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Abstract. We show how to transform any semantically secure encrygttbeme
into a non-malleable one, with a black-box constructiort #@hieves a quasi-
linear blow-up in the size of the ciphertext. This improvg®n the previous
non-black-box construction of Pass, Shelat and Vaikurieama(Crypto '06). Our
construction also extends readily to guarantee non-nialigeunder a bounded-
CCA2 attack, thereby simultaneously improving on both itesa the work of
Cramer et al. (Asiacrypt '07).

Our construction departs from the oft-used paradigm ofn@ygting the same
message with different keys and then proving consistenepofyptions; instead,
we encrypt an encoding of the message with certain locafliabde and self-
correcting properties. We exploit the fact that low-degm@ynomials are
simultaneously good error-correcting codes and a seheetrgy scheme.

Key words: Public-key encryption, semantic security, non-malléghiblack-
box constructions.

1 Introduction

The most basic security guarantee we require of a public kegyption scheme is that
of semantic securitygm84]: it is infeasible to learn anything about the plaintexih

the ciphertext. In many cryptographic applications suchwdions, we would like an
encryption scheme that satisfies the stronger guaranteemsimalleability poNn0O],
namely that given some ciphertexit is also infeasible to generate ciphertexts of some
message that is related to the decryptiorc.oMotivated by the importance of non-
malleability, Pass, Shelat and Vaikuntanathan raiseddit@ring question PsvO6]:

It is possible tammunizeany semantically secure encryption scheme against
malleability attacks?

Pass et al. gave a beautiful construction of a non-malleafteyption scheme from
any semantically secure one (building appN00]), thereby addressing the question
in the affirmative. However, thesv construction — as with previous constructions

* The work was partially supported by NSF grants CNS-0716215F-0347839, and SBE-
0245014.



achieving non-malleability from general assumptions§i00,599, 06] — suffers from
the curse of inefficiency arising from the use of genaifatreductions. In this work, we
show that we can in factimmunize any semantically securgyption schemes against
malleability attacks without paying the price of genéM&-reductions:

Main theorem (informal) There exists a (fully) black-box construction of a
non-malleable encryption scheme from any semanticallyrgegne.

That is, we provide a wrapper program (from programming leagg lingo) that given
any subroutines for computing a semantically secure etiorygcheme, computes a
non-malleable encryption scheme, with a multiplicativerdead in the running time
that is quasi-linear in the security parameter. Before igiiag further details, let us first
provide some background and context for our result.

1.1 Relationships amongst Cryptographic Primitives

Much of the modern work in foundations of cryptography remtsgeneral crypto-
graphic assumptions like the existence of one-way funstéord trapdoor permutations.
General assumptions provide an abstraction of the furalites and hardness we
exploit in specific assumptions such as hardness of fagt@iml discrete log without
referring to any specific underlying algebraic structuren§tructions based on general
assumptions may use the primitive guaranteed by the aseamiptone of two ways:

Black-box usage: A construction is black-box if it refers only to the inputtput
behavior of the underlying primitive; we would typicallysal require that in the
proof of security, we can use an adversary breaking the igcoifithe construction
as an oracle to break the underlying primitive. (See04] and references within
for more details.). As emphasized earlier, our constradsdlack-box, using only
oracle access to the key generation, encryption and deéanyfpinctionality of the
underlying encryption scheme.

Non-black-box usage:A construction is non-black-box if it uses the code commtin
the functionality of the primitive. Thesv construction along with the work it
builds on fall into this category: they use & reduction applied to the circuit
computing the encryption functionality of the underlyingceyption scheme in
order to provide a non-interactive zero-knowledge proafaisistency.

Motivated by the fact that the vast majority of constructi@mcryptography are black-
box, a rich and fruitful body of work initiated iniIg89] seeks to understand the
power and limitations of black-box constructions in crygraphy, resulting in a fairly
complete picture of the relations amongst most cryptogcaptimitives with respect
to black-box constructions (we summarize several of thedknoelations pertaining
to encryption in Figure 1). More recent work has turned t&ga®r which the only
constructions we have are non-black-box, yet the existehadlack-box construction
is not ruled out. Two notable examples are general securé-party computation



against a dishonest majority and encryption schemes segaiast adaptive chosen-
ciphertext (CCA2) attacRgc.f. [cMw87 DDNOQ]).

The general question of whether we can securely realize tiasgs via black-box
access to a general primitive is not merely of theoreticerast. A practical reason
is related to efficiency, as non-black-box constructiomslt® be less efficient due
to the use of generddP reductions to order to prove statements in zero knowledge;
this impacts both computational complexity as well as comication complexity
(which we interpret broadly to mean message lengths foropods and key size and
ciphertext size for encryption schemes). Moreover, if hesih in the affirmative, we
expect the solution to provide new insights and technigoesifcumventing the use of
NP reductions and zero knowledge in the known constructioinsllly, given that there
has been no formal model that captures non-black-box agigins in a satisfactory
manner, the pursuit of a positive result becomes all the nmbeeesting.

Indeed, Ishai et al.IkLP0O6] recently provided an affirmative answer for secure
multi-party computation by exhibiting black-box constiioas from some low-level
primitive. Their techniques have since been used to yietdieemulti-party compu-
tation via black-box access to an oblivious transfer prottdar semi-honest parties,
which is complete (and thus necessary) for secure multisgamputation f08]. This
leaves the following open problem:

Is it possible to realize CCA2-secure encryption via black- access to a
low-level primitive, e.g. enhanced trapdoor permutatianshomomorphic
encryption schemes?

Previous work pertaining to this problem is limited to ndadi-box constructions

of CCA2-secure encryption from enhanced trapdoor pernoms{dbN00,s99, 06];
nothing is known assuming homomorphic encryption schenmesvork concurrent
with ours, Peikert and Water$\07] made substantial progress towards the open
problem — they constructed CCA2-secure encryption schenseblack-box access

to a new primitive they introduced called lossy trapdoorchions, and in addition,
gave constructions of this primitive from number-thearedind worst-case lattice
assumptions. Unfortunately, they do not provide a black-tanstruction of CCA2-
secure encryption from enhanced trapdoor permutations.

Our work may also be viewed as a step towards closing thisiréngagap (and a
small step in the more general research agenda of undeirsgathé power of black-
box constructions). Specifically, the security guarantexiged by non-malleability
lies between semantic security and CCA2 security, and wes $twov to derive non-
malleability in a black-box manner from the minimal assuimppossible, i.e., semantic
security. In the process, we show how to enforce consistehciphertexts in a black-
box manner. This issue arises in black-box constructionisotfi CCA2-secure and
non-malleable encryptions. However, our consistency lchenly satisfy a weaker

! These are encryption schemes that remain semanticallyesewen under a CCA2 attack,
wherein the adversary is allowed to query the decryptionleraxcept on the given challenge.
A CCAL1 attack is one wherein the adversary is allowed to qtleeydecryption oracle before
(but not after) seeing the challenge.
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Fig.1. Known relations among generic encryption primitives, angr oesults.
Solid lines indicate black box constructions, and dottetkdi indicate non-black-
box constructions (c.f. Hsv98,bDNO0PSVO6,CHHTO7,PWO7]). The separations
are with respect to black-box reductions, or black box slel reductions (c.f.
[GMRO1,GMMO7]). Our contributions are indicated with the thick arrows

notion of non-adaptive soundness, which is sufficient far-nwalleability but not for
CCAZ2-security (c.f. psv06]). As a special case of our result, we obtain a black-box
construction of non-malleable encryptions from any (pialyt-) trapdoor function. Our
results are incomparable with those of Peikert and Watersesive start from weaker
assumptions but derive a weaker security guarantee.

Related positive results. A different line of work focuses on (very) efficient con-
structions of CCA2-secure encryptions under specific nurttimoretic assumptions
[cs98,cs04,cHKO4]. Apart from those based on identity-based encryptibese
constructions together with previous ones based on gemaaimptions can be
described under the following framework (c.8AM88NY90,RS91 ES02]). Start with
some cryptographic hardness assumption that allows usiitbdogemantically secure
encryption scheme, and then prove/verify that several eripiits satisfy certain
relations in one of two ways:

— exploiting algebraic relations from the underlying asstiorpto deduce additional
structure in the encryption scheme (e.g. homomorphic,imgusandomness)
[cs98,cs04];

— apply a general NP reduction to prove in non-interactive zerowledge (NIZK)
statements that relate to the primitie{N00,599,L 06].

None of the previous approaches seems to yield black-bostieartions under general
assumptions. Indeed, our work (alsanj07]) does not use the above framework.



1.2 Our Results

As mentioned earlier, we exhibit a black-box constructidraonon-malleable en-
cryption scheme from any semantically secure one, the maelty being that our
construction is black-box. While this is interesting in arfdtself, our construction also
compares favorably with previous work in several regards:

— Improved parameterdle improve on the computational complexity of previous
constructions based on general assumptions. In partieuéado not have to do an
NP-reduction in either encryption or decryption, although deehave to pay the
price of the running time of Berlekamp-Welch for decryptidme running time
incurs a multiplicative overhead that is quasi-linear ie $ecurity parameter, over
the running time of the underlying CPA secure scheme. Maedhe sizes of
public keys and ciphertext are independent of the compmurtaticomplexity of the
underlying scheme.

— Conceptual simplicity/clarityOur scheme (and the analysis) is arguably much
simpler than many of the previous constructions, and likeVp6], entirely
self-contained (apart from the Berlekamp-Welch algorithvide do not need to
appeal to notions of zero-knowledge, nor do we touch upotiestéchnicalities
like adaptive vs non-adaptive NIZK. Our construction may dmvered in an
introductory graduate course on cryptography without i zero knowledge
as a pre-requisite.

— Ease of implementatiorOur scheme is easy to describe and can be easily
implemented in a modular fashion.

We may also derive from our construction additional posiind negative results.

Bounded CCA2 non-malleability. Cramer et al. §HHT07] introduced the bounded
CCA2 attack, a relaxation of the CCA2 attack wherein the eshry is only allowed
make an a-priori bounded number of querjas the decryption oracle, whetas fixed
prior to choosing the parameters of the encryption schemadtlition, starting from
any semantically secure encryption, they obtatned

— an encryption scheme that is semantically secure under adeouCCA2 attack
via a black-box construction, wherein the size of the pukdiz and ciphertext are
quadratic ing; and

— an encryption scheme that is non-malleable under a bouGdxR2 attack via a
non-black-box construction, wherein the size of the pukdig and ciphertext are
linear ing.

Combining their approach for the latter construction witin main result, we obtain an
encryption scheme that is non-malleable under a bounded2@@ack via a black-box
construction, wherein the size of the public key and cipgherre linear in.

2 While semantic security and non-malleability are equivalender a CCA2 attackopNO0O],
they are not equivalent under a bounded-CCA2 attack, asrsiiojgHHT07].



Separation between CCA2 security and non-malleability. Our main construction
has the additional property that the decryption algoritlmasinot query the encryption
functionality of the underlying scheme. Gertner, Malkirdavyers [cMm07] referred
to such constructions as shielding and they showed that theo shielding black-box
construction of CCAl1-secure encryption schemes from séo@dly secure encryption.
Combined with the fact that any shielding construction witemposed with our
construction is again shielding, this immediately yieloks tollowing:

Corollary (informal) There exists no shielding black-box construction of
CCAl-secure encryption schemes from non-malleable etiorypchemes.

Note that a CCA2-secure encryption scheme is trivially &§&A1-secure, so this also
implies a separation between non-malleability and CCAQssty for shielding black-
box constructions.

Our techniques. At a high level, we follow the cut-and-choose approach famn-co
sistency checks fromps\v06], wherein the randomness used for cut-and-choose is
specified in the secret key. A crucial component of our col§on is a message
encoding scheme with certain locally testable and selfexting properties, based on
the fact that low-degree polynomials are simultaneouslkydgerror-correcting codes
and a secret-sharing scheme; this has been exploited imatlyenerk on secure multi-
party computation with malicious adversariesv88]. We think this technique may
be useful in eliminating gener&lP-reductions in other constructions in cryptography
(outside of public-key encryption).

Towards CCA2 Security? The main obstacle towards achieving full CCA2 security
from either semantically secure encryptions or enhanagativor permutations using
our approach (and also thegv06] approach) lies in guaranteeing soundness of the
consistency checks against an adversary that can adgptieéérmine its queries
depending on the outcome of previous consistency checkselins conceivable that
using a non-shielding construction that uses re-encrgpti@y help overcome this
obstacle.

1.3 Overview of our Construction

Recall the DDN ppN0OOQ] and PSV psv06] constructions: to encrypt a message, one
(a) generateg encryptions of the same message under independent keygivéls)a
non-interactive zero-knowledge proof that all resultimghertexts are encryptions of
the same message, and (c) signs the entire bundle with amasignature. Itis in step
(b) that we use a generdlP-reduction, which in return makes the construction non-
black-box. In the proof of security, we exploit that factttfa a well-formed ciphertext,
we can recover the message if we know the secret key for ameaféncryptions.

How do we guarantee that a tuple bfciphertexts are encryptions of the same
plaintext without using a zero-knowledge proof and withmavtealing any information



about the underlying plaintext? Naively, one would like tseua cut-and-choose
approach (as has been previously used #0[/] to eliminate zero-knowledge proofs
in the context of secure two-party computation), namelyrylgcand verify that some
constant fraction, say/2 of the ciphertexts are indeed consistent. There are twesssu
with this approach:

— First, if only a constant number of ciphertexts are incdesis then we are unlikely
to detect the inconsistency. To circumvent this problem,omald decrypt by
outputting the majority of the remainirig/2 ciphertexts.

— The second issue is more fundamental: decrypting any of iphteetexts will
immediately reveal the underlying message, whereas it usialr that we can
enforce consistency while learning nothing about the ugiohey message.

We circumvent both issues by using a more sophisticateddémgof the message
m based on low-degree polynomials instead of merely makiogpies of the message
as in the above schemes. Specifically, we pick a random dégpedynomialp such
thatp(0) = m and we construct & x 10k matrix such that the’th column of the
matrix comprises entirely of the valygi). To verify consistency, we will decrypt a
random subset df columns, and check that all the entries in each of these ctdlare
the same.

— The issue that only a tiny number of ciphertexts are incoaisiss handled using
the error-correcting properties of low-degree polynosjigpecifically, each row of
a valid encoding is a codeword for the Reed-Solomon codeamutputL if it's
far from any codeword).

— Low-degree polynomials are also good secret-sharing sebeand learning a
random subset of columns in a valid encoding reveals nothing about the
underlying message:. Encodingm using a secret-sharing scheme appears in the
earlier work of Cramer et aldHH™07], but they do not consider redundancy or
error-correction.

As before, we encrypt all the entries of the matrix using pefedent keys and then
sign the entire bundle with a one-time signature. It is int@atrthat the encoding also
provides a robustness guarantee similar to that of rege#im messagg times: we
are able to recover the message for a valid encryption if wedegryptanyrow in the
matrix. Indeed, this is essentially our entire scheme with technical caveats:

— As with previous schemes, we will associate one pair of pig#gcret key pairs with
each entry of the matrix, and we will select the public keydocryption based on
the verification key of the one-time signature scheme.

— To enforce consistency, we will need a codeword check intewtdio the column
check outlined above. The reason for this is fairly subtlé &e will highlight the
issue in the formal exposition of our construction.

Decreasing ciphertext siz&lo encrypt am-bit message with security paramekeour
construction yield®(k?) encryptions of.-bit messages in the underlying scheme. Itis
easy to see that this may be reducedt& log® k) encryptions by reducing the number
of columns taO(log? k).



2 Preliminaries & Definitions

Notation. We adopt the notation used ingv06]. We us€gn] to denote{1,2,...,n}.
If A is a probabilistic polynomial time (hereafter, ppt) alglom that runs on input
x, A(z) denotes the random variable according to the distributfathe output ofA
on inputz. We denote byA(z;r) the output ofA on inputz and random coins.
Computational indistinguishability between two disttibns A and B is denoted by

A~ B and statistical indistinguishability by ~ B.

2.1 Semantically Secure Encryption

Definition 1 (Encryption Scheme) A triple (Gen, Enc, Dec) is an encryption scheme,
if Gen andEnc are ppt algorithms an@ec is a deterministic polynomial-time algorithm
which satisfies the following property:

CorrectnessThere exists a negligible functiqri-) such that for all sufficiently
large k, we have that with probability — (k) over (PK, SK) « Gen(1¥): for
all m, Pr[Decsk(Encpx(m)) = m] = 1.

Definition 2 (Semantic Security).LetTT = (Gen, Enc, Dec) be an encryption scheme
and let the random variableND,(TT, A, k), whereb € {0,1}, A = (A, A2) are ppt
algorithms andk € N, denote the result of the following probabilistic expenrhe

IND,(TT, A, k) :
(PK, SK) « Gen(1%)
(mo,my, STATE4) «— A1 (PK) S.t.|mgo| = |m1]
y «— Encex(mp)
D — Ay(y,STATE,4)
OutputD

(Gen, Enc, Dec) is indistinguishable under a chosen-plaintext (CPA) attaclseman-
tically secureif for any ppt algorithmsA = (A, A;) the following two ensembles are
computationally indistinguishable:

{INDO(H,A,k)}k b3 {INDl(ﬂ,A,k)}

eN keN

It follows from a straight-forward hybrid argument that samtic security implies
indistinguishability of multiple encryptions under indamlently chosen keys:

Proposition 1. LetTT = (Gen, Enc, Dec) be a semantically secure encryption scheme
and let the random variablenIND,(TT, A, k, £), whereb € {0,1}, A = (A1, As) are
ppt algorithms and: € N, denote the result of the following probabilistic expenme

mIND,(TT, A, &, £) :
Fori=1,...,0: (PK;, SK;) « Gen(1%)



((md,...,m§), (m}, ... ,m{), STATEA) « A1 ((PKy,...,PK¢))
s.t.lmg| = Imi| = --- = [mg| = |m{]

Fori=1,...,¢ y; < Enceg, (m})

D — As(y1,...,Ye, STATEA)

OutputD

then for any ppt algorithmsl = (A, A>) and for any polynomiab(k) the following
two ensembles are computationally indistinguishable:

{mlNDo(n,A, k,p(k))}keN £ {mINDl(ﬂ,A,k,p(k))}keN

2.2 Non-malleable Encryption

Definition 3 (Non-malleable Encryption [PsV06]). LetTT = (Gen, Enc, Dec) be an
encryption scheme and let the random varialNIRIE,(TT, A, k, ¢) whereb € {0,1},
A = (44, Ay) are ppt algorithms and:, ¢ € N denote the result of the following
probabilistic experiment:

NME, (T, A, k, ¢) :
(PK, SK) « Gen(1%)
(mg, m1, STATE4) «— A1(PK) S.t.|mg| = |my]
y «— Encex(mp)
(P15 -+ -y 1be) < Aa(y, STATEA)
ify; =y

Output(dy, ..., ds) whered; = |
put(d: ) Decsk(10;)  otherwise

(Gen, Enc, Dec) is non-malleable under a chosen plaintext (CPA) ati&ébr any ppt
algorithms A = (A;, As) and for any polynomiap(k), the following two ensembles
are computationally indistinguishable:

{NME()(”, A7 k,p(k))}kGN ~ {NMEl(ﬂv Aa k’p(k))}kEN

It was shown in psv06] that an encryption that is non-malleable (under Defini-
tion 3) remains non-malleable even if the adversdsyreceives several encryptions
under many different public keys (the formal experimentis &nalogue ofnIND for
non-malleability).

2.3 (Strong) One-Time Signature Schemes

Informally, a (strong) one-time signature schefGenSig, Sign, VerSig) is an existen-
tially unforgeable signature scheme, with the restrictiwt the signer signs at most one
message with any key. This means that an efficient advergaoy seeing a signature
on a message: of his choice, cannot generate a valid signature on a diffenessage,
or a different valid signature on the same messag8uch schemes can be constructed
in a black-box way from one-way functions90,L 79], and thus from any semantically
secure encryption scheni@en, Enc, Dec) using black-box access only @&n.



3 Construction

Given an encryption schem& = (Gen, Enc, Deg we construct a new encryption
schemell = (NMGen®®", Nl\/IEncGen Enc NMDec%e™ Dec)  summarized in Figure 2,
and described as follows.

Polynomial encodingWe identify {0, 1}™ with the fieldGF(2"). To encode a message
m € {0,1}", we pick a random degréepolynomialp overGF(2") such thaip(0) =

m and construct & x 10k matrix such that thé’th column of the matrix comprise
entirely of the value; = p(7) (where0, 1, ..., 10k are the lexicographically firdk +

1 elements inGF(2") according to some canonical encoding). Note that. . ., s10x)

is both a(k + 1)-out-of-10k secret-sharing afr using Shamir’s secret-sharing scheme
and a codeword of the Reed-Solomon cddewhere

W={(p(1),...,p(10k) | pis a degreé polynomial}.

Note thatWV is a code over the alphabgt, 1}™ with minimum relative distancé.9,
which means we may efficiently correct upltd5 fraction errors using the Berlekamp-
Welch algorithm.{m: add referende

Encryption. The public key folT comprise20k? public keysE indexed by a triplet
(1,7,b) € [k] x [10k] x {0,1}; there are two keys corresponding to each entry of a
k x 10k matrix. To encrypta message we (a) computésy, ..., s1o, ) as in the above-
mentioned polynomial encoding, (b) generg&siG, VksIG) for a one-time signature,
(c) compute & x 10k matrixc = (c; ;) of ciphertexts where; ; = Enc;,»: (s;), and

(d) signe usingsksIG. v

EnCPK;)}] (81) EnCPK;J}2 (82) ce EnCPK;quk (Slok)
EI’ICF,ng1 (51) EI’ICPK;z2 (82) ce EnCPK2210k (ka)
EnCPK:"1 (s1) EnCPKZ’C2 (s2) - EncPK:"mk (s10k)

Consistency ChecksA valid ciphertext inlT satisfies two properties: (1) the first row
is an encryption of a codeword W and (2) every column comprisésencryptions
of the same plaintext. We want to design consistency chdwsreject ciphertexts
that are “far” from being valid ciphertexts undér For simplicity, we will describe the
consistency checks as applied to the underlying matrixaihpgxts. The checks depend
on a random subsét of £ columns chosen during key generation.

COLUMN CHECK (column-check): We check that each of thHecolumns in
S comprises entirely of the same value.



CODEWORD CHECK (codeword-check): We find a codeword that agrees
with the first row of the matrix in at lea8t: positions; the check fails if no
suchw exists. Then we check that the first row of the matrix agreels wi
w at thek positions indexed b

The codeword check ensures that with high probability, tisefow of the matrix agrees
with w in at leastlOk — o(k) positions. We explain its significance after describing the
alternative decryption algorithm in the analysis.

Decryption. To decrypt, we (a) verify the signature and run both constehecks,
and (b) if all three checks accept, decode the codewoathd output the result, other-
wise outputl. Note that to decrypt we only need tBek secret keys corresponding to
the first row of the matrix anék secret keys corresponding to each of trmlumns in
S.

Note that the decryption algorithm may be stream-linedirfstance, by running the
codeword check only if the column check succeeds. We chogzesent the algorithm
as is in order to keep the analysis simple; in particular, vilerun both consistency
checks independent of the outcome of the other.

4 Analysis

Having presented our construction, we now formally statéf@ove our main result:

Theorem 1. (Main Theorem, restated).

Assume there exists an encryption schefhe= (Gen,Enc,Dec) that is seman-
tically secure under a CPA attack. Then there exists an eiony schemdl =
(NMGen®", NMEnc®®™E". NMDec®":P*) that is non-malleable under a CPA attack.

We establish the theorem (as ipgnO0pPSVO6], etc) via a series of hybrid
arguments and deduce indistinguishability of the interiatedhybrid experiments
from the semantic security of the underlying schefmeunder some set of public
keys I'. To do so, we will need to implement an alternative decryptdgorithm
NMDec* that is used in the intermediate experiments to simulatat¢heal decryption
algorithm NMDec in the non-malleability experiment. We ned&dDec” to achieve
two conflicting requirements:

— NMDec* and NMDec must agree on essentially all inputs, including possibly
malformed ciphertexts;

— We can implementiMDec* without having to know the secret keys corresponding
to the public keys in’".

Of course, designinMDec” is difficult precisely becaudeMDec uses the secret keys
corresponding to the public keys in

Here is a high-level (but extremely inaccurate) descripibhowNMDec* works:
I" is the set of public keys corresponding to the first row of khe 10k matrix. To



NMGen(1%):

1. Fori € [k],j € [10k],b € {0,1}, run Gen(1¥) to generate key-paifs
(PK?;, sK? ).

2. Pick a random subsstcC [10k] of sizek.

SetPK = {(PK?J, PKi ;) i€ [k],je [10k]} andsk = {S, (sk?

0,77 SKzl,j) | (S
(K], € [10k] .

NMEncpy (m):
1. Pick randomug,...,a; € GF(2") and sets; = p(j),j € [10k] where
p(z) =mo + a1z + ...+ apz”.
2. RunGenSig(1%) to generatésksiG, VKsIG). Let (vy, .. .,v;) be the binary
representation ofKsIG.
3. Compute the ciphertext ; — EncPK;gij(sj), fori € [k],7 € [10F].
4. Compute the signature«— SignSKS,G(c) wherec = (¢; ;).
Output the tuplée, VKSIG, o].

NMDecsk([e, VKSIG, o]):
1. (sig-check) Verify the signature with/erSig, < c[c, o]
2. Letc = (¢;;) andvksIiG = (v1,...,v;). Computes; = DecSKfl_(ch),
»J

j=1,...,10k and the codewordh = (w1, ..., wiox) € W that agrees with
(s1,-..,S10k) in at leask positions. If no such codeword exists, output

3. (column-check) For all j € S, check that Decge (c1;) =

3J

DeCSKg?j (CQ,J') == DeCSK:’fj (Ck-,j)-

4. (codeword-check) For allj € S, check that; = w;.

If all three checks accept, output the messageorresponding to the codeward
w; else, outputl.

Fig.2. THE NON-MALLEABLE ENCRYPTION SCHEME TT

implementNMDec*, we will decrypt thei'th row of the matrix of ciphertexts, for some
i > 1, which the column check (if successful) guarantees to agitbethe first row in
most positions; error correction takes care of the tinytfoacof disagreements.

4.1 Alternative Decryption Algorithm NMDec*

LetvksiG* = (v],...,v}) denote the verification key in the challenge ciphertextigive
to the adversary in the non-malleability experiment, artdviesic = (v, ..., vk)
denote the verification key in (one of) the ciphertext(s)agated by the adversary.
First, we modify the signature check to also outguif there is a forgery, namely
VKSIG = VKSIG*. Next, we modify the consistency checks (again, as apptietie
underlying matrix of plaintexts) as follows:



CoLUMN CHECK (column-check*): This is exactly as before, we check that
the each of thé& columns inS comprises entirely of the same value.

CODEWORD CHECK (codeword-check™): Leti be the smallest value such
thatv; # v} (which exists becaus&<siG # vKksiG*). We find a codeword
w that agrees with théth row of the matrix in at leaskk positions (note
agreement threshold is smaller than before); the check ifeslo suchw
exists. Then we check that the first row of the matrix agredis wiat the
k positions indexed byp.

To decrypt, run the modified signature and consistency chexid if all three checks
accept, decode the codewarsdand output the result, otherwise outputTo implement
the modified consistency checks and decryption algorithepmly need theé0k secret
keys indexed bywksiG* for each row of the matrix, and as before, tesecret keys
corresponding to each of tikecolumns inS.

Remark on the Codeword Checht first, the codeword check may seem superfluous.
Suppose we omit the codeword check, and as before, defioebe a codeword that
agrees with the first row ifik positions and with thé€'th row in 8% positions in the re-
spective decryption algorithms; the gap is necessary witdk account inconsistencies
not detected by the column check. Now, consider a malforrpdtbctexty for TT where

in the underlying matrix of plaintexts, each row is the sarogupted codeword that
agrees with a valid codeword in exac8ysk positions. Without the codeword checks,
«» will be an invalid ciphertext according tdMDec and a valid ciphertext according
to NMDec* and can be used to distinguish the intermediate hybridiligions in the
analysis; with the codeword checks,is an invalid ciphertext according to both. It
is also easy to construct a problematic malformed cipheftexhe case where both
agreement thresholds are set to the same valu&{ay

4.2 A Promise Problem
Recall the guarantees we would like frdwiviDec andNMDec*:

— On input a ciphertext that is an encryption of a messagenderTT, bothNMDec
andNMDec™ will output m with probability1.

— On input a ciphertext that is “close” to an encryption of a sag@em underTT,
both NMDec and NMDec* will output m with the same probability (the exact
probability is immaterial) and. otherwise.

— On input a ciphertext that is “far” from any encryption, thkath NMDec and
NMDec* output_L with high probability.

To quantify and establish these guarantees, we considéltbeing promise problem
(MMy,TTx) that again refers to the underlying matrix of plaintexts. iAstance is a
matrix of k by 10k values in{0,1}" U L.

Ty (YEsinstances) — for some € W, every row equals.



Iy (NO instances) — either there exist two rows that @refar (i.e. disagree in at
leastk positions), or the first row i8.1-far from every codeword inV (i.e. disagree
with every codeword in at leatpositions).

Valid encryptions correspond to thy&s instances, whileio instances will correspond
to “far” ciphertexts. To analyze the success probabilityanfadversary, we examine
each ciphertext it outputs with some underlying matrixZ of plaintexts (which may
be aveEs or aNo instance or neither) and show that b&tWDec andNMDec* agree
on with high probability. To facilitate the analysis, we caesi two cases:

—If M € Tly, then it fails the column/codeword checks in both decryptio
algorithms with high probability, in which case both dedigp algorithms output
L. Specifically, if there are two rows that abel-far, then column check rejects
M with probability 1 — 0.9%. On the other hand, if the first row &1-far from
every codeword, then the codeword checkik Dec rejectsM with probability
1 and that inNMDec" rejectsM with probability at leastt — 0.9%; that is, with
probability1 — 0.9%, both codeword checks IMMDec andNMDec* rejectsM .

— If M ¢ Ty, then both decryption algorithms always output the sameanfor all
choices of the seff, provided there is no forgery. FiXI ¢ TT and a seb. The first
row is0.9-close to codewora € W and we know in addition that every other row
is 0.9-close to the first row and thus8-close tow. Therefore, we will recover the
same codeword and message: whether we decode the first row within distance
0.1, or any other row within distand&2. This means that the codeword checks in
both decryption algorithms compare the first row with the sammdewordw. As
such, both decryption algorithms outputwith exactly the same probability, and
whenever they do not output, they output the same message

4.3 Proof of Main Theorem
In the hybrid argument, we consider the following variamftN®E;, as applied tdT,
wherevksiG* denotes the verification key in the ciphertgxt NMEncpy (my):
Experiment NME,(,I) — NMEZ()” proceeds exactly liklNME,;,, except we replace
sig-checkin NMDec with sig-check*:

(sig-check™) Verify the signature withVerSig,,sc, o]. Output L if the

signature fails to verify or if/KSIG = VKSIG*.

Experiment NME,(,Z) — NMEZ()Q) proceeds exactly likeéNME, except we replace
NMDec with NMDec™:

NMDecg, ([e, VKSIG, o]):



1. (sig-check™) Verify the signature witherSig, ¢ [c, o]. Output L if the
signature fails to verify or if/KSIG = VKSIG*.
2. Lete = (¢;;) andvksIG = (v1,...,v;). Leti be the smallest value
such thatv; # v;. Computes; = DecSK:ij(q_’j),j =1,...,10k and
w = (wr,...,wior) € W that agrees Wiﬂ(sl, ..., S10k) in at least8k
positions. If no such codeword exists, outgut
3. (column-check®) Forallj € S, CheckthaDeCSKvlf}j (c1,5) = DecSK;?j (c2) =
e = DeCSKchj (CkJ).
4. (codeword-check®) Forallj € S, check thaDecSK;uj (c1,5) = wj.
If all three checks accept, output the mesamrrespohding to the codeword
w; else, outputL.

Claim. Forb € {0,1}, we have{NMEb(ﬂ,A, k:,p(k))} 9 {NMEg”(n,A,k,p(k))}
Proof. This follows readily from the security of the signature stiee a
Claim. Forb € {0,1}, we have{NMEg”(n, A, k,p(k:))} L {NMEZ@ (IT, A, k,p(k:))}

Proof. We will show that both distributions are statistically @d®r all possible coin
tosses in both experiments (specifically, thosédfGen, A and NMEnc) except for
the choice ofS in NMGen. Once we fix all the coin tosses apart from the choice of
S, the output(vy, ..., 1,)) of Ay are completely determined and identical in both
experiments. We claim that with probability— 2p(k) - 0.9 = 1 — neg(k) over the
choice ofS, the decryptions ofi1, . . . , 1, (x)) agree in both experiments. This follows
from the analysis of the promise problem in Section 4.2. a

Claim. For every ppt maching, there exists a ppt machidesuch that fob € {0, 1},
{NME}}’(H,A, k,p(k))} = {mINDb(E7B,k,9k2)}

Proof. The machineB is constructed as followsB participates in the experiment
mIND,, (the “outside”) while internally simulatingl = (4;, A2) in the experiment

NME?.

— (pre-processing) Pick a random subset={ui,...,u;} of [10k] and run
GenSig(1*) to generatg(SksIG*, VKsIG*) and set(vf,...,v}) = VKSIG*. Let
¢ be a bijection identifying (¢, 7) | i € [k],j € [L0k] \ S} with [9%?].

— (key generation)B receives(PKjy,...,PKgz2) from the outside and simulates
NMGen as follows: for alli € [k],j € [10k], 3 € {0,1},

(PK; .

sk? ) = | (PRatig), L) if G=viandj ¢ 5
" Gen(1") otherwise



— (message selection) Létng, m1) be the pair of message$, returns.B then
choosest: random valuegv,,,...,v.,) € {0,1}™ and computes two degrde

polynomialspg, p1 wherepg interpolates thé-+1 points(0, mg), (w1, Yuy ), - - - 5 (Uk, Yuy,)

forg € {0,1}. B SetSmg(i’j) = pg(j), fori € [k],j € [10k] \ S and forwards
(tmd,...,md¥), (m}, ..., m¢*")) to the outside.
— (ciphertext generation3 receives(yi, ..., Yor2

to the distributionEncey, (m;), . .., Encex,, (m})
[e, VKSIG*, o] as follows:

o Yo(i,5) ifj ¢S
9 = ) Enc_.:(y;) otherwise

(2%

from the outside (according

)
’“2)) and generates a ciphertext

B then computes the signatuwre— Signg, - (¢) and forwardge, VkSIG*, o] to
A, . Itis straight-forward to verify thdt, vksSIG*, o] is indeed a random encryption
of my, underTT.

— (decryption) Upon receiving a sequence of ciphertéxts . .., v, x)) from As,
B decrypts these ciphertexts usiNg/Dec* as ian\/IEff). Note that to simulate
NMDec", it suffices forB to possess the secret kd)&xfj | B=1-vforje S},
which B generated by itself. a

Combining the three claims, we conclude that for every ppeeshryA, there is a ppt
adversaryB such that fob € {0, 1},

{NME, (T, 4.k, p(k)) } ~ {NME[" (IT, 4,k p()) }
L {NMEZ()Q)(I'LA, k,p(k))} - {mINDb(E7B,k,9k2)}

By Prop 1,mINDq(E, B, k, 9k?) ~ mIND; (E, B, k, 9k?), which concludes the proof
of Theorem 1.

5 Achieving Bounded-CCA2 Non-Malleability

We sketch how our scheme may be modified to achieve non-rbditgaunder a
bounded-CCA2 attack. Here, we allow the adversary to qlegy at mostq times

in the non-malleability experiment (but it must not qué&rc on y). The modification

is the straight-forward analogue of theH{H™07] modification of the psv06] scheme:
we increase the number of columns in the matrix fraih to 80(k + ¢), and the degree
of the polynomialp and the size of from & to 8(k + ¢), and propagate the changes
accordingly. The analysis is basically as before, excepthfe following claim (where

NME-q-CCA{", NME-q-CCA? are the respective analogues\i¥IE", NME(V):
Claim. Forb € {0,1}, we have

{NME-q-CCAg”(n, A, k,p(k))} L {NME-q-CCAf) (T, A, k,p(k))}



Proof (sketch)As before, we will show that both distributions are statislly close

for all possible coin tosses in both experiments (specljicdiose ofNMGen, A and
NMEnc) except for the choice of in NMGen. However, we cannot immediately
deduce that the output of; are completely determined and identical in both exper-
iments, since they depend on the adaptively chosen querglDec, and the answers
depend orS. Instead, we will consider all? possible computation paths df which

are determined based on theyuery/answer pairs froliMDec. For each query, we
consider the underlying matrix of plaintexd :

— If M € 1Ty, then we assumdMDec returns..
— If M ¢ Ty, then we consider two branches depending on the two possible
outcomes of the consistency checks.

We claim that with probability — 29 - p(k) - 0.98(+9) > 1 —neg(k) over the choice of
S, the decryptions oft1, . . ., ¥,(x)) agree in both experiments in @t computation
paths. a

Remark on achieving (full) CCA2 securityt should be clear from the preceding
analysis that the barrier to obtaining full CCA2 securigglin handling queries outside
Ty . Specifically, with even just a (full) CCAL1 attack, an adweyscould querfNMDec
on a series of adaptively chosen ciphertexts correspondintatrices outsidél y to
learn the seb upon which it could readily break the security of our constin.
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