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Abstract. In a secret-sharing scheme, a secret value is distributed
among a set of parties by giving each party a share. The requirement is
that only predefined subsets of parties can recover the secret from their
shares. The family of the predefined authorized subsets is called the ac-
cess structure. An access structure is ideal if there exists a secret-sharing
scheme realizing it in which the shares have optimal length, that is, in
which the shares are taken from the same domain as the secrets. Brickell
and Davenport (J. of Cryptology, 1991) proved that ideal access struc-
tures are induced by matroids. Subsequently, ideal access structures and
access structures induced by matroids have received a lot of attention.
Seymour (J. of Combinatorial Theory, 1992) gave the first example of an
access structure induced by a matroid, namely the Vamos matroid, that
is non-ideal. Beimel and Livne (TCC 2006) presented the first non-trivial
lower bounds on the size of the domain of the shares for secret-sharing
schemes realizing an access structure induced by the Vamos matroid.
In this work, we substantially improve those bounds by proving that the
size of the domain of the shares in every secret-sharing scheme for those
access structures is at least k1.1, where k is the size of the domain of
the secrets (compared to k + Ω(

√
k) in previous works). Our bounds

are obtained by using non-Shannon inequalities for the entropy function.
The importance of our results are: (1) we present the first proof that
there exists an access structure induced by a matroid which is not nearly
ideal, and (2) we present the first proof that there is an access structure
whose information rate is strictly between 2/3 and 1. In addition, we
present a better lower bound that applies only to linear secret-sharing
schemes realizing the access structures induced by the Vamos matroid.
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1 Introduction

1.1 Ideal Secret-Sharing Schemes and Matroids

Secret-sharing schemes, which were introduced by Shamir [31] and Blakley [5]
nearly 30 years ago, are nowadays used in many cryptographic protocols. In
these schemes there is a finite set of parties, and a collection A of subsets of the
parties (called the access structure). A secret-sharing scheme for A is a method
by which a dealer distributes shares of a secret value to the parties such that (1)
any subset in A can reconstruct the secret from its shares, and (2) any subset not
in A cannot reveal any partial information about the secret in the information-
theoretic sense. Clearly, the access structure A must be monotone, that is, all
supersets of a set in A are also in A.

Ito, Saito, and Nishizeki [18] proved that there exists a secret-sharing scheme
for every monotone access structure. Their proof is constructive, but the obtained
schemes are very inefficient: the ratio between the length in bits of the shares
and that of the secret is exponential in the number of parties. Nevertheless,
some access structures admit secret-sharing schemes with much shorter shares.
A secret-sharing scheme is called ideal if the shares of every participant are taken
from the same domain as the secret. As proved in [20], this is the optimal size for
the domain of the shares. The access structures which can be realized by ideal
secret-sharing schemes are called ideal access structures.

The exact characterization of ideal access structures is a longstanding open
problem, which has interesting connections to combinatorics and information
theory. The most important result towards giving such characterization is by
Brickell and Davenport [8], who proved that every ideal access structure is in-
duced by a matroid, providing a necessary condition for an access structure to
be ideal. A sufficient condition is obtained as a consequence of the linear con-
struction of ideal secret-sharing schemes due to Brickell [7]. Namely, an access
structure is ideal if it is induced by a matroid that is representable over some
finite field. However, there is a gap between the necessary condition and the
sufficient condition. Seymour [30] proved that the access structures induced by
the Vamos matroid are not ideal. Other examples of non-ideal access structures
induced by matroids have been presented by Matúš [26]. Hence, the necessary
condition above is not sufficient. Moreover, Simonis and Ashikmin [33] con-
structed ideal secret-sharing schemes for the access structures induced by the
non-Pappus matroid, which is not representable over any field. This means that
the sufficient condition is not necessary. Therefore, the study of the access struc-
tures that are induced by matroids is useful in the search of new results about
the characterization of ideal access structures.

Another motivation in studying access structures induced by matroids arises
from the separation result of Mart́ı-Farré and Padró [24]. Namely, by using an old
result by Seymour [29], they generalized the result by Brickell and Davenport [8],
proving that in every secret-sharing scheme whose access structure is not induced
by a matroid there is at least one participant whose domain of shares has size
at least k1.5, where k is the size of the domain of secrets. In other words, by
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proving that an access structure is not induced by a matroid, we prove a lower
bound of k1.5 for the size of the shares’ domain. Therefore, the access structures
that are not induced by matroids are clearly far from being ideal.

We rephrase the above result using the notion of information rate of [9].
The information rate of a secret-sharing scheme is log k/ log s, where k is the
size of the domain of the secrets and s is the maximum size of the domains
of shares. That is, the information rate is the relation between the length in
bits of the secret and the maximum length of the shares. Ideal secret-sharing
schemes are those having information rate equal to 1. The information rate of
an access structure A is the supermum of the information rates of all secret-
sharing schemes realizing the access structure with a finite domain of shares.
Stating the aforementioned result in the new notation, if A is not induced by
a matroid, the information rate of every secret-sharing scheme for A is at most
2/3, hence the information rate of A is at most 2/3. This is not the case for the
non-ideal access structures induced by matroids, which can be very close to ideal.
An access structure A is nearly ideal if its information rate is 1. A non-ideal but
nearly-ideal access structure is presented in [22, 27].

At this point, two natural open questions arise. First, which matroids induce
ideal access structures? And second, what can be said about the optimal size of
the shares’ domain for access structures induced by matroids?

Even though several interesting results have been given in [33, 26, 27], the
first question is far from being solved. Since an ideal secret-sharing scheme can
be seen as a representation of the corresponding matroid, this question can be
thought of as a representability problem. Very little is known about the second
question. For instance, the only known non-trivial lower bound on the optimal
size of the shares’ domain for access structures induced by matroids has been
presented by Beimel and Livne [2]. Specifically, for an access structure induced
by the Vamos matroid, they prove a lower bound of k + Ω(

√
k), where k is the

size of the domain of the secrets.
The best constructions of secret-sharing realizing access structures induced

by matroids are the constructions for general access structures, e.g., in [4, 32, 7,
19]; in these constructions most access structures induced by matroids require
shares of exponential length. However, prior to this work, even the following
question was open.

Question 1 Does there exist a matroid such that its induced access structures
are not nearly ideal?

Observe that the lower bound given in [2] for an access structure induced by the
Vamos matroid does not imply that it is not nearly ideal. For comparison, for
general access structures the best known lower bound is given by Csirmaz [13]
who proves that for every n there is an access structure An with n participants
such that for every secret-sharing scheme realizing An there is at least one par-
ticipant whose share has length at least (n/ log n) log k.

Moreover, the following open problem, which was posed by Mart́ı-Farré and
Padró [23], was unsolved.
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Question 2 Does there exist an access structure whose optimal share size is
Θ(kα) for some constant 1 < α < 3/2?

That is, Mart́ı-Farré and Padró ask if there is an access structure whose infor-
mation rate is strictly between 2/3 and 1. As a consequence of the result of [24],
if such an access structure exists, it must be induced by a matroid.

1.2 Our Results

In this paper we answer the above two questions about access structures induced
by matroids. Specifically, we prove new lower bounds on the size of the domains of
shares in secret-sharing schemes for the access structures induced by the Vamos
matroid, substantially improving the bound given in [2]. The Vamos matroid
induces two non-isomorphic access structures. We prove for them lower bounds
on the size of the domains of shares of, respectively, k10/9 and k11/10, where k
is the size of the domain of the secrets (compared to k + Ω(

√
k) in [2]).

Therefore, we present here the first examples of access structures induced
by matroids that are not nearly ideal, resolving Question 1. Moreover, we solve
Question 2 in the affirmative: As a consequence of our lower bound and the
upper bound of k4/3 that was proved in [25], the access structures induced by
the Vamos matroid are the required examples.

The interest of our result is increased by the use of the so called non-Shannon
inequalities in our proof. By using the basic properties of the entropy function,
namely, the so-called Shannon inequalities, Csirmaz [13] proved the best known
lower bounds for secret-sharing schemes mentioned above. On the negative side,
Csirmaz proved that using only Shannon inequalities one cannot improve his
lower bounds by a factor larger than log n. More relevant to this work, several
bounds on the joint entropy of the shares of subsets of parties for access struc-
tures induced by matroids were proved in [2] using Shannon inequalities (see
Theorem 14 and Theorem 15 in Section 2 below). However, these bounds are
only on the joint entropy of the shares and the authors of [2] could not use them
to prove lower bounds for access structures induced by matroids. This is not a
coincidence as in [24] it is proved that it is not possible to obtain bounds for
access structures induced by matroids by using only this technique (since the
rank function of the matroid satisfies the Shannon inequalities).

Nevertheless, there exist several inequalities for the entropies of a set of ran-
dom variables that cannot be deduced from the Shannon inequalities. These are
the so-called non-Shannon inequalities. The first examples of such inequalities
were given by Zhang and Yeung [36], and other examples have been found sub-
sequently [15]. In this paper, we combine the entropy inequalities of [2] and the
non-Shannon inequality of Zhang and Yeung [36] to obtain a simple and elegant
proof of our result. The inequality of [36] was previously used related to the Va-
mos matroid in [16] for proving lower bounds for network coding and in [27] for
proving that this matroid is not asymptotically entropic (the latter result gives
an alternative proof that the access structures induced by the Vamos matroid
are not ideal). We believe that non-Shannon inequalities will be used for proving
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new lower bounds for secret-sharing schemes, possibly improving the best known
lower bound given by Csirmaz [13].

In addition, by applying a similar technique to the Ingleton’s inequality [17,
28], which applies only to linear random variables, we obtain a lower bound of
k5/4 for the size of the shares’ domains for linear secret-sharing schemes whose
access structures are induced by the Vamos matroid.

2 Preliminaries

In this section we define secret-sharing schemes, review some background on
matroids, and discuss the connection between secret-sharing schemes and ma-
troids. The definition of secret-sharing presented in this paper uses the entropy
function; in the appendix we review the relevant definitions from information
theory.

2.1 Secret Sharing

Definition 1 (Access Structure). Let P be a finite set of parties. A collection
A ⊆ 2P is monotone if B ∈ A and B ⊆ C imply that C ∈ A. An access structure
is a monotone collection A ⊆ 2P of non-empty subsets of P . Sets in A are called
authorized, and sets not in A are called unauthorized.

Definition 2 (Distribution Scheme). Let P = {p1, . . . , pn} be a set of par-
ties, and p0 /∈ P be a special party called the dealer. An n-party distribution
scheme Σ = 〈Π, µ〉 with domain of secrets K is a pair where µ is a probabil-
ity distribution on some finite set R (the set of random strings) and Π is a
mapping from K × R to a set of n-tuples K1 × K2 × . . . × Kn, where Ki is
called the share-domain of pi. A dealer distributes a secret s ∈ K according to
Σ by first sampling a string r ∈ R according to µ, computing a vector of shares
Π(s, r) = (s1, . . . , sn), and then privately communicating each share si to the
party pi.

We next give a definition of secret-sharing scheme using the entropy function.
This definition is the same as that of [20, 10] and is equivalent to the definition
of [11, 1, 3]. Before stating the definition, we present some notations. Let A be
an access structure on the set of parties P . We defined a distribution scheme Σ
as a probabilistic mapping that given a secret s generates a vector of shares. It
will be convenient to view the secret as the share of the dealer, and for every
T ⊆ P ∪{p0} to consider the vector of shares of T . Any probability distribution
on the domain of secrets, together with the distribution scheme Σ, induces, for
any T ⊆ P ∪{p0}, a probability distribution on the vector of shares of the parties
in T . We denote the random variable taking values according to this probability
distribution on the vector of shares of T by ST , and by S the random variable
denoting the secret (i.e., S = S{p0}). Note that for disjoint subsets T1, T2, the
random variable denoting the vector of shares of T1 ∪ T2 can be written either
as ST1∪T2 or as ST1ST2 . For a singleton {b}, we will write Sb instead of S{b}.
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Definition 3 (Secret-Sharing Scheme). We say that a distribution scheme
is a secret-sharing scheme realizing an access structure A with respect to a given
probability distribution on the secrets, denoted by a random variable S, if the
following conditions hold.

Correctness. For every authorized set T ∈ A, the shares of the parties in T
determine the secret, that is,

H(S|ST ) = 0. (1)

Privacy. For every unauthorized set T /∈ A, the shares of the parties in T do
not disclose any information on the secret, that is,

H(S|ST ) = H(S). (2)

Remark 4. Although the above definition considers a specific distribution on
the secrets, Blundo et al. [6] proved that its correctness and privacy are actually
independent of this distribution: If a scheme realizes an access structure with
respect to one distribution on the secrets, then it realizes the access structure
with respect to any distribution with the same support.

Karnin et al. [20] have showed that the size of the domain of shares of each non-
redundant party (that is, a party that appears in at least one minimal authorized
set) is at least the size of the domain of secrets. This motivates the definition of
ideal secret sharing.

Definition 5 (Ideal Secret-Sharing Scheme and Ideal Access Struc-
ture). A secret-sharing scheme with domain of secrets K is ideal if the domain
of shares of each party is K. An access structure A is ideal if there exists an
ideal secret-sharing scheme realizing it over some finite domain of secrets.

2.2 Matroids

A matroid is an axiomatic abstraction of linear independence. There are sev-
eral equivalent axiomatic systems to describe matroids: by independent sets, by
bases, by the rank function, or, as done here, by circuits. For more background
on matroid theory the reader is referred to [35, 28].

Definition 6 (Matroid). A matroid M = 〈V, C〉 is a finite set V and a collec-
tion C of subsets of V that satisfy the following three axioms:

(C0) ∅ /∈ C.
(C1) If X 6= Y and X, Y ∈ C, then X * Y .
(C2) If C1, C2 are distinct members of C and x ∈ C1 ∩ C2, then there exists

C3 ∈ C such that C3 ⊆ (C1 ∪ C2) \ {x}.
The elements of V are called points, or simply elements, and the subsets in C
are called circuits.
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For example, let G = (V, E) be an undirected simple graph and C be the
collection of simple cycles in G. Then, (E, C) is a matroid.

Definition 7 (Rank, Independent and Dependent Sets). A subset of V is
dependent in a matroid M if it contains a circuit. If a subset is not dependent,
it is independent. The rank of a subset T ⊆ V , denoted rank(T ), is the size of
the largest independent subset of T .

Definition 8 (Connected Matroid). A matroid is connected if for every pair
of distinct elements x and y there is a circuit containing x and y.

2.3 Matroids and Secret Sharing

In this section we describe the results relating ideal secret-sharing schemes and
matroids. We first define access structures induced by matroids.

Definition 9. Let M = 〈V, C〉 be a connected matroid and p0 ∈ V . The induced
access structure ofM with respect to p0 is the access structure A on P = V \{p0}
defined by

A def= {T : there exists C0 ∈ C such that p0 ∈ C0 and C0 \ {p0} ⊆ T} .

That is, a set T is a minimal authorized set of A if by adding p0 to it, it becomes
a circuit of M. We think of p0 as the dealer. We say that an access structure is
induced by M, if it is obtained by setting some arbitrary element of M as the
dealer. In this case, we say that M is the appropriate matroid of A, and that A
is induced by M with respect to p0.

Remark 10. The term the appropriate matroid is justified, as if some access struc-
ture is induced by a matroid, this matroid is unique.

The following fundamental result, proved by Brickell and Davenport [8], gives
a necessary condition for an access structure to have an ideal secret-sharing
scheme.

Theorem 11 ([8]). If an access structure is ideal, then it has an appropriate
matroid.

The following result of [21] shows a connection between the rank function of
the appropriate matroid and the joint entropy of the collections of shares.

Lemma 12 ([21]). Assume that the access structure A ⊆ 2P is ideal, and let
〈P ∪ {p0} , C〉 be its appropriate matroid where p0 /∈ P . Let Σ be an ideal secret-
sharing scheme realizing A where S is the random variable denoting the secret.
Then H(ST ) = rank(T ) ·H(S) for any T ⊆ P ∪{p0}, where rank(T ) is the rank
of T in the matroid.
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Example 13. Consider the threshold access structure At, which consists of all
subsets of participants of size at least t, and Shamir’s scheme [31] which is
an ideal secret-sharing scheme realizing it. In this scheme, to share a secret s,
the dealer randomly chooses a random polynomial p(x) of degree t−1 such that
p(0) = s, and the the share of the ith participant is p(i). The appropriate matroid
of At is the uniform matroid with n + 1 points, whose circuits are the sets of
size t + 1 and rank(T ) = min {|T |, t}. Since every t points determine a unique
polynomial of degree t − 1, in Shamir’s scheme H(ST ) = min {|T |, t}H(S), as
implied by Lemma 12.

We next quote results from [2] proving lower and upper bounds on the size of
shares’ domains of subsets of parties in matroid-induced access structures. These
results generalize the results of [21] on ideal secret-sharing schemes to non-ideal
secret-sharing schemes for matroid-induced access structures.

Theorem 14 ([2]). Let M = 〈V, C〉 be a connected matroid where |V | = n + 1,
and p0 ∈ V . Furthermore, let A be the induced access structure of M with respect
to p0, and let Σ be any secret-sharing scheme realizing A. For every T ⊆ V ,

H(ST ) ≥ rank(T ) ·H(S).

Theorem 15 ([2]). Let M = 〈V, C〉 be a connected matroid where |V | = n + 1,
p0 ∈ V and let A be the induced access structure of M with respect to p0.
Furthermore, let Σ be any secret-sharing scheme realizing A, and let λ ≥ 0 be
such that H(Sv) ≤ (1 + λ)H(S) for every v ∈ V \ {p0}. Then, for every T ⊆ V

H(ST ) ≤ rank(T )(1 + λ)H(S) + (|T | − rank(T ))λnH(S). (3)

2.4 The Vamos Matroid

In this paper we prove lower bounds on the size of shares in secret-sharing
schemes realizing the access structures induced by the Vamos matroid. The Va-
mos matroid [34] is the smallest known matroid that is non-representable over
any field, and is also non-algebraic (for more details on these notions see [35, 28];
we will not need these notions in this paper).

Definition 16 (The Vamos Matroid). The Vamos matroid V is defined on
the set V = {v1, v2, . . . , v8}. Its independent sets are all the sets of cardinality
≤ 4 except for five: {v1, v2, v3, v4}, {v1, v2, v5, v6}, {v3, v4, v5, v6}, {v3, v4, v7, v8},
and {v5, v6, v7, v8}.

Note that these 5 sets are all the unions of two pairs from {v1, v2}, {v3, v4},
{v5, v6}, and {v7, v8}, excluding {v1, v2, v7, v8}. The five sets listed in Defini-
tion 16 are circuits in V while the set {v1, v2, v7, v8} is independent; these facts
will be used later.

There are two non-isomorphic access structures induced by the Vamos ma-
troid. First, the access structures obtained by setting v1, v2, v7, or v8 as the dealer
are isomorphic. The other access structure is obtained by setting v3, v4, v5, or v6

as the dealer.
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Definition 17 (The Access Structures V6 and V8). The access structure
V8 is the access structure induced by the Vamos matroid with respect to v8. That
is, in this access structure the parties are {v1, . . . , v7} and a set of parties is a
minimal authorized set if this set together with v8 is a circuit in V. The access
structure V6 is the access structure induced by the Vamos matroid with respect
to v6. That is, in this access structure the parties are {v1, . . . , v5, v7, v8} and a
set of parties is a minimal authorized set if this set together with v6 is a circuit
in V.

Example 18. We next give examples of authorized and non-authorized sets in
V6.

1. The set {v5, v7, v8} is authorized, since {v5, v6, v7, v8} is a circuit.
2. The circuit {v1, v2, v3, v4} is unauthorized, since the set {v1, v2, v3, v4, v6}

does not contain a circuit that contains v6. To check this, we first note that
this 5-set itself cannot be a circuit, since it contains the circuit {v1, v2, v3, v4}.
Second, the only circuit it contains is {v1, v2, v3, v4}, which does not contain
v6.

3. The set {v1, v2, v7, v8} is a minimal authorized set, since {v1, v2, v6, v7, v8} is
a circuit (as it is dependent, and no circuit of size 4 is contained in it).

3 Lower Bounds for the Vamos Access Structure

In this section we prove our main result, stating that the access structures in-
duced by the Vamos matroid cannot be close to ideal. That is, their information
rate is bounded away from 1.

We will use a non-Shannon information inequality proved by Zhang and
Yeung [36]. This inequality was used related to the Vamos matroid in [16] for
proving lower bounds for network coding and in [27] for proving that a function
is not asymptotically entropic.

Theorem 19 ([36, Theorem 3]). For every four discrete random variables
A,B, C, and D the following inequality holds:

3[H(CD) + H(BD) + H(BC)] + H(AC) + H(AB)
≥ H(D) + 2[H(C) + H(B)] + H(AD) + 4H(BCD) + H(ABC). (4)

Seymour [30] proved that V6 and V8 are not ideal. Inequality (4) was used
in [27] to give an alternative proof of this fact. We next present the proof of [27].
Assume there is an ideal secret-sharing scheme realizing the Vamos access struc-
ture V6. Define the following random variables

A
def= S{v1,v2},

B
def= S{v3,v4},

C
def= S{v5,v6},

D
def= S{v7,v8}. (5)
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By Lemma 12 H(ST ) = rank(T )H(S) for every set T ⊆ {v1, . . . , v8}. Since all
sets of size 2 are independent in the Vamos matroid, H(A) = H(B) = H(C) =
H(D) = 2H(S). Furthermore, by the definition of the circuits of size 4 in the
Vamos matroid H(AB) = H(AC) = H(BC) = H(BD) = H(CD) = 3H(S)
while H(AD) = 4H(S). Finally, H(BCD) = H(ABC) = 4H(S). Under the
above definition of A,B, C, and D we notice that the l.h.s. of (4) is 33H(S)
while the r.h.s. of (4) is 34H(S), a contradiction. Note that this proof strongly
exploits the fact that the random variable AD, which corresponds to the shares of
the independent set {v1, v2, v7, v8}, appears in the r.h.s. of (4), while the random
variables appearing in the l.h.s. of (4) correspond to the shares of circuits in the
matroid.

Applying Theorem 14 and Theorem 15, we can generalize the above proof
and prove that V6 cannot be close to ideal. That is, we can prove that in every
secret-sharing scheme realizing V6, the size of the entropy of the share of at least
one party is at least (1+1/110)H(S). Using direct arguments, we prove that the
size of the entropy of the share of at least one party is at least (1 + 1/9)H(S).
Before we formally state our result, we prove two lemmas. First, to aid us in
proving the better lower bound, we rearrange Inequality (4):

Lemma 20. For every four discrete random variables A, B, C, and D the fol-
lowing inequality holds:

3H(C|D) + 2H(C|B) + H(B|C) + H(A|C)
≥ H(A|D) + 3H(C|BD) + H(BC|D) + H(C|AB). (6)

Proof. The claim is proved by a simple manipulation of (4). By (28), 3H(BCD) =
3H(C|BD) + 3H(BD) and H(ABC) = H(C|AB) + H(AB). Substituting these
expressions in (4) and rearranging the terms, we get

3H(CD) + 3H(BC) + H(AC)
≥ H(D) + 2[H(C) + H(B)]

+H(AD) + 3H(C|BD) + H(BCD) + H(C|AB). (7)

By (28), 2H(BC) = 2H(B) + 2H(C|B), H(BC) = H(C) + H(B|C), and
H(AC) = H(C)+H(A|C). Substituting these expressions in (7) and rearranging
the terms, we get

3H(CD) + 2H(C|B) + H(B|C) + H(A|C)
≥ H(D) + H(AD) + 3H(C|BD) + H(BCD) + H(C|AB). (8)

By (28), 3H(CD) = 3H(D) + 3H(C|D), H(AD) = H(D) + H(A|D), and
H(BCD) = H(D) + H(BC|D). Substituting these expressions in (8) and re-
arranging the terms, we get (6). ut

To prove our lower bounds, we need the following simple lemma whose proof
can be found in [2]. For completeness we present its proof here. Informally, this
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lemma states that if a set T is unauthorized and T ∪ {b} is authorized for some
participant b, then guessing b’s share given the shares of T is at least as hard
as guessing the secret. Otherwise, the unauthorized set T can guess the share of
b, and via the share compute the secret. Since, by the privacy requirement, the
unauthorized set T cannot have any information on the secret, the entropy of
the share must be at least H(S).

Lemma 21. Let T ⊆ V \ {p0} and b /∈ T such that T ∪ {b} ∈ A and T /∈ A.
Then, H(Sb|ST ) ≥ H(S).

Proof. By applying (33) twice,

H(S, Sb|ST ) = H(Sb|ST ) + H(S|Sb, ST ) = H(S|ST ) + H(Sb|S, ST ).

The proof is straightforward from the second equality by taking into account that
H(S|ST ) = H(S), H(S|Sb, ST ) = 0, and that the conditional entropy function
is nonnegative. ut

3.1 Proving the Lower Bound for V6

We next state and prove our main result.

Theorem 22. In any secret-sharing scheme realizing V6 with respect to a distri-
bution on the secrets denoted by a random variable S, the entropy of the shares
of at least one party is at least (1 + 1/9)H(S).

Proof. We fix any scheme realizing V6 and define λ as

λ
def=

max1≤i≤8(H(Svi))
H(S)

− 1.

In particular, for 1 ≤ i ≤ 8:

H(Svi) ≤ (1 + λ)H(S). (9)

Recall that H(Sv6) = H(S) as v6 is the dealer. We use the same random variables
A,B, C, and D as defined in (5). We will show that Lemma 20 implies that
λ ≥ 1/9.

We start with giving upper-bounds on the terms on the left hand side of (6).
Recall that v6 is the dealer, C = S{v5,v6}, and D = S{v7,v8}. Thus, since
{v5, v7, v8} is authorized,

H(C|D) = H(Sv5 |Sv7 , Sv8) + H(Sv6 |Sv5 , Sv7 , Sv8) (from (33))
≤ H(Sv5) ≤ (1 + λ)H(S). (10)

Similarly,

H(C|B) ≤ (1 + λ)H(S). (11)
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Next, recall that B = S{v3,v4}. By applying (29) and (33),

H(B|C) = H(Sv4 |C) + H(Sv3 |Sv4 , Sv5 , Sv6)
≤ H(Sv4) + H(Sv3 , Sv6 |Sv4 , Sv5)−H(Sv6 |Sv4 , Sv5)
= H(Sv4) + H(Sv3 |Sv4 , Sv5) + H(Sv6 |Sv3 , Sv4 , Sv5)−H(Sv6 |Sv4 , Sv5).

Therefore, since {v3, v4, v5} is authorized and {v4, v5} is unauthorized,

H(B|C) ≤ H(Sv4) + H(Sv3)−H(S) ≤ (1 + 2λ)H(S).

Similarly,

H(A|C) ≤ (1 + 2λ)H(S). (12)

So, the l.h.s. of (6) is at most (7 + 9λ)H(S).
We continue by giving lower-bounds on the terms in the right hand side

of (6). First, by using (32) and (33),

H(A|D) = H(Sv1 |D) + H(Sv2 |D, Sv1)
≥ H(Sv1 |D, Sv2) + H(Sv2 |D,Sv1)
≥ 2H(S), (13)

where the last inequality is obtained from Lemma 21 as {v1, v2, v7, v8} is a min-
imal authorized set. Second, from (33) and (2) as BD is unauthorized

H(C|BD) ≥ H(Sv6 |BD) ≥ H(S). (14)

Third, by (33), (32), and Lemma 21,

H(BC|D) = H(B|D) + H(C|BD)
≥ H(Sv3 |D) + H(S)
≥ H(Sv3 |D,Sv1) + H(S).

From Lemma 21 and the fact that {v1, v3, v7, v8} is a minimal authorized set,

H(BC|D) ≥ 2H(S).

Fourth, from (33) and (2) as AB is unauthorized,

H(C|AB) ≥ H(Sv6 |AB) ≥ H(S). (15)

So, the r.h.s. of (6) is at least 8H(S).
To conclude, we have proved that the l.h.s. of (6) is at most (7+9λ)H(S) and

the r.h.s. of (6) is at least 8H(S). As the l.h.s. of (6) should be at least the r.h.s.
of (6), we deduce that (7 + 9λ)H(S) ≥ 8H(S), which implies that λ ≥ 1/9. ut

By Remark 4, we can assume without loss of generality that the distribution
on the secrets is uniform, that is, if the domain of secrets is K, then H(S) =
log |K|. Furthermore, by (27), if the domain of shares of vi is Ki, then H(Svi) ≤
log |Ki|. Thus, we can reformulate Theorem 22 as follows.

Corollary 23. In any secret-sharing scheme realizing V6 with respect to a dis-
tribution on the secrets with support K, the size of the domain of shares of at
least one party is at least |K|1+1/9.
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3.2 Proving the Lower Bound for V8

In a similar manner to the proof of the lower bound for V6, we prove a slightly
weaker lower-bound for V8. As before, we begin by rearranging Inequality (4).
The next lemma is proved similarly to Lemma 20.

Lemma 24. For every four discrete random variables A,B, C, and D the fol-
lowing inequality holds:

3H(D|C) + 2H(D|B) + H(BD) + H(B|A)
≥ H(D) + H(D|A) + H(B|C) + 4H(D|BC) + H(B|AC). (16)

Theorem 25. In any secret-sharing scheme realizing V8 with respect to a distri-
bution on the secrets denoted by a random variable S, the entropy of the shares
of at least one party is at least (1 + 1/10)H(S).

Proof. We fix any scheme realizing V8 and we define λ as in the proof of The-
orem 22. Then H(Svi) ≤ (1 + λ)H(S) for every i = 1, . . . , 8. Recall that
H(Sv8) = H(S) as v8 is the dealer. We use the same random variables A,B,C,
and D as defined in (5). In a similar way as in Theorem 22, we find bounds on
the terms of (16) to obtain a bound on λ.

Claim. H(B|A) ≤ (1 + 3λ)H(S).

To prove this claim, we first observe that

H(B|A) = H(Sv3 , Sv4 |Sv1 , Sv2)
≤ H(Sv3) + H(Sv4 |Sv1 , Sv2 , Sv3)
≤ (1 + λ)H(S) + H(Sv4 |Sv1 , Sv2 , Sv3). (17)

We now bound H(Sv4 |S{v1,v2,v3}). By applying (33) twice,

H(Sv4 , Sv5 |S{v1,v2,v3}) = H(Sv4 |S{v1,v2,v3}, Sv5) + H(Sv5 |S{v1,v2,v3})
= H(Sv5 |S{v1,v2,v3}, Sv4) + H(Sv4 |S{v1,v2,v3}). (18)

Thus, by (18)

H(Sv4 |S{v1,v2,v3}) = H(Sv4 |S{v1,v2,v3,v5}) + H(Sv5 |S{v1.v2,v3})
−H(Sv5 |S{v1.v2,v3,v4}). (19)

We next bound each of the elements of the above sum, and get the desired result.
First,

H(Sv5 |S{v1,v2,v3,v4}) ≤ H(Sv5) ≤ (1 + λ)H(S).

Second, from Lemma 21 we have

H(Sv5 |S{v1,v2,v3,v4}) ≥ H(S).
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Next observe that {v1, v2, v3, v5} is authorized in V8, and hence H(Sv8 |S{v1,v2,v3,v5}) =
0, thus,

H(Sv4 |S{v1,v2,v3,v5}) = H(S{v1,v2,v3,v5}, Sv4)−H(S{v1,v2,v3,v5})
= H(S{v1,v2,v3,v4,v5})
−[H(Sv8 |S{v1,v2,v3,v5}) + H(S{v1,v2,v3,v5})]

= H(S{v1,v2,v3,v4,v5})−H(S{v1,v2,v3,v5,v8})
≤ H(S{v1,v2,v3,v4,v5,v8})−H(S{v1,v2,v3,v5,v8})
= H(Sv4 |S{v1,v2,v3,v5,v8})
≤ H(Sv4 |S{v1,v2,v5,v8})
= H(Sv4Sv8 |S{v1,v2,v5})−H(Sv8 |S{v1,v2,v5})
= [H(Sv4 |S{v1,v2,v5}) + H(Sv8 |S{v1,v2,v4,v5})]
−H(Sv8 |S{v1,v2,v5})

≤ H(Sv4) + 0−H(S)
≤ λH(S). (20)

In the last steps we used that {v1, v2, v4, v5} is a minimal authorized subset.
Now, by summing up the bounds,

H(Sv4 |S{v1,v2,v3}) ≤ λH(S) + (1 + λ)H(S)−H(S) = 2λH(S). (21)

Thus, by (17) and (21), H(B|A) ≤ (1 + 3λ)H(S), which concludes the proof of
our claim.

Since {v5, v6, v7} is an authorized set,

H(D)−H(D|C) = (H(Sv7) + H(Sv8 |Sv7))
−(H(Sv7 |S{v5,v6}) + H(Sv8 |S{v5,v6,v7}))

= H(Sv7) + H(S)−H(Sv7 |S{v5,v6})− 0
≥ H(S). (22)

Thus, by (16) and (22),

2H(D|C) + 2H(D|B) + H(BD) + H(B|A)
≥ H(D|A) + H(B|C) + 4H(D|BC) + H(B|AC) + H(S). (23)

We next give upper bounds for the terms in the l.h.s. of (23). We proved
before that H(B|A) ≤ (1 + 3λ)H(S). For the rest of the terms in the l.h.s. we
use straightforward bounds. First,

H(D|C) = H(Sv7Sv8 |C) ≤ H(Sv8 |Sv7C) + H(Sv7) ≤ (1 + λ)H(S)

because {v5, v6, v7} is authorized, and similarly H(D|B) ≤ (1 + λ)H(S). Sec-
ond, H(BD) = H(S{v3,v4,v7,v8}) = H(Sv8 |S{v3,v4,v7}) + H(S{v3,v4,v7}) ≤ 3(1 +
λ)H(S), since {v3, v4, v7} is authorized. Thus, the l.h.s. of (23) is less than
(8 + 10λ)H(S).
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We continue by giving lower bounds for the terms in the r.h.s. of (23). First,
by Lemma 21,

H(D|A) = H(Sv8 |S{v1,v2,v7}) + H(Sv7 |S{v1,v2}) ≥ 2H(S),

since {v1, v2, v7} is unauthorized and {v1, v2, v5, v7} is authorized. Second,

H(B|C) ≥ H(B|AC) ≥ H(S) (24)

since {v1, v2, v5, v6} is unauthorized and {v1, v2, v3, v4, v5, v6} is authorized. Next,
H(D|BC) ≥ H(S) since the set {v3, v4, v5, v6} is unauthorized, while {v7, v8}
contains the dealer v8. Finally, H(B|AC) ≥ H(S) by (24). Thus, we conclude
that the r.h.s. of (23) is at least 9H(S).

Finally, the bounds we obtained for both sides of Inequality (23) imply that
λ ≥ 1/10. ut
Corollary 26. In any secret-sharing scheme realizing V8 with respect to a dis-
tribution on the secret with support K, the size of the domain of shares of at
least one party is at least |K|1+1/10.

3.3 Lower Bounds for Linear Secret-Sharing Schemes

In the following, we present a lower bound for the size of the shares’ domain
that applies only to linear secret-sharing schemes with access structure V6 or
V8. Nearly all known secret-sharing schemes are linear. A secret-sharing scheme
is linear if the distribution scheme is such that the domain of secrets K, the
domain of random strings R, and the domains of shares of the i-th party Ki, for
every i, are vector spaces over some finite field, Π is a linear mapping, and the
distribution on random strings µ is uniform. This bound is obtained in a very
similar way as the previous ones by using an inequality due to Ingleton [17],
which applies only to linear random variables, that is, random variables defined
by linear mappings.

Theorem 27 ([17, 28]). For every four linear discrete random variables A, B,
C, and D the following inequality holds:

H(CD) + H(BD) + H(BC) + H(AC) + H(AB)
≥ H(C) + H(B) + H(AD) + H(BCD) + H(ABC). (25)

The proof of the next lemma is very similar to the one of Lemma 20.

Lemma 28. For every four linear discrete random variables A,B, C, and D the
following inequality holds:

H(C|D) + H(C|B) + H(A|C)
≥ H(A|D) + H(C|BD) + H(C|AB). (26)

The following result is proved in a similar way to the proof of Theorem 22.
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Theorem 29. In any linear secret-sharing scheme realizing V6 with respect to
a distribution on the secrets denoted by a random variable S, the entropy of the
shares of at least one party is at least (1 + 1/4)H(S).

Proof. We fix any linear scheme realizing V6 and define

λ
def= max

1≤i≤8
(H(Svi))/H(S)− 1.

We use the same random variables A,B, C, and D as defined in (5). Note that
all bounds proved in Section 3.1 apply, in particular, to linear secret-sharing
realizing V6. Thus, by (10), (11), and (12), the l.h.s. of (26) is at most (3 +
4λ)H(S). By (13), (14), and (15), the r.h.s. of (26) is at least 4H(S). This
implies that (3 + 4λ)H(S) ≥ 4H(S), which implies that λ ≥ 1/4.

Corollary 30. In any linear secret-sharing scheme realizing V6 with respect to
a distribution on the secrets with support K, the size of the domain of shares of
at least one party is at least |K|1+1/4.

Finally, the same bound applies to the linear secret-sharing schemes with
access structure V8 by duality. The dual of an access structure A is the access
structure

A∗ def= {T ⊆ P : P \ T /∈ A}.
It is well known that, for every linear secret-sharing scheme Σ with access struc-
ture A, there exists a linear secret sharing scheme Σ∗ for A∗ such that the
domain of the shares of every participant is the same for Σ and for Σ∗ (see [14],
for instance). Therefore, since V∗8 is isomorphic to V6, the bounds in Theorem 29
and Corollary 30 apply also to the access structure V8.
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A Basic Definitions from Information Theory

In this appendix, we review the basic concepts of information theory used in this
paper. For a complete treatment of this subject see, e.g., [12]. All the logarithms
here are of base 2.

Given a finite random variable X, we define the entropy of X, denoted H(X),
as

H(X) def= −
∑

x,Pr[X=x]>0

Pr[X = x] log Pr[X = x].

It can be proved that
0 ≤ H(X) ≤ log | supp(X)|, (27)

where | supp(X)| is the size of the support of X (the number of values with
probability greater than zero). The upper bound is obtained if and only if the
distribution of X is uniform.

Given two finite random variables X and Y (possibly dependent), we define
the conditioned entropy of X given Y as

H(X|Y ) def= H(XY )−H(Y ). (28)

For convenience, when dealing with the entropy function, XY will denote X∪Y .
From the definition of the conditional entropy, the following properties can be
proved:

0 ≤ H(X|Y ) ≤ H(X), (29)

H(Y ) ≤ H(XY ), (30)

and
H(XY ) ≤ H(X) + H(Y ). (31)

Given three finite random variable X, Y and Z (possibly dependent), the
following properties hold:

H(X|Y ) ≥ H(X|Y Z), (32)

H(XY |Z) = H(X|Y Z) + H(Y |Z) ≥ H(Y |Z), (33)

and
H(XY |Z) ≤ H(X|Z) + H(Y |Z). (34)


