO94]) refers
to strict probabilistic polynomial-time adversaries (and holds both with respect
to strict and expected polynomial-time simulation).!'® However, the known ar-
gument does not extend to expected polynomial-time adversaries. Recall that
the said argument transforms any adversary that attacks the composed protocol
into a residual adversary that attacks the basic protocol. The source of trouble
is that the fact that the former adversary is expected polynomial-time (under
any definition) does not imply that the latter adversary is expected polynomial-
time (under this definition). See the proof of Theorem 9 for details. Fortunately,
there is an alternative way: just note that the simulator obtained by [GO94],
which refers to strict probabilistic polynomial-time adversaries, can handle ex-
pected polynomial-time adversaries (i.e., by invoking [G06, Thm. 10] (or rather
its zero-knowledge version — Theorem 8)).

' Note that Katz and Lindell [KLO05] showed that the simulator presented in [GK96]
fails (w.r.t expected polynomial-time under the previous definitions). Their work
implies that, if strongly hiding commitment schemes are used in the protocol, then
an alternative simulator does work. In contrast, my result applies to the simulator
presented in [GK96] and does not require strengthening the commitment scheme used
in the protocol. Furthermore, the running-time is preserved also for no-instances (cf.,
in contrast, [KL05, Sec. 3.3]).

Indeed, the running-time analysis relies on the hypothesis that the simulator is nor-
mal, whereas the analysis of its output only relies on the hypothesis that the simu-
lator is black-box. In contrast, for the claim itself to make sense at all it suffices to
have a universal simulator (as otherwise it is not clear what we mean by saying that
a simulator that handles any A € C can handle any A’ € C').

The original proof (of [GO94]) refers to strict polynomial-time simulators, but it
extends easily to expected polynomial-time simulators.

12
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The foregoing idea can also be applied to the general setting of secure multi-
party computation, but additional care is needed to deal with the extra com-
plexities of this setting (as described next). Specifically, the so-called sequential
composition theorem of Canetti [C00] (see also [G04, Sec. 7.4.2]) refers to an
oracle-aided (or “hybrid”) protocol IT that uses oracle calls to a functionality'*
f, which can be securely computed by a protocol p. (Note that the correspond-
ing oracle-aided protocol was not mentioned in the context of zero-knowledge,
because it is trivial (i.e., it merely invokes the basic protocol several times).)
The theorem asserts that the security of IT (with respect to a specific function-
ality unmentioned here) is preserved when IT uses subroutine calls to p rather
than oracle calls to f. This result refers to security with respect to strict prob-
abilistic polynomial-time adversaries that is demonstrated by strict probabilistic
polynomial-time simulators. One point to notice is that the proof of security
of the resulting protocol, denoted II', proceeds by incorporating the simula-
tor of p into an adversary for II. Thus, if the simulator of p runs in ezpected
polynomial-time then so does the resulting adversary (for IT), and thus the sim-
ulator for IT has to handle ezpected polynomial-time adversaries (even if we
only care of strict polynomial-time adversaries attacking II'). Indeed, having a
simulator for IT that handles any ezpected polynomial-time adversaries suffices
for a partial result that refers to strict probabilistic polynomial-time adversaries
for the resulting protocol II' and to ezpected polynomial-time simulators (for p,
IT, and II'). The general (sequential) composition theorem for the case of ex-
pected polynomial-time (which refers to expected polynomial-time adversaries
and simulators) follows by applying [G06, Thm. 10].

An important corollary to the foregoing extendability and composition the-
orems (i.e., [GO6, Thm. 10] and [G06, Thm. 11]) asserts that it is possible to
compose secure protocols, when security is demonstrated via expected polynomial-
time simulators but refers only to strict probabilistic polynomial-time adversaries.
In such a case, the extendability theorem allows to use these simulators with re-
spect to expected polynomial-time adversaries, whereas the composition theorem
applies to the latter. Thus, one may freely use erpected polynomial-time simu-
lators, and be assured that the corresponding secure protocols can be composed
(just as in the case that their security is demonstrated via strict polynomial-time
simulators).

Turning to the concurrent composition theorem of Canetti [CO1], recall that it
evolves around the notion of environmental security (a.k.a UC-security [CO1]).
Specifically, Canetti proved that any protocol that is environmentally secure
preserves security under arbitrary concurrent executions, where the adversaries,
simulators, and environments are all modeled as strict probabilistic polynomial-
time strategies (with non-uniform auxiliary inputs for the environments). He
then suggested the methodology of establishing environmental-security as a way
of obtaining security under concurrent composition. Consequently, an exten-
sion of Canetti’s methodology to the expected polynomial-time setting requires

' A functionality is a randomized version of a multi-input multi-output function
(cf. [GO4, Sec. 7.2.1]).



(1) verifying that Canetti’s proof extends to this setting, and (2) obtaining envi-
ronmental security for ezpected polynomial-time adversaries and environments.
Using the new definitions of expected polynomial-time strategies, the first re-
quirement follows analogously to the proof of the sequential composition theo-
rem, while the second requirement follows by generalizing [G06, Thm. 10] (which
may be viewed as referring to trivial environments).

The bottom-line is that, for normal black-box simulators, the new defini-
tions of expected polynomial-time strategies provide a “free” transformation
from the strict probabilistic polynomial-time model to the expected polynomial-
time model. In particular, normal black-box simulators that work in the strict
model extend to the expected model, and the most famous composition theorems
extend similarly.

1.5 Why deal with expected polynomial-time at all?

In light of the difficulties discussed in Section 1.1, one may ask why do we need
this headache (of dealing with expected polynomial-time) at all? This question is
further motivated by my views (expressed in Section 1.2) by which we should not
care about expected polynomial-time adversaries per se. The answer, as hinted in
Section 1.1, is that we do care about expected polynomial-time simulators.

Specifically, some natural protocols are known to be secure (or zero-knowledge)
only when the definition of security allows expected polynomial-time simulators.
A notable example, already mentioned several times is the constant-round zero-
knowledge proof system of [GK96]. Furthermore, as proved in [BL02], constant-
round proof system for sets outside BPP do not have strict polynomial-time
black-box simulators (although they do have such non-black-box simulators [B01],
which are less preferable for reasons discussed below).

In general, expected polynomial-time simulators seem to allow more efficient
protocols and/or tighter security analysis. Whereas various notions of protocol
efficiency are well-understood, a few words about the tightness of various se-
curity analyses are in place. Loosely speaking, security tightness'® refers to the
ratio between the running-time of the adversary and the (expected) running-
time of the simulator that handles it. The security tightness of a protocol is
a lower-bound on this ratio that holds for every probabilistic polynomial-time
adversary.'® Indeed, in many cases (also when strict polynomial-time simulators
exist), the expected running-time of the simulator provides a better bound than
the worst-case running-time of the simulator.

In my opinion, security tightness should serve as a major consideration in
the evaluation of alternative protocols, and claims about protocol efficiency are

5 In the special case of zero-knowledge, the corresponding notion is called knowledge
tightness [GO01, Sec. 4.4.4.2]. Note a minor technicality: here tightness is define as
the reciprocal of the ratio in [GO1, Sec. 4.4.4.2].

16 Thus, if there exists a polynomial g such that, for every polynomial p, every p-
time adversary is simulated in time g - p then the protocol has (noticeable) security
tightness 1/q. But if the simulation of p-time adversaries requires time p® then the
protocol does not have a noticeable security tightness.



almost meaningless without referring to their security tightness. For example, in
many cases, modest parallelization can be achieved at the cost of a deterioration
in the security tightness (cf. [GO1, Sec. 4.4.4.2]). Let me stress that, by definition,
black-box simulators always yield a noticeable!” bound on the security tightness
(and in some cases they offer a constant bound), whereas non-black-box simu-
lators may fail to have such bound (e.g., indeed, that’s the case with Barak’s
simulators [BO1]).

Thus, I suggest the following methodology: When designing your protocol
and proving its security, allow yourself expected polynomial-time simulations.
To assist the design and analysis, use the “extendability results” (e.g., [GO6,
Thm. 10]) provided in this work as well as relevant composition theorems (e.g.,
[GO6, Thm. 11]). Finally, when obtaining the desired protocol with a security
analysis that refers to an expected polynomial-time simulator, you may interpret
it as providing a trade-off between the simulation time and the corresponding
deviation (from the real interaction). But actually, a final claim that refers to
expected simulation time may be as appealing when stated in terms of security
tightness (e.g., the effect of any strict polynomial-time adversary can be achieved
by a simulation that is expected to run three times as long).

Indeed, my opinion is that there is no contradiction between not caring about
expected polynomial-time adversaries and providing security guarantees that refer
to the expected simulation time: Whereas (at least potentially) the adversary is
a real entity, its simulation is (always) a mental experiment. Furthermore, I
believe that the foregoing methodology may yield the best trade-offs between
the efficiency of the protocol and the tightness of its security.

Finally, let me note that there are alternative ways of handling the problems
that motivate the introduction of expected polynomial-time to Cryptography
(i-e., the failure of strict polynomial-time simulation in some cases). These alter-
natives are based on different measures that are applicable to “varying” running-
time (i.e., running-time that is expressed as a random variable). In each case,
one should start with a definition that refers to standard algorithms, and extend
it to a definition that refers to interactive machines. For details, see Section 5
in my technical report [GO6]. Indeed, the issues arising in such extensions are
the same as the ones discussed throughout the rest of this paper. It is my belief,
however, that expected running-time (as treated in the rest of this paper) pro-
vides the best trade-offs between the efficiency of the protocol and the tightness
of its security.

1.6 Organization

Section 2 provides formal statements of the aforementioned (old and new) defi-
nitions as well as a demonstration of a hierarchy among them. Since the special
case of zero-knowledge protocols provides a good benchmark for the general case

17 As usual, a noticeable function is one that decreases slower than the reciprocal of
some positive polynomial.



of secure protocols, the main results are first presented in that setting (see Sec-
tion 3). This simplifies things, because in that special case the simulators are
standard algorithms rather than interactive strategies (for the so-called “ideal-
model”; see, e.g., [GO4, Sec. 7.2]). Nevertheless, I believe that the main ideas are
already present in the zero-knowledge setting, and that this belief is supported
by the treatment of general protocols (provided in Section 4 of my technical
report [G06]). Section 5 of [GO6] discusses the applicability of my approach to
alternative notions of expected polynomial-time algorithms, while Section 6 con-
tains conclusions and open problems.

2 The Definitions

We adopt the standard terminology of interactive machines, while occasionally
identifying strategies (which specify the next message to be sent by an interactive
machine given its view so far) with the interactive machines that activate them.
We use the shorthand PPT for probabilistic polynomial-time whenever using the
full term is too cumbersome; typically, we do so when contrasting strict PPT and
expected PPT. For simplicity, we only consider the two-party case. We denote
by x the common (part of the) input, and denote by y and 2z the corresponding
private inputs of the two parties. The reader may ignore y and z, which model
(possibly non-uniform) auxiliary information.

2.1 Known definitions

We start by formulating the two known definitions that were mentioned in Sec-
tion 1.1.

Definition 1 (Feige [F90]): The strategy o is expected PPT w.r.t a specific in-
teractive machine My if, for some polynomial p and every x,y, z, the expected
number of steps taken by o(x,2) during an interaction with My(z,y) is upper-
bounded by p(|z|), where the expectation is taken over the internal coin tosses of
both machines.

We stress that o may be expected PPT with respect to some interactive machines
but not with respect to others.

Definition 2 (attributed to Goldreich, e.g., in [KLO05]): The strategy o is ex-
pected PPT w.r.t any interactive machine if, for some polynomial p, every in-
teractive machine M, and every x,vy, z, the expected number of steps taken by
o(z,z) during an interaction with M (x,y) is upper-bounded by p(|z|).

Here we may assume, without loss of generality, that M (which is computation-
ally unbounded) is deterministic, and thus the expectation is only taken over
the internal coin tosses of . The same convention is applied also in Definition 4
(but not in Definition 3; see discussion there).



2.2 New definitions

In the first new definition, we refer to the notion of a reset attack as put forward
in [CGGM]. Such an attack proceeds as follows. First, we uniformly select and
fix a sequence of internal coin tosses, denoted w, for the attacked strategy o,
obtaining a residual deterministic strategy o,. Next, we allow the attacker to
interact with o, numerous times (rather than a single time). Specifically, for
each possible value of w, the expected number of times that attacker interacts
with o, is upper-bounded by a polynomial.'®

Note that the attacker is not given w explicitly, but its ability to (sequen-
tially) interact with the residual strategy o, for several times provides it with
additional power (beyond interacting with o itself for several times, where in
each interaction o uses a fresh sequence of coin tosses). As shown in [CGGM],
such an attack is equivalent to a single interaction in which the attacker may (re-
peatedly) “rewind” o (or rather o) to any prior point in the interaction and ask
to resume the interaction from that point. Indeed, such an attack is reminiscent
of the way that a (black-box) simulator uses an adversary strategy.

Definition 3 (tailored for simulation): A g-reset attack on o is an attack that,
for every x,y,z and w, interacts with o, for an erpected number of times that
is upper-bounded by q(|z|).'° The strategy o is expected PPT w.r.t any reset
attack if, for some polynomial p, every polynomial q, every q-reset attack on o,
and every x,y, z, the expected total number of steps taken by o(x,z) during this
attack is upper-bounded by q(|z|) - p(|x]).2°

We stress that the number of invocations of o (like the total number of steps
taken by o) is a random variable defined over the probability space consisting
of all possible interactions of the attacker and o. Here (unlike in Definition 2),
allowing the potential attacker to be probabilistic increases its power (and thus
adds restrictions on strategies satisfying the definition). The reason is that, for
each fixed w, the number of invocations of o, is allowed to be an arbitrary
random variable with a polynomially bounded expectation (rather than being
strictly bounded by a polynomial).

18 Indeed, the restriction on the number of interactions is a hybrid of the spirit of
Definitions 1 and 2. We are upper-bounding the (expected) number of interactions
initiated by the attacker (rather than its running-time), but do so not with respect
to the designated o but rather with respect to each of the residual o.,. Note that a
simplified version that refers to the expected number of interactions with o (i.e., the
expectation is taken also over the coins of o) yield a “bad” definition. (For example,
suppose that o, sends w and makes 2l steps if w = 11“l" and halt immediately
otherwise. Then, intuitively o is expected PPT (and in fact it even satisfies Defini-
tion 4), but the reset attack that, upon receiving w in the first interaction, invokes
0. for 21! additional times if and only if w = 1|“’|, causes o to make an expected
exponential number of steps.)

19 As in Definitions 1 and 2, such an attack is given z and y as its input.

20 The upper-bounded of ¢(|z|) - p(|z|) seems natural; however, an upper-bounded of
p(Jz| +q(|z|)) would work just as well (for all results stated in this work), but would
yield weaker quantitative bounds.



In the next (and last) definition, we consider a “magical” attacker that is
given the outcome of the strategy’s internal coin tosses as side information.
That is, such an attack proceeds as follows. First, we uniformly select and fix a
sequence of internal coin tosses, denoted w, for the attacked strategy o, obtaining
a residual deterministic strategy o, . Next, we provide the attacker with w (as
well as with 2) and allow it a single interaction with o,. We stress that this
attacker is merely a mental experiment used for determining whether or not o
is expected polynomial-time (under the following definition).

Definition 4 (seemingly most restrictive): The strategy o is expected PPT w.r.t
any magical machine if, for some polynomial p, every interactive machine M’
that is provided with the internal coin tosses of o as side information, and every
z,Y, 2, the expected number of steps taken by o(x,z) during an interaction with
M' is upper-bounded by p(|z|). That is, for a randomly selected w, the expected
number of steps taken by o, (x,z) during its interaction with M'(x,y, z,w) is
upper-bounded by p(|z|).2

Here as in Definition 2, we may assume, without loss of generality, that M’
(which is computationally unbounded) is deterministic, and thus the expecta-
tion is only taken over the internal coin tosses of o. Thus, Definition 4 refers to
the expectation, taken uniformly over all choices of w, of the number of steps
taken by (the residual deterministic strategy) o (z, z) during an interaction with
(the deterministic strategy) M'(z, v, z,w). Indeed, a strategy o that satisfies Def-
inition 4 runs in expected polynomial-time even if each of the incoming messages
is selected to mazimize its running-time, when this selection may depend on the
internal coin tosses of o (and its auxiliary-input z). This formulation is closest
in spirit to the standard definition of strict PPT strategies.

2.3 Relating the definitions

It is easy to see that, for ¢ = 1,2, 3, Definition #+1 implies Definition 7. In fact,
it is not hard to see that the converses do not hold. That is:

Proposition 5 Fori = 1,2,3, the set of strategies that satisfy Definition i+l is
strictly contained in the set of the strategies that satisfy Definition i.

Proof: The first two containments (i.e., for i = 1,2) are plainly syntactic.
Intuitively, the fact that Definition 4 implies Definition 3 follows by noting that
a reset attack does not add power to a computationally unbounded machine that
gets o’s internal coin tosses. (A rigorous proof of this implication is provided in
our technical report [G06].)

To show that the foregoing containments are strict we present correspond-
ing strategies that witness the separations. The following examples are rather

21 Note that, unlike in Definitions 1-3, the attacker is given o’s auxiliary input (i.e.,
z). This is most natural in the context of the current attack, which is also given o’s
internal coin tosses (i.e., w).



minimal, but they can be augmented into strategies that make sense (even for
natural protocols). For example, a strategy that halts immediately upon receiv-
ing the message 0 and runs forever upon receiving the message 1 witnesses the
separation between Definition 1 and Definition 2. Note that this example has
nothing to do with the issue of expected polynomial-time (although an example
that does relate to the latter issue can be constructed similarly).

To separate Definition 3 from Definition 4 consider a strategy that uniformly
selects an n-bit long string r, and upon receiving a message s halts immediately
if s # r and halts after making 2™ steps otherwise. Clearly, this strategy does
not satisfy Definition 4, but it does satisfy Definition 3.

A small twist on the foregoing example can be used to separate Definition 2
from Definition 3: Suppose that upon receiving s, the strategy first sends r, and
then halts immediately if s # r and halts after making 2™ steps otherwise. In
this case a 2-reset attack can cause this strategy to always run for 2™ steps, while
no ordinary interactive machine can do so. [

Discussion: Consider a restriction of all four definitions such that each bound on
an expectation is replaced by a corresponding strict bound. Then the resulting
(strict) versions of Definition 2-4 coincide but remain separated from the (strict)
version of Definition 1. We believe that this fact speaks against Definition 1.

3 Results for Zero-Knowledge

The setting of zero-knowledge provides a good warm-up for the general study of
secure protocols. Recall that, in the context of zero-knowledge, simulators are
used to establish the security of predetermined prover strategies with respect
to attacks by adversarial verifiers. We start by showing that (normal black-
box) simulators that handle strict PPT adversaries also handle adversaries that
are expected PPT (under Definitions 3 and 4). We next turn to an expected
PPT version of the standard sequential composition theorem. (In our techni-
cal report [G06], analogous results are proved for general secure protocols.) To
shorthand the text, when we say that some quantity (referring to an interaction)
is polynomial, we mean that it is polynomial in the length of the common input.

Since the notion of normal black-box simulators is pivotal to our results, let
us start by briefly recalling the standard definition of black-box simulators (see,
e.g., [GO1, Def. 4.5.10]). Loosely speaking, a black-box simulator is a universal
machine that is given oracle access to a deterministic strategy and provides a
simulation of the interaction of this strategy with the party attacked by this
strategy.?? In extending this notion to randomized strategies, we refer to pro-

22 In typical use of a black-box simulator one refers to the quality of this simulation.
Specifically, it is require that if the former strategy is efficient (in some adequate
sense) then the simulation is computationally indistinguishable from the real corre-
sponding interaction. Since the notion of efficiency will vary (i.e., from strict PPT to
expected PPT), we shall not couple the operational aspect of the black-box simulator
with the quality of the output that it produces, but rather separate the two.



viding the simulator with oracle access to a residual (deterministic) strategy
obtained by fixing random coin tosses to the given randomized strategy.

Typically, one considers the execution of black-box simulator when given ora-
cle access to any (strict or expected) PPT adversary. In that case, one sometimes
states both the complexity and the quality of the simulation when referring only
to the case that the oracle is a PPT strategy.2> While the restriction of the qual-
ity requirement to the said case is often essential, this is typically not the case
with respect to the complexity requirement. Indeed, it is more natural to formu-
late the complexity requirement when referring to any possible oracle. We adopt
this convention below, but in order to avoid possible confusion (with different
views) we refer to simulators that satisfy this convention as normal.

Definition 6 (normal black-box simulators): A black-box simulator is called
normal if, on any input and when given oracle access to any strategy, it make
an expected number of steps that is upper-bounded by a polynomial in the length
of the input, where each oracle call is counted as a single step.

Although it is possible to construct black-box simulators that are not normal
(e.g., they run forever if the black-box manages to solve a hard problem), the
standard black-box simulators (e.g., the ones of [GMR,GMW,GK96]) are all
normal. Furthermore, normality seems a very natural property and it is easy to
verify. For example, if the running-time analysis of a simulator (unlike the anal-
ysis of the quality of its output) does not rely on any intractability assumptions,
then it is probably the case that the simulator is normal.?*

The total simulation time. We will often refer to the (total) simulation time of
the combined simulator SV, which consists of a normal black-box simulator S
that is given oracle access to an adversarial verifier V*. Needless to say, for any
normal simulator S, if V* is strict PPT then the expected (total) simulation
time of SV is polynomial. As observed by Katz and Lindell [KLO05], this is not
necessarily the case if V* is ezpected PPT w.r.t Definition 2. The key observation,
which motivates Definition 3, is that the desired bound on the ezpected (total)
simulation time of SV" does hold if V* is ezpected PPT w.r.t any reset attack.

Observation 7 If S is a normal black-box simulator and V* is expected polynomial-
time w.r.t Definition 3 then the expected total simulation time of S¥ is polyno-
mial.

The straightforward proof is provided in our technical report [GO6].

3.1 Simulating expected PPT adversaries

Bearing in mind that (in the context of zero-knowledge) the simulator is a stan-
dard algorithm, it suffices to state the following result with respect to Defini-
tion 3, and its applicability to Definition 4 follows as a special case.

2 See corresponding footnote in our technical report [GO06].
24 The word “probably” indicates that the said implication is not claimed as a fact but
rather suggested as a conjecture regarding any natural case.



Theorem 8 (extendability of normal black-box simulators, the zero-knowledge
case): Let (P, V') be an interactive proof (or argument) system for a set L, and
(P,V*)(xz) denote the output of the adversarial verifier strategy V* on input
T after interacting with the prescribed prover P. Let M be a normal black-box
stmulator that, on input in L and when given access to any strict PPT strategy
V*, produces output that is computational indistinguishable from (P,V*). Then,
when M 1is given oracle access to any strategy V* that is expected PPT w.r.t any
reset attack, the expected simulation time of MV is polynomial and the output
is computational indistinguishable from (P,V*).

Note that the hypothesis allows the simulator to run in expected PPT while
simulating a strict PPT adversary. This makes the hypothesis weaker and the
theorem stronger; that is, the theorem can be applied to a wider class of protocols
(including protocols that are not known to have strict PPT simulators such as,
e.g., the constant-round zero-knowledge proof of [GK96]).

Proof: Fixing any expected PPT w.r.t Definition 3 strategy V*, we first note
that (by Observation 7) the expected simulation time of M"" is polynomial. To
analyze the quality of this simulation, suppose towards the contradiction that
D distinguishes between the simulation and the real interaction, and let p be

a polynomial such that the distinguishing gap of D for infinitely many z € L

is at least €(|z|) <ef 1/p(|z|). Let t*(z) denote the total (over all invocations)

expected number of steps taken by V* when invoked by M. Note that t*(x) is
upper-bounded by a polynomial in |z|, and assume (without loss of generality)
that t*(z) also upper-bounds the expected running time of V* in the real in-
teraction (with P). Now, consider a strict PPT V** that emulates V*, while
truncating the emulation as soon as 3t*/e steps are emulated. Then, the vari-
ation distance (a.k.a statistical difference) between MV (z) and MV (z) is at
most €(|z|)/3, because €/3 upper-bounds the probability that the total number
of steps taken by V* during all invocations by M exceeds 3t* /e (and otherwise
V** perfectly emulates all these invocations, since none exceeds 3t*/e steps).
Similarly, the variation distance between (P,V*)(z) and (P,V**)(z) is upper-
bounded by e(|z|)/3. Tt follows that D distinguishes the simulation MV"" from
the real interaction (P,V**) with a gap that exceeds €/3, on infinitely many
inputs in L, in contradiction to the hypothesis that M simulates all strict PPT
verifiers.

Discussion: We believe that the fact that the proof of Theorem 8 is rather
straightforward should not be counted against Definition 3, but rather the other
way around. That is, we believe that the claim that the simulation of strict
PPT adversaries extends (without modifications) to expected PPT adversaries
is natural, and as such a good definition of expected PPT adversaries should
support it. It may be that Theorem 8 can be generalized also to arbitrary black-
box simulators and even to arbitrary universal simulators, but the current proof
fails to show this: the running-time analysis relies on the hypothesis that the



simulator is normal, whereas the output-quality analysis relies on the hypothesis
that the simulator is black-box.2%

Note that the combined simulator resulting from Theorem 8 is trivially ex-
pected PPT under reset attacks (and also under Definition 4), because it is a
non-interactive machine (which runs in expected polynomial-time). Things are
not as simple when we move to the setting of secure protocols, where the simu-
lator is an interactive strategy (which operates in a so-called ideal-model). See
[GO6, Sec. 4.1].

3.2 Sequential composition

The following Theorem 9 is an expected PPT version of the standard result
(of [GO94]) that refers to strict PPT adversaries and simulators (see also [GO1,
Lem. 4.3.11]). Note that the standard result does not require the simulator to be
black-box (let alone normal). The reason for the extra requirement will become
clear in the proof.

Theorem 9 (expected PPT version of sequential composition for zero-knowledge:)
In this theorem zero-knowledge means the existence of a normal black-box simu-
lator that handles any expected PPT w.r.t Definition 8 (resp., w.r.t Definition 4)
adversarial verifier, where handling means that the corresponding combined sim-
ulator runs in expected PPT and produces output that is computationally indis-
tinguishable from the real interaction. Suppose that (P,V) is a zero-knowledge
protocol. Then, sequentially invoking (P,V') for a polynomial number of times
yields a protocol, denoted (P', V"), that is zero-knowledge.

Proof: The proof of the strict PPT version (see [GO1, Sec. 4.3.4]) proceeds in
two steps: First, any verifier V* that attacks the composed protocol (or rather
the prover P’') is transformed into an verifier V** that attacks the basic protocol
(or actually the prover P). This transformation is quite straightforward; that
is, V** handles a single interaction with P (while receiving the transcript of
previous interactions as auxiliary input). Let M denote a simulator for (P, V**).
Then, a simulator for the composed protocol (or rather for the attack of V*
on P') is obtained by invoking M for an adequate number of times (using a
correspondingly adequate auxiliary input in each invocation).

%5 Recall that a universal simulator obtains the code of the adversary’s strategy rather
than a black-box access to it. Thus, it may be the case that such a simulator can
distinguish the code of V* from the code of V** (i.e., the timed version of V*), and
produce bad output in the latter case. Indeed, a “natural” simulator will not do so,
but we cannot rely on this. Turning to a more natural example, we note that the
known non-black-box simulator of Barak [B01] (as well as its modification [BG02])
may fail to simulate expected PPT verifiers, because the random variable repre-
senting its simulation time is polynomially related (rather than linearly related) to
the running-time of the verifier. Recall that it may be the case that ¢(z) has ex-
pectation that is upper-bounded by a polynomial in |z| while t(x)* has expectation
that is lower-bounded by exp(|z|); for example, consider ¢ : {0,1}* — N such that
Prlt(z) = 2/*] = 2712 and Prlt(zx) = |¢]?] = 1 — 27 /=L,



Wishing to pursue the foregoing route, we merely need to check that any
verifier V* that is expected PPT w.r.t Definition 3 (resp., Definition 4) is trans-
formed into a verifier V** that is expected PPT w.r.t Definition 3 (resp., Def-
inition 4). Unfortunately, this is not necessarily the case. Indeed, the expected
running-time of V** when given a random auxiliary input (i.e., one produced
at random by prior interactions) is polynomial, but this does not mean that the
expected running-time of V** on each possible value of the auxiliary input is
polynomial. For example, it may be the case that, with probability 21! over
the history of prior interactions, the current interaction of V* (i.e., V** with
the corresponding auxiliary input) runs for 217 steps. The bottom-line is that
V** may not be expected PPT w.r.t any reasonable definition (let alone w.r.t
Definition 3 or Definition 4).

In view of the forgoing, we take an alternative route. We only use the hy-
pothesis that some normal black-box simulator M can handle all strict PPT
verifiers that attack the basic prover P. Next, we observe that the proof of [GO1,
Lem. 4.3.11] (i.e., the strict PPT version) can be extended to the case that the
simulation of the basic protocol (w.r.t strict PPT adversaries) runs in expected
PPT. The key observation is that in this case V** is strict PPT, although it
will be fed with auxiliary inputs that are produced in expected PPT (by the
simulation of prior interactions of V** with P). Thus, we obtain an ezpected
PPT simulation that handles any strict PPT attack on P'. Furthermore, the
simulation amounts to invoking M for a polynomial number of times (while
providing it with black-box access to V**, which in turn is implemented by a
black-box access to V*). It follows that the simulation of (P',V*) is performed
by a normal black-box simulator (because M is normal). Hence, we have ob-
tained a normal black-box simulator that can handle any strict PPT attack on
the composed protocol (or rather on the prover P'). The current theorem follows
by applying Theorem 8 to the latter simulator. [

Discussion: The proof of Theorem 9 is somewhat disappointing because it does
not use the hypothesis that P is zero-knowledge w.r.t ezpected PPT verifiers.
Instead, Theorem 8 is used to bridge the gap between strict and expected PPT
verifiers. A similar (but not identical) phenomenon will occur in the sequential
composition theorem for general protocols, presented in [G06, Sec. 4.2].
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