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1 Introduction

Zero-knowledge proofs [4] are protocols whereby a prover can convince a verifier
that some assertion is true with the property that the verifier learns nothing
else from the protocol. This remarkable property is easily seen to be impossible
for the classical notion of a proof system, where the proof is a single string sent
from the prover to the verifier, as the proof itself constitutes ‘knowledge’ that
the verifier could not have feasibly generated on its own (assuming NP 6⊆ BPP).
Thus zero-knowledge proofs require some augmentation to the classical model
for proof systems.

The original proposal of Goldwasser, Micali, and Rackoff [4] augments the
classical model with both randomization and multiple rounds of interaction be-
tween the prover and the verifier, leading to what are called interactive zero-
knowledge proofs, or simply zero-knowledge proofs. An alternative model, pro-
posed by Blum, Feldman, and Micali [5, 6], augments the classical model with
a set-up in which a trusted dealer randomly generates a reference string that is
shared between the prover and verifier. After this reference string is generated,
the proof consists of a single message from the prover to the verifier. Thus, these
are referred to as noninteractive zero-knowledge proofs. Since their introduction,
there have been many constructions of both interactive and noninteractive zero-
knowledge proofs, and both models have found numerous applications in the
construction of cryptographic protocols.

It is natural to ask what is the relation between these two models, that is:

Can every assertion that can be proven with an interactive zero-knowledge
proof also be proven with a noninteractive zero-knowledge proof?

Our main result is a positive answer to this question in the ‘help model’ of
Ben-Or and Gutfreund [7], where the dealer is given access to the statement to
be proven when generating the reference string. We hope that this will serve
as a step towards answering the above question for more standard models of
noninteractive zero knowledge, such as the common reference string model and
the public parameter model.

1.1 Models of Zero Knowledge

Interactive Zero Knowledge. Recall that an interactive proof system [4] for a
problem Π is an interactive protocol between a computationally unbounded
prover P and a probabilistic polynomial-time verifier V that satisfies the follow-
ing two properties:

– Completeness: if x is a yes instance of Π, then the V will accept with high
probability after interacting with the P on common input x.

– Soundness: if x is a no instance of Π, then for every (even computationally
unbounded) prover strategy P ∗, V will reject with high probability after
interacting with P ∗ on common input x.



Here, we consider problems Π that are not only languages, but also ones that are
promise problems, meaning that some inputs can be neither yes nor no instances,
and we require nothing of the protocol on such instances. (Put differently, we
are ‘promised’ that the input x is either a yes or a no instance.) We write IP
for the class of promise problems possessing interactive proof systems.

As is common in complexity-theoretic studies of interactive proofs and zero
knowledge, we allow the honest prover P to be computationally unbounded, and
require soundness to hold against computationally unbounded provers. However,
cryptographic applications of zero-knowledge proofs typically require an hon-
est prover P that can be implemented in probabilistic polynomial-time given a
witness of membership for x, and it often suffices for soundness to hold only
for polynomial-time prover strategies P ∗ (leading to interactive argument sys-
tems [8]). It was recently shown how to extend the complexity-theoretic studies
of interactive zero knowledge proofs to both polynomial-time honest provers [9],
and to argument systems [10]; we hope that the same will eventually happen for
noninteractive zero knowledge.

Intuitively, we say that an interactive proof system is zero knowledge if the
verifier ‘learns nothing’ from the interaction other than the fact that the asser-
tion being proven is true, even if the verifier deviates from the specified protocol.
Formally, we require that there is an efficient algorithm, called the simulator,
that can simulate the verifier’s view of the interaction given only the yes in-
stance x and no access to the prover P . The most general notion, computational
zero knowledge or just zero knowledge, requires this to hold for all polynomial-
time cheating verifier strategies (and the simulation should be computationally
indistinguishable from the verifier’s view). A stronger notion, statistical zero
knowledge, requires security against even computationally unbounded verifier
strategies (and the simulation should be statistically indistinguishable from the
verifier’s view). We write ZK (resp., SZK) to denote the class of promise prob-
lems possessing computational (resp., statistical) zero-knowledge proof systems.

Noninteractive Zero Knowledge. For noninteractive zero knowledge [5, 6], we
introduce a trusted third party, the dealer, who randomly generates a reference
string that is provided to both the prover and verifier. After that, the prover
sends a single message to the verifier, who decides whether to accept or reject.
Completeness and soundness are defined analogously to interactive proofs, except
that the probabilities are now also taken over the choice of the reference string.
Computational and statistical zero knowledge are also defined analogously to
the interactive case, except that now the reference string is also considered part
of the verifier’s view, and must also be simulated.

There are a number of variants of the noninteractive model, depending on
the form of the trusted set-up performed by the dealer. In the original, common
random string (crs) model proposed by Blum et al. [5, 6], the reference string is
simply a uniformly random string of polynomial length. This gives rise to the
classes NIZKcrs and NISZKcrs of problems having noninteractive computational
and statistical zero-knowledge proofs in the common random string model. A
natural and widely used generalization is the public parameter model, where the



reference string need not be uniform, but can be generated according to any
polynomial-time samplable distribution. That is, we obtain the reference string
by running a probabilistic polynomial-time dealer algorithm D on input 1n,
where n is the length of statements to be proven (or the security parameter).
This model gives rise to the classes NIZKpub and NISZKpub.

A further generalization is the help model introduced by Ben-Or and Gut-
freund [7]. In this model, the distribution of the reference string is allowed to
depend on the statement x being proven. That is, the reference string is gener-
ated by running a probabilistic polynomial-time dealer algorithm D on input x.
We denote the class of problems having computational (resp. statistical) zero-
knowledge proofs in this model as NIZKh (resp., NISZKh). This model does not
seem to suffice for most cryptographic applications, but its study may serve as a
stepping stone towards a better understanding of the more standard models of
noninteractive zero knowledge mentioned above. Indeed, any characterizations of
noninteractive zero knowledge in the help model already serve as upper bounds
on the power of noninteractive zero knowledge in the common random string
and public parameter models.

We remark that one can also consider protocols in which we allow both a
trusted dealer and many rounds of interaction. The most general model allows
both help and interaction, yielding the classes ZKh and SZKh.

Quantum Interactive and Noninteractive Zero Knowledge. The definitions of in-
teractive proofs and zero knowledge extend naturally to the quantum setting. A
quantum interactive proof system ([11]) for a promise problem Π is an interac-
tive protocol between a computationally unbounded prover P and a quantum
polynomial-time verifier V that satisfies completeness and soundness properties
as in the classical case and where the interaction is via quantum messages.

For quantum zero knowledge [12], we require that the verifier’s view (which
consists of qubits) can be simulated by a quantum polynomial-time machine.
QSZK denotes the class of promise problems possessing quantum statistical zero-
knowledge proof systems. Kobayashi [13] defined quantum noninteractive zero
knowledge by having a dealer generate and share a maximally entangled quantum
state between the prover and verifier. We write QNISZK to denote the class
of promise problems possessing such quantum noninteractive statistical zero-
knowledge proof systems.

In this paper, we define two more variants of the quantum noninteractive
model, depending on the form of the trusted help created by the dealer. When
the help is a pure quantum state that depends on the statement x being proven
we have the class QNISZKh. When the help is a mixed quantum state that
depends on x, we have the class QNISZKmh. Last, the class QSZKh refers to
protocols where we allow both a pure quantum help and interaction.

1.2 Previous Work

Recall that we are interested in the relationship between the interactive zero-
knowledge classes ZK and SZK and their various noninteractive counterparts,



which we will denote by NIZK and NISZK when we do not wish to specify the
model. That is, for a given model of noninteractive zero knowledge, we ask: Does
ZK = NIZK and SZK = NISZK?

ZK vs. NIZK. A first obstacle to proving equality of ZK and NIZK is that NIZK
is a subset of AM, the class of problems having constant-round interactive proof
systems [14, 15], whereas ZK may contain problems outside of AM. So, instead
of asking whether ZK = NIZK, we should instead ask if ZK ∩AM = NIZK.

Indeed, this equality is known to hold under complexity assumptions. If one-
way permutations exist, then it is known that ZK = IP [16–18] and NIZKcrs =
AM [19], and thus ZK ∩ AM = NIZKcrs = NIZKpub = NIZKh. (In fact, if we
replace NIZKcrs with NIZKpub, these results hold assuming the existence of any
one-way function [20–23].) Thus, for computational zero knowledge, the inter-
esting question is whether we can prove that ZK∩AM = NIZK unconditionally,
without assuming the existence of one-way functions. To our knowledge, there
have been no previous results along these lines.

SZK vs. NISZK. For relating SZK and NISZK, the class AM no longer is a
barrier, because it is known that SZK ⊆ AM [24].

The relationship between SZK and NISZK was first addressed in the work
of Goldreich et al. [25]. There it was shown that SZK and NISZKcrs have the
‘same complexity’ in the sense that SZK = BPP iff NISZKcrs = BPP. Moreover,
it was proven that SZK = NISZKcrs iff NISZKcrs is closed under complement.

In addition to introducing the help model, Ben-Or and Gutfreund [7] studied
the relationship between NISZKh and SZK. They proved that NISZKh ⊆ SZK
(in fact that SZKh = SZK), and posed as an open question whether SZK ⊆
NISZKh.3

1.3 Our Results

We show that interactive zero knowledge does in fact collapse to noninteractive
zero knowledge in the help model, both for the computational case (restricted
to AM) and the statistical case:

Theorem 1. ZK ∩AM = NIZKh.

Theorem 2. SZK = NISZKh.

These results and their proofs yield new characterizations of the classes ZK
and SZK. For example, we obtain a new complete problem for SZK, namely the
NISZKh-complete problem given in [7]. Similarly, we obtain a new characteriza-
tion of ZK, which amounts to a computational analogue of the NISZKh-complete
problem. As suggested in [7], these results can also be viewed as first steps to-
wards collapsing interactive zero knowledge to noninteractive zero knowledge
3 In fact, their conference paper [22] claimed to prove that SZK = NISZKh, but this

was retracted in the journal version [7].



in the public parameter or common reference string model. For example, to
show SZK = NISZKcrs (the question posed in [26]), it now suffices to show that
NISZKh = NISZKcrs.

As mentioned above, one can consider even more general classes ZKh and
SZKh that incorporate both help and interaction. Ben-Or and Gutfreund [7]
showed that SZKh = SZK. We prove an analogous result for computational zero
knowledge:

Theorem 3. ZKh = ZK.

In the quantum setting, very little is known about the relation of interac-
tive and noninteractive quantum zero knowledge. Here, we start by providing
two complete problems for the class QNISZK. Then, we define two variants of
quantum noninteractive zero knowledge depending on the ‘help’ created by the
dealer. In the case where the help is a pure quantum state that depends on the
input x, we prove an analogue of Theorem 2:

Theorem 4. QNISZKh = QSZK = QSZKh.

In the case where the help is a mixed quantum state, we show that the class
QNISZKmh contains AM and hence is most probably larger than QSZK.

1.4 Techniques

Here we sketch the techniques underlying the forward inclusions in Theorems 1
and 2, showing that interactive zero knowledge is a subset of noninteractive zero
knowledge in the help model.

We begin with the case of statistical zero knowledge. Our proof that SZK ⊆
NISZKh is similar to the approach suggested by Goldreich et al. [25] for showing
that SZK = NISZKcrs. They showed that this question boils down to proving
that co-NISZKcrs = NISZKcrs or in other words that the complement of the
NISZKcrs-complete problem Entropy Approximation belongs to NISZKcrs.
Similarly, the core part of our proof is showing that co-NISZKcrs ⊆ NISZKh,
which then we use to deduce that SZK ⊆ NISZKh.

More specifically, our goal is to reduce the SZK-complete problem Entropy
Difference (ED) to the NISZK-complete problem Image Intersection Den-
sity (IID). Following [25], we start by reducing ED to several instances of
Entropy Approximation (EA) and its complement (EA). We know that
EA ∈ NISZKh since by definition NISZKcrs ⊆ NISZKh. Next, inspired by Ben-
Or and Gutfreund’s attempt [22] to reduce ED to IID and relying on ideas from
[27, 28], we prove that EA also belongs to NISZKh. Thus we obtain a reduction
from ED to several instances of IID. We then conclude our proof by showing
that NISZKh has enough boolean closure properties to combine these several
instances into a single instance of IID. We establish these closure properties of
NISZKh and IID using techniques developed in [27, 29] to show boolean closure
properties for interactive SZK.



In the case of computational zero knowledge, we prove that ZK ∩ AM ⊆
NIZKh by using certain variants of commitment schemes. Recall that a commit-
ment scheme is a two-stage interactive protocol between a sender and a receiver.
In the commit stage, the sender ‘commits’ to a secret message m. In the reveal
stage, the sender ‘reveals’ m and tries to convince the verifier that it was the
message committed to in the first stage. Commitments should be hiding, mean-
ing that an adversarial receiver will learn nothing about m in the commit stage,
and binding, meaning that after the commit stage, an adversarial sender should
not be able to successfully reveal two different messages (except with negligi-
ble probability). Each of these security properties can be either computational,
holding against polynomial-time adversaries, or statistical, holding even for com-
putationally unbounded adversaries. Commitments are a basic building block for
zero-knowledge protocols, e.g. they are the main cryptographic primitive used
in the constructions of zero-knowledge proofs for all of NP [16] and IP [17, 18].

A relaxed notion is that of instance-dependent commitment schemes [30–32].
Here the sender and receiver are given an instance x of some problem Π as
auxiliary input. We only require the scheme to be hiding if x is a yes instance,
and only require it to be binding if x is a no instance. They are a relaxation of
standard commitment schemes because we do not require hiding and binding to
hold simultaneously. Still, as observed in [31], an instance-dependent commit-
ment scheme for a problem Π ∈ IP suffices to construct zero-knowledge proofs
for Π because the constructions of [16–18] only use the hiding property for zero
knowledge (which is only required on yes instances), and the binding property
for soundness (which is only required on no instances).

We show that a similar phenomenon holds for noninteractive zero knowledge
in the help model: If a problemΠ ∈ AM has a certain kind of instance-dependent
commitment scheme, then Π ∈ NIZKh. For this, the instance-dependent com-
mitments naturally need to be noninteractive. On the other hand, they only need
to be binding (on no instances) in case the sender is honest during the commit
phase. (Our observation is that such commitments can be used to implement
the hidden bits model of [19].)

Thus our task is reduced to showing that every problem in ZK has a noninter-
active instance-dependent commitment scheme that is computationally hiding
on yes instances and statistically binding for honest senders on no instances.
To prove this, we begin by observing that a problem Π has such an instance-
dependent commitment scheme with statistical hiding if and only if Π reduces
to IID. Hence, the needed commitments already follow for all of SZK from our
first result (SZK ⊆ NISZKh). To obtain commitments for all of ZK, we use a
characterization of ZK in terms of SZK and ‘instance-dependent one-way func-
tions’ [33], and combine the instance-dependent commitment schemes we obtain
from both SZK and the instance-dependent one-way functions.

An alternative construction of the instance-dependent commitments we need
can be obtained by using the concurrent work of Ong and Vadhan [34]. They
showed that every problem in ZK (resp., SZK) has an instance-dependent com-
mitment scheme that is computationally (resp., statistically) hiding on yes in-



stances and statistically binding on no instances. While their commitments are
interactive, they can be made noninteractive if we assume that the sender is hon-
est during the commit phase (by having the sender simulate both parties). Thus,
our work can be viewed as a (substantial) simplification to their constructions
for the case of honest senders.

2 Definitions and Preliminaries

2.1 Promise Problems

Promise problems are a more general variant of decision problems than lan-
guages. A promise problem Π is a pair of disjoint sets of strings (ΠY ,ΠN ),
where ΠY is the set of YES instances and ΠN is the set of NO instances. The
computational problem associated with any promise problem Π is: given a string
that is “promised” to lie in ΠY ∪ΠN , decide whether it is in ΠY or ΠN . Reduc-
tions from one promise problem to another are natural extensions of reductions
between languages. Namely, we say Π reduces to Γ (written Π 4 Γ ) if there
exists a polynomial time computable function f such that x ∈ ΠY ⇒ f(x) ∈ ΓY

and x ∈ ΠN ⇒ f(x) ∈ ΓN . We can also naturally extend the definitions of
complexity classes by letting the properties of the strings in the languages be
conditions on the YES instances, and properties of strings outside of the lan-
guage be conditions on NO instances.

2.2 Instance-Dependent Cryptographic Primitives

Many of the objects that we will be constructing for use in our zero knowl-
edge constructions will be instance dependent. Hence, we will modify com-
mon cryptographic primitives such as one-way functions by allowing them to
be parametrized by some string x, such that the cryptographic properties will
only be guaranteed to hold if x is in some set I.

Definition 5. An instance-dependent function ensemble is a collection of func-
tions F = {fx : {0, 1}p(|x|) → {0, 1}q(|x|}x∈{0,1}∗ , where p(·) and q(·) are poly-
nomials. F is polynomial-time computable if there exists a polynomial-time al-
gorithm F such that for all x ∈ {0, 1}∗ and y ∈ {0, 1}p(|x|), F (x, y) = fx(y).

Definition 6. An instance-dependent one-way function on I is a polynomial-
time instance-dependent function ensemble F = {fx : {0, 1}p(|x|) → {0, 1}q(|x|}x∈{0,1}∗ ,
such that for every nonuniform PPT A, there exists a negligible function ε(·) such
that for all x ∈ I,

Pr
[
A(x, fx(Up(|x|))) ∈ f−1

x (fx(Up(|x|)))
]
≤ ε(|x|)

Definition 7. An instance-dependent probability ensemble on I is a collection
of random variables {Xx}x∈{0,1}∗ , where Xx takes values in {0, 1}p(|x|) for some
polynomial p. We call such an ensemble samplable is there exists a probabilistic
polynomial-time algorithm M such that for every input x, M(x) is distributed
according to Xx.



Definition 8. Two instance-dependent probabilistic ensembles {Xx} and {Yx}
are computationally indistinguishable on I ⊂ {0, 1}∗ if for every nonuniform
PPT D, there exists a negligible ε(·) such that for all x ∈ I,

Pr [D(x,Xx) = 1]− Pr [D(x, Yx) = 1] | ≤ ε(|x|)

Similarly, we say {Xx} and {Yx} are statistically indistinguishable on I ⊂
{0, 1}∗ if the above is required for all functions D. If Xx and Yx are identically
distributed for all x ∈ I, we say they are perfectly indistinguishable .

We will sometimes use the informal notation X
c≡Y to denote that ensembles

X and Y are computationally indistinguishable.

Definition 9. An instance-dependent pseudorandom generator on I is a polynomial-
time instance-dependent function ensemble G = {Gx : {0, 1}p(|x|) → {0, 1}q(|x|}
such that q(n) > p(n), and the probability ensembles {Gx(Up(|x|)}x and {Uq(|x|)}x
are computationally indistinguishable on I.

2.3 Probability distributions

In this section, we define several tools that are useful for analysing properties of
probability distributions.

Definition 10. The statistical difference between two random variables X and
Y taking values in some domain U is defined as:

∆(X,Y ) = max
S⊂U
|Pr [X ∈ S]− Pr [Y ∈ S] | = 1

2

∑
x∈U
|Pr [X = x]− Pr [Y = x] |

Definition 11. For an ordered pair of random variables (X,Y ), we define their
disjointness to be:

Disj(X,Y ) = Pr
X

[X ∈ Supp(Y )]

and we define their mutual disjointness:

MutDisj(X,Y ) = min(Disj(X,Y ),Disj(Y,X)).

Note that disjointness is a more stringent measure of the disparity between
two distributions than statistical difference. If two distributions have disjointness
α, then their statistical difference is at least α. The converse, however, does not
hold, since the two distributions could have statistical difference that is negligibly
close to 1, yet have identical supports and mutual disjointness 0.

Moreover, we can go from disjoint to mutually-disjoint distributions by the
following lemma:

Lemma 12. [7, 35] Given a pair of distributions (X0, X1) with n input gates,
consider the following distributions:

Y0: Choose r R← {0, 1}n, b R← {0, 1}, output (Xb(r), b).
Y1: Choose r R← {0, 1}n, b R← {0, 1}, output (Xb(r), b).
The following properties hold:



1. ∆(Y0, Y1) = ∆(X0, X1)
2. If (X0, X1) is α-disjoint, then (Y0, Y1) is mutually α

2 -disjoint.

Tensoring Distributions. For random variablesX,Y , we letX⊗Y be the random
variable consisting of a sample of X followed by an independent sample of Y .
The ⊗ notation reflects the fact that the mass function of X ⊗ Y is the tensor
product of the mass functions of X and Y . When the independence is clear
from context, we sometimes write (X,Y ) instead of X ⊗ Y . X⊗k is the random
variable consisting of k independent copies of X.

Lemma 13 ([7, 35]). Given a parameter k ∈ N and the distributions X1, . . . , Xk

and Y1, . . . , Yk, the pair (X,Y ) = X1 ⊗ . . . ⊗Xk, Y1 ⊗ . . . ⊗ Yk) will satisfy the
following properties:

1. 1− 2 exp(−kδ2/2) ≤ ∆(X,Y ) ≤ kδ where δ =
∑

i∈[k]∆(Xi, Yi)/k.
2. MutDisj(X,Y ) = 1−

∏
i∈[k](1− αi), where αi = MutDisj(Xi, Yi).

XORing Distributions. We define the XOR operator which acts on pairs of
distributions and returns a pair of distributions. Given two pairs (X0, X1) and
(X

′

0, X
′

1), with n and n
′

input gates, respectively, XOR((X0, X1), (X
′

0, X
′

1)) is
defined by the circuits:

Y0: Choose b R← {0, 1}, r R← {0, 1}n, r′ R← {0, 1}n
′

, output (Xb(r), X
′

b(r
′
)).

Y1: Choose b R← {0, 1}, r R← {0, 1}n, r′ R← {0, 1}n
′

, output (Xb(r), X
′

b
(r

′
)).

Lemma 14 (XOR Lemma [7, 35]). If (Y0, Y1) = XOR((X0, X1), (X
′

0, X
′

1)),
then the following properties hold:

1. ∆(Y0, Y1) = ∆(X0, X1) ·∆(X
′

0, X
′

1).
2. MutDisj(Y0, Y1) = MutDisj(X0, X1) ·MutDisj(X

′

0, X
′

1).

By induction, the XOR Lemma implies the following method to decrease
both statistical difference and mutual disjointness exponentially fast:

Lemma 15 ([7, 35]). Given circuits X0, X1 with n input gates and a parameter
k, consider the following pair:

Y0: Choose (b1, . . . , bk) R← {(c1, . . . , ck) ∈ {0, 1}k : c1⊕. . .⊕ck = 0}, (r1, . . . rk) R←
{0, 1}kn, output (Xb1(r1), . . . , Xbk

(rk)).

Y1: Choose (b1, . . . , bk) R← {(c1, . . . , ck) ∈ {0, 1}k : c1⊕. . .⊕ck = 1}, (r1, . . . rk) R←
{0, 1}kn, output (Xb1(r1), . . . , Xbk

(rk)).
The following properties hold:

1. ∆(Y0, Y1) = ∆(X0, X1)k.
2. MutDisj(Y0, Y1) = MutDisj(X0, X1)k.



Entropy and Hashing.

Definition 16. The entropy of a random variable X is H(X) = Ex←X

[
log 1

Pr[X=x]

]
.

The conditional entropy of X given Y is

H(X|Y ) = E
y←Y

[H(X|Y =y)] = E
(x,y)←(X,Y )

[
log

1
Pr [X = x|Y = y]

]
= H(X,Y )−H(Y ).

For entropy, it holds that for everyX,Y , H(X⊗Y ) = H(X)+H(Y ). More gen-
erally, if (X,Y )⊗

k

= ((X1, Y1), . . . , (Xk, Yk)), then H((X1, . . . , Xk)|(Y1, . . . , Yk) =
k ·H(X|Y ).

Definition 17. The relative entropy (Kullback-Liebler distance) between two
distributions X,Y is:

KL(X|Y ) = E
x←X

[
log

Pr [X = x]
Pr [Y = x]

]
We denote by H2(p) the binary entropy function, which is the entropy of a

{0, 1}-valued random variable with expectation p. KL2(p, q) denotes the relative
entropy between two {0, 1}-value random variables with expectations p and q.

Flat Distributions. Let X a distribution with entropy H(X). Elements x of X
such that | log Pr[X = x] − H(X)| ≤ k are called k-typical. We say that X
is ∆-flat if for every t > 0 the probability that an element chosen from X is
t ·∆-typical is at least 1− 2−t2+1.

Lemma 18 (Flattening Lemma [36]). Let X be a distribution encoded by a
circuit with n input gates. Then X⊗k is

√
k · n-flat.

Definition 19. A family H of functions from A→ B is 2-universal if for every
two elements x 6= y ∈ A and a, b ∈ B, Prh∈RH[h(x) = a and h(y) = b] = 1

|B|2 .

We write Hn,m to denote the 2-universal family from {0, 1}n to {0, 1}m.

Lemma 20 (Leftover Hash Lemma [37]). Let H be a samplable family of 2-
universal hashing functions from A→ B. Suppose X is a distribution on A such
that with probability at least 1 − δ over x selected from X, Pr[X = x] ≤ ε/|B|.
Consider the following distribution:

Z : Choose h← H and x← X, return (h, h(x)).

Then, ∆(Z,U) ≤ O(δ + ε1/3), where U is the uniform distribution on H×B.



3 Interactive Zero Knowledge

We consider a generalized version of interactive zero knowledge, introduced by
Ben-Or and Gutfreund [7], in which the prover and the verifier have access to a
help string output by a dealer algorithm that has access to the statement being
proven. We will call this model of interactive zero knowledge the help model.
Interactive zero-knowledge proofs are a special case of interactive zero-knowledge
proofs in the help model.

We denote the three algorithms that make up an interactive zero-knowledge
proof in the help model asD,P and V . All three receive as input x, the statement
being proven. The dealer selects the help string σ ← D(x) and sends it to P and
V . P and V carry out an interactive protocol and, at the end of their interaction,
they either output accept or reject. We call the transcript the sequence of
messages which the triple (D,P, V ) computes. (D,P, V )(x) denotes the random
variable of the possible outcomes of the protocol, while 〈D,P, V 〉(x) denotes the
verifier’s view of the transcripts (where the probability space is over the random
coins of D,P and V ).

Definition 21 (ZKh, SZKh [7]). A zero-knowledge proof system in the help
model for a promise problem Π is a triple of probabilistic algorithms (D,P, V )
(where D and V are polynomial time bounded), satisfying the following condi-
tions:

1. Completeness. For all x ∈ ΠY , Pr [(D,P, V )(x) = 1] ≥ 2
3 , where the proba-

bility is taken over the coin tosses of D,P and V .
2. Soundness. For all x ∈ ΠN and every prover strategy P ∗, Pr [(D,P ∗, V ) = 1] ≤

1
3 , where the probability is taken over the coin tosses of D,P ∗, V .

3. Zero Knowledge. There exists a PPT S such that the ensembles {〈D,P, V 〉)(x)}x
and {S(x)}x are computationally indistinguishable on ΠY .

If the ensembles are statistically indistinguishable, we call it a statistical zero
knowledge proof system in the help model. ZKh (resp., SZKh) is the class of
promise problems possessing zero-knowledge (resp., statistical zero-knowledge)
proof systems in the help model.

If the help string σ is generated according to D(1|x|), we call the proof system
an interactive zero-knowledge proof system in the public parameter model. The
corresponding complexity class is ZKpub (resp., SZKpub). If the help string σ is
generated from the uniform distribution on {0, 1}|x|, we call the proof system an
interactive zero-knowledge proof system in the common random string model.
The corresponding complexity class is ZKcrs (resp., SZKcrs).

If we remove the dealer’s help, the resulting proof system is said to be an
interactive zero-knowledge proof system. The corresponding complexity class is
ZK (resp., SZK).

Note that, in the help model, the dealer is computable in polynomial time
given only the instance, and not a witness (hence the notation D(x)).



It is simple to show (by having the verifier simulate the dealer’s help) that
ZKh is contained in IP, the class of promise problems with interactive proofs:

Lemma 22. ZKh ⊆ IP.

3.1 Statistical Zero Knowledge

In this section, we state a few characterizations of statistical zero knowledge
which will be related to the ones we will later obtain for the computational
case. We begin by noting that, in the statistical case, Ben-Or and Gutfreund [7]
showed that zero knowledge in the help model is equivalent to zero knowledge:

Theorem 23 ([7]). SZKh = SZK.

The theorem above implies that all the characterizations of SZK will also
hold for SZKh. In particular, SZKh shares the complete problems for SZK that
are due to [36, 35, 33]:

Theorem 24 ([36, 35, 33]). The following problems are SZK-complete:

1. Statistical Difference:

SDY = {(X,Y ) : ∆(X,Y ) ≤ 1/3}
SDN = {(X,Y ) : ∆(X,Y ) ≥ 2/3}

where X and Y are samplable distributions specified by circuits that sample
from them.

2. Entropy Difference:

EDY = {(X,Y ) : H(X) ≥ H(Y ) + 1}
EDN = {(X,Y ) : H(Y ) ≥ H(X) + 1}

where X and Y are samplable distributions specified by circuits that sample
from them.

3. Conditional Entropy Approximation:

CEAY = {(X,Y, r) : H(X|Y ) ≥ r}
CEAN = {(X,Y, r) : H(X|Y ) ≤ r − 1}

where (X,Y ) is a joint samplable distribution specified by circuits that use
the same coin tosses.

Note that we can change the thresholds of 1/3 and 2/3 in SD to other
thresholds α < β. We denote the resulting problem SDα,β . It is known that
SDα,β is SZK-complete for all constants α, β such that 0 ≤ α < β2 ≤ 1 [35].



3.2 Computational Zero Knowledge

In the case of ZK, no natural complete problems are known (unless we assume
that one-way functions exist, in which case ZK = IP = PSPACE [4, 17, 18, 38,
39, 20, 21]). However, characterizations that are analogous to the complete prob-
lems for SZK do exist in the form of the Indistinguishability Condition
and the Conditional Pseudoentropy Condition below. These conditions
give ‘if and only if’ characterizations of ZK that provide essentially the same
functionality that complete problems provide.

The first characterization is a natural computational analogue of Statisti-
cal Difference:

Definition 25. A promise problem Π satisfies the Indistinguishability Con-
dition if there is a polynomial-time computable function mapping strings x to
pairs of samplable distributions (X,Y ) such that:

– If x ∈ ΠY , then X and Y are computationally indistinguishable.
– If x ∈ ΠN , then ∆(X,Y ) ≥ 2/3.

Theorem 26 ([33]). Π ∈ ZK if and only if Π ∈ IP and Π satisfies the Indis-
tinguishability Condition.

The second characterization is based on the SZK-complete problem CEA:

Definition 27. A promise problem Π satisfies the Conditional Pseudoen-
tropy Condition if there is a polynomial-time computable function mapping
strings x to a samplable joint distribution (X,Y ) such that:

– If x ∈ ΠY , then there exists a (not necessarily samplable) joint distribution
(X ′, Y ′) such that (X ′, Y ′) is computationally indistinguishable from (X,Y )
and H(X ′|Y ′) ≥ r.

– If x ∈ ΠN , then H(X|Y ) ≤ r − 1.

Theorem 28 ([33]). Π ∈ ZK if and only if Π ∈ IP and Π satisfies the Con-
ditional Pseudoentropy Condition.

Another characterization that we will use is the SZK/OWF Condition
of [33]. The SZK/OWF Condition states that any problem in ZK can be
decomposed into a part with an SZK proof and another part on which instance-
dependent one-way functions can be constructed:

Definition 29 (SZK/OWF Condition [33]). A promise problem Π = (ΠY ,ΠN )
satisfies the SZK/OWF Condition if there exists a set I ⊆ ΠY of YES such
that:

1. The promise problem Π ′ = (ΠY \I,ΠN ) is in SZK.
2. There exists an instance-dependent one-way function on I (in the sense of

Definition 6).

Theorem 30 ([33]). Π ∈ ZK if and only if Π ∈ IP and Π satisfies the
SZK/OWF Condition.



4 Noninteractive Zero Knowledge

4.1 The Help Model

In this section, we define the noninteractive analogue of zero-knowledge proofs
in the help model.

Definition 31 (NIZKh, NISZKh [7]). A noninteractive zero-knowledge proof
system in the help model for a promise problem Π is an interactive zero-knowledge
proof in which there is only one message π = P (x, σ) from prover to verifier.

If the real transcripts are statistically indistinguishable from simulated ones,
we call it a noninteractive statistical zero knowledge proof system. NIZKh (resp.,
NISZKh) is the class of promise problems possessing noninteractive zero-knowledge
(resp., noninteractive statistical zero-knowledge) proof systems in the help model.

If the help string σ is generated according to D(1|x|), we call the proof system
a noninteractive zero-knowledge proof system in the public parameter model.
The corresponding complexity class is NIZKpub (resp., NISZKpub). If the help
string σ is generated from the uniform distribution on {0, 1}|x|, we call the proof
system an noninteractive zero-knowledge proof system in the common random
string model. The corresponding complexity class is NIZKcrs (resp., NISZKcrs).

The main benefit of the public parameter model and the help model over the
simpler CRS model is that they make it easier to construct NIZK proofs from
simpler cryptographic primitives such as one-way functions ([7, 23]), or, as we
will show in this paper, from noninteractive, instance-dependent commitment
schemes.

Like SZK, NISZKcrs and NISZKh exhibit complete problems:

Theorem 32 ([25]). The promise problem Entropy Approximation, defined
as:

EAY = {(X, t) : H(X) ≥ t+ 1}
EAN = {(X, t) : H(Y ) ≤ t− 1}

is complete for NISZKcrs, where X is a samplable distribution specified by a
circuit that samples from it. We use the notation EAt to specify an instance of
EA with parameter t.

Theorem 33 ([7]). The promise problem Image Intersection Density, de-
fined as:

IIDY = {(X,Y ) : ∆(X,Y ) ≤ 1/3}
IIDN = {(X,Y ) : MutDisj(X,Y ) ≥ 2/3}

is complete for NISZKh, where X and Y are samplable distributions specified by
circuits that sample from them.



We note that our definition of IID is slightly different than the one used by
[7]. In our definition, we are working with mutual disjointness, since it is easy to
transform disjoint distributions to mutually disjoint ones (Lemma 12). Addition-
ally, due to a stronger Polarization Lemma that we will describe in a subsequent
section, we use constant thresholds of 1/3 and 2/3 rather than functions tending
to 0 and 1.

We also recall the complexity class AM, which is is the class of promise
problems possessing constant-round interactive proofs, or equivalently, 2-round
public-coin interactive proofs [14, 15]. Analogous to Lemma 22, AM proves to
be a natural upper bound for NIZKh, since we can just have the verifier replace
the dealer in creating the reference string. Also, a lower bound for NIZKh is
NIZKcrs, which is definitionally a more restricted version of the help model.

5 Quantum preliminaries and definitions

5.1 The quantum formalism

Let H denote a 2-dimensional complex vector space, equipped with the standard
inner product. We pick an orthonormal basis for this space, label the two basis
vectors |0〉 and |1〉. A qubit is a unit length vector in this space, and so can be
expressed as a linear combination of the basis states: α0|0〉+ α1|1〉. Here α0, α1

are complex amplitudes, and |α0|2 + |α1|2 = 1.
An m-qubit pure state is a unit vector in the m-fold tensor space H⊗· · ·⊗H.

The 2m basis states of this space are the m-fold tensor products of the states
|0〉 and |1〉. For example, the basis states of a 2-qubit system are the four 4-
dimensional unit vectors |0〉⊗|0〉, |0〉⊗|1〉, |1〉⊗|0〉, and |1〉⊗|1〉. We abbreviate,
e.g., |1〉⊗|0〉 to |0〉|1〉, or |1, 0〉, or |10〉, or even |2〉 (since 2 is 10 in binary). With
these basis states, an m-qubit state |φ〉 is a 2m-dimensional complex unit vector
|φ〉 =

∑
i∈{0,1}m αi|i〉.We use 〈φ| = |φ〉∗ to denote the conjugate transpose of the

vector |φ〉, and 〈φ|ψ〉 = 〈φ| · |ψ〉 for the inner product between states |φ〉 and |ψ〉.
These two states are orthogonal if 〈φ|ψ〉 = 0. The norm of |φ〉 is ‖ φ ‖ =

√
〈φ|φ〉.

A mixed state {pi, |φi〉} is a classical distribution over pure quantum states,
where the system is in state |φi〉 with probability pi. We can represent a mixed
quantum state by the density matrix which is defined as ρ =

∑
i pi|φi〉〈φi|. Note

that ρ is a positive semidefinite operator with trace (sum of diagonal entries)
equal to 1. The density matrix of a pure state |φ〉 is ρ = |φ〉〈φ|.

A quantum system is called bipartite if it consists of two subsystems. We
can describe the state of each of these subsystems separately with the reduced
density matrix. For example, if the joint quantum state of two subsystems A,B
has the form |φ〉 =

∑
i

√
pi|i〉A|φi〉B , then the state of the subsystem B, i .e.,

the subsystem which contains only the second part of |φ〉 is described by the
(reduced) density matrix

∑
i pi|φi〉〈φi|.

A quantum state evolves by a unitary operation or by a measurement. A
unitary transformation U is a linear mapping that preserves the complex `2



norm. If we apply U to a state |φ〉, it evolves to U |φ〉. A mixed state ρ evolves
to UρU†.

The most general measurement allowed by quantum mechanics is specified by
a family of positive semidefinite operators Ei = M∗i Mi, 1 ≤ i ≤ k, subject to the
condition that

∑
iEi = I. Given a density matrix ρ, the probability of observing

the ith outcome under this measurement is given by the trace pi = Tr(Eiρ) =
Tr(MiρM

∗
i ). These pi are nonnegative because Ei and ρ are positive semidefinite

and they also sum to 1. If the measurement yields outcome i, then the resulting
mixed quantum state is MiρM

∗
i /Tr(MiρM

∗
i ). In particular, if ρ = |φ〉〈φ|, then

pi = 〈φ|Ei|φ〉 = ‖Mi|φ〉 ‖2, and the resulting state is Mi|φ〉/‖Mi|φ〉 ‖. A special
case is where k = 2m and B = {|ψi〉} forms an orthonormal basis of the m-qubit
space. ‘Measuring in the B-basis’ means that we apply the measurement given
by Ei = Mi = |ψi〉〈ψi|. Applying this to a pure state |φ〉 gives resulting state
|ψi〉 with probability pi = |〈φ|ψi〉|2.

The trace norm of a matrix A is denoted by ||A|| and is equal to the trace
of |A|, where |A| =

√
A†A is the positive square root of A†A. For two density

matrices ρ1, ρ2 we define their trace distance as the trace norm of the matrix
ρ1 − ρ2, i .e., ||ρ1 − ρ2||.

The von Neumann Entropy of a mixed quantum state ρ with eigenvalues λi

is defined as S(ρ) = −
∑

i λi log λi.

5.2 Quantum Interactive and Noninteractive Statistical
Zero-Knowledge

Quantum statistical zero knowledge proofs are a special case of quantum interac-
tive proofs. We can think of a quantum interactive protocol 〈P, V 〉(x) as a series
of circuits (V1(x), P1(x), . . . , Vk(x), Pk(x)) on the space V ⊗M⊗ P. V are the
verifier’s private qubits, M are the message qubits and P are the prover’s pri-
vate qubits. Vi(x) (resp. Pi(x)) represents the ith action of the verifier (resp. the
prover) during the protocol and acts on V⊗M (resp.M⊗P). βi corresponds to
the state that appears after the ith action of the protocol. We define complete-
ness and soundness exactly the same way as in the case of classical protocols.
We say that a protocol 〈P, V 〉 solves Π if it has completeness greater than 2/3
and soundness less than 1/3.

In the zero knowledge setting, we also want that the verifier learns nothing
from the interaction other than the fact that x ∈ ΠY when it is the case. The
way it is formalized is that for x ∈ ΠY , the verifier can simulate his view of the
protocol. We are interested only in honest verifier protocols where the verifier
and the prover use unitary operations, since by Watrous [40] we know that honest
verifier with unitary operations is equivalent to cheating verifier (that is allowed
to use any permissible operation).

Let 〈P, V 〉 a quantum protocol and βj defined as before. The verifier’s view
of the protocol is his private qubits and the message qubits, view〈P,V 〉(j) =
TrP(βj). We also want to separate the verifier’s view based on whether the last
action was made by the verifier or the prover. We note ρ0 the input state, ρi the



verifier’s view of the protocol after Pi and ξi the verifier’s view of the protocol
after Vi.

Definition 34. A quantum protocol 〈P, V 〉 has the zero knowledge property for
Π if there exists a quantum polynomial-time simulator σ and a negligible function
µ such that for every input x ∈ ΠY and ∀j ‖σj(x)− ρj‖ ≤ µ(|x|).

Note that for a state σ such that ‖σ− ρi‖ ≤ µ(|x|) it is easy to see that σ′ =
Vi+1σV

†
i+1 is close to ξi+1 = Vi+1ρiV

†
i+1 in this sense that ‖σ′ − ξi+1‖ ≤ µ(|x|).

Therefore, in the definition we just need to simulate the ρi’s. Also note that the
simulation in the quantum case is done round by round which seems to be a
weaker definition than in the classical case. However, since the message qubits
are reused in every round, the notion of a transcript can not be defined in the
quantum case.

Definition 35. Π ∈ QSZK iff there exists a quantum protocol 〈P, V 〉 that
solves Π and that has the zero-knowledge property for Π.

In the setting of quantum noninteractive statistical zero knowledge, first de-
fined by Kobayashi [13], the prover and verifier share a maximally entangled state∑

i |i〉P |i〉V created by a trusted third party: the dealer D. Then the prover sends
a single quantum message to the verifier. We can assume that the message from
the dealer to the verifier goes into his private space V. Hence, after the prover’s
message, the verifier’s view ρ1 also contains the message from the dealer.

In this setting, we define the zero knowledge property as follows:

Definition 36. A quantum noninteractive protocol 〈D,P, V 〉 has the zero know-
ledge property for Π if there exists a quantum polynomial-time simulator σ and
a negligible function µ such that for every input x ∈ ΠY ‖σ(x)− ρ1‖ ≤ µ(|x|).

Definition 37. Π ∈ QNISZK iff, when the prover and verifier share the maxi-
mally entangled state

∑
i |i〉P |i〉V created by the dealer D, there exists a quantum

noninteractive protocol 〈D,P, V 〉 that solves Π and that has the zero-knowledge
property for Π.

6 Statistical Zero Knowledge

6.1 The Polarization Lemma

Zero knowledge protocols usually require from promise problems some param-
eters that are exponentially close to 0 or 1. Polarizations are reductions from
promise problems with weak parameters to promise problems that can be solved
by the protocols. For example, there is a polarization for the promise problem
SD that transforms SDa,b with a2 > b to SD1−2−k,2−k

for any k = poly(n) [35].
The best polarization that was known for IID was that IID1/n2,1−1/n2

re-
duces to IID2−k,1−2−k

and henceforth IID1/n2,1−1/n2
is complete for NISZKh

[7]. We will show here that IIDa,b is complete for NISZKh with b > a (where a
and b are constants).



Lemma 38 (Polarization Lemma [7, 35]). There exists an algorithm that
takes a pair of distributions (X0, X1) and parameters n ∈ N, 0 ≤ α < β ≤ 1, and
outputs a pair of distributions (Y0, Y1) such that:

1. ∆(X0, X1) ≤ α⇒ ∆(X0, X1) ≤ 2−n.
2. MutDisj(X0, X1) ≥ β ⇒ MutDisj(Y0, Y1) ≥ 1− 2−n.

The algorithm runs in time poly
(
|(X0, X1)|, n, exp

(
α log(1/β)

β−α

))
.

Proof. Let λ = min{β/α, 2} > 1.
We first apply Lemma 15 with k = logλ 2n, obtaining two distributions which

are either statistically αk close, or have βk mutual disjointness.
Then, we apply Lemma 13 with m = λk/(2βk) ≤ 1/(2αk). This gives two

distributions with either statistical difference at most mαk ≤ 1/2, or mutual
disjointness of at most 1 − (1 − βk)m ≥ 1 − e−βkm = 1 − e−βk·λk/(2βk) =
1− e−λk/2 = 1− e−n.

Finally, we apply again Lemma 15 with parameter n to get either statistical
difference at most 2−n, or mutual disjointness at most (1− e−n)n ≥ 1−ne−n ≥
1− 2−n, for sufficiently large n.

The running time of the algorithm is poly(|(X0, X1)|, n, k), where k = O(log n/(λ−
1)) = O(α log n/(β−α)) and m ≤ 1/2 · (2/β)k = exp

(
O

(
α log n log(2/β)

β−α

))
. This

gives the claimed running time if either n = O(1) or if β − α = Ω(1). Thus we
can obtain the lemma by applying the transformation in two steps, first with
n′ = 2 to polarize to thresholds α′ = 1/4 and β′ = 3/4, and then once more
with the desired value of n.

This can be compared to the original Polarization Lemma of [35], which
refers to statistical difference in Item 2 (rather than mutual disjointness), but
only achieves polarization from thresholds such that 0 ≤ α < β2 ≤ 1, and for
which it is known that the gap between thresholds is inherent for a natural class
of transformations [41].

6.2 SZK and NISZKh Are Equivalent

We show in this section that help and interaction are equivalent in the statistical
zero knowledge setting.

Theorem 39. SZK = NISZKh

The inclusion NISZKh ⊆ SZK was proven by Ben-Or and Gutfreund [7], since
the NISZKh-complete problem Image Intersection Density (IID) trivially
reduces to Statistical Difference (SD), the SZK-complete problem. In what
follows, we prove the opposite inclusion by reducing the SZK-complete problem
Entropy Difference (ED) to IID. Ben-Or and Gutfreund claimed to have
proven this reduction in [22] but due to a flaw they retracted it in [7]. Their
reduction from ED to IID was in fact only a reduction to SD. Still, part of our
proof is inspired by their method.



In order to prove that SZK ⊆ NISZKh, we follow [25] and reduce the SZK-
complete problem ED to several instances of Entropy Approximation and
its complement (EA and EA) using the following fact:

Fact 40 ([25]) Let X ′ = X⊗3 and Y ′ = Y ⊗3. Let n the output size of X ′ and
Y ′. It holds that:

(X,Y ) ∈ EDY ⇔ ∀t ∈ {1, . . . , n}
[
((X ′, t) ∈ EAY ) ∨ ((Y ′, t) ∈ EAY )

]
(X,Y ) ∈ EDN ⇔ ∃t ∈ {1, . . . , n}

[
((X ′, t) ∈ EAN ) ∧ ((Y ′, t) ∈ EAN )

]
We know that EA ∈ NISZKh (since by definition NISZKcrs ⊆ NISZKh), so

it remains to show the following two things:

1. EA ∈ NISZKh: in order to this, we reduce EA to IID, inspired by Ben-Or
and Gutfreund’s attempt [22] to reduce ED to IID. This reduction relies on
ideas from [27, 28].

2. NISZKh has certain boolean closure properties: this will allow us to reduce
ED to a single instance of IID. Since IID and SD are closely related, we use
similar techniques to the ones used in [27, 29].

Note that our proof’s structure is similar to the approach suggested by
Goldreich et al. [25] for showing that NISZKcrs = SZK. They proved that if
NISZKcrs = co-NISZKcrs then NISZKcrs = SZK. We show here that co-NISZKcrs ⊆
NISZKh, and using the closure properties, conclude that NISZKh = SZK.

6.3 EA belongs to NISZKh

In this section, we prove the following lemma:

Lemma 41. EA ∈ NISZKh.

Proof. We will reduce EA to IID, which is complete for NISZKh.
Let (X, t) an instance of EA. By artificially adding input gates or output

gates to X, we can assume that X has m input and output gates. Let k a large
constant that will be specified later on and X ′ = X⊗s with s = 4km2. Note that
X ′ has m′ = s ·m input and output gates and H(X ′) = s ·H(X). We have:

Fact 42

1. X ′ is ∆-flat with ∆ = 2
√
km2, where s was chosen such that s = 2

√
k∆.

2. Pr[X ′ is
√
k∆-typical ] ≥ 1− 2−Ω(k).

Given (X, t), we can create two distributions Z as Z ′ as following

Z: Choose r R← {0, 1}m′
, x = X ′(r), h R← Hm′+st,m′ , z

R← {0, 1}m′
. Return

(x, h, z).
Z ′: Choose r R← {0, 1}m′

, x = X ′(r), h R← Hm′+st,m′ , u
R← {0, 1}st. Return

(x, (h, h(r, u))).



Note that Z ′ is of the form Z ′ = (X ′, A). We write Ax to denote the distri-
bution of A conditioned on X ′ = x. Note that we can describe Ax as follows :
Ax : Choose r R← (X ′)−1(x), h R← Hm′+st,m′ , u

R← {0, 1}st and return (h, h(r, u)).
Hence, we need to show that, when conditioning on X ′ = x, we have either
∆(U , Ax) small (on the YES instances) or Disj(U , Ax) large (on the NO in-
stances).

For x ∈ Supp(X ′), let wt(x) = log |(X ′)−1(x)| = m′ − log( 1
Pr[X′=x] ). The

number of different possible inputs (r, u) that are hashed in Ax is 2wt(x)+st.
Using Fact 42, it is easy to see that, if H(X) ≤ t − 1, then wt(x) will be large
with high probability, whereas, if H(X) ≥ t + 1, then wt(x) will be small with
high probability. We can now show the following two claims which will allow us
to conclude the proof.

Claim. (X, t) ∈ EAY ⇒ ∆(Z,Z ′) = 2−Ω(k).

Proof. For all x ∈ Supp(X ′) that are
√
k∆-typical,

∣∣∣log( 1
Pr[X′=x] )−H(X ′)

∣∣∣ ≤
√
k∆. Hence,

wt(x) ≥ m′ − s ·H(X)−
√
k∆ ≥ m′ − st+ s−

√
k∆ ≥ m′ − st+

√
k∆.

Therefore, the number of inputs (r, u) such that X ′(r) = x and u ∈ {0, 1}st

is greater than 2m′+
√

k∆ ≥ 2m′+k. By the Leftover Hash Lemma (Lemma 20),
∆(U , Ax) = 2−Ω(k). By Fact 42, the probability of a

√
k∆-typical x is 1−2−Ω(k)

and hence we can conclude that ∆(Z,Z ′) = 2−Ω(k).

Claim. (X, t) ∈ EAN ⇒ Disj(Z,Z ′) = 1− 2−Ω(k).

Proof. For all x ∈ Supp(X ′) that are
√
k∆-typical, we have:

wt(x) ≤ m′ − s ·H(X) +
√
k∆ ≤ m′ − st− s+

√
k∆ ≤ m′ − st−

√
k∆.

Therefore, the number of inputs (r, u) such that X ′(r) = x and u ∈ {0, 1}st

is smaller than 2m′−
√

k∆ ≤ 2m′−k. Since we hash at most 2m′−k values into
{0, 1}m′

, we get only a 2−k fraction of the total support and hence Disj(U , Ax) =
1 − 2−Ω(k). By Fact 42, the probability of a

√
k∆-typical x is 1 − 2−Ω(k) and

hence we can conclude that Disj(Z,Z ′) = 1− 2−Ω(k).

By taking k a large enough constant, we can ensure that (X, t) ∈ EAY ⇒
∆(Z,Z ′) ≤ 1/4 and also (X, t) ∈ EAN ⇒ Disj(Z,Z ′) ≥ 3/4.

The only thing that remains is to transform the disjointness in the NO in-
stances to mutual disjointness. We first apply Lemma 12 to create distributions
(A,B) such that ∆(A,B) ≤ 1/4 or Disj(A,B) ≥ 3/8. Then, by the polariza-
tion Lemma shown in Subsection 6.1, we create distributions (A′, B′) such that
(X, t) ∈ EAY ⇒ ∆(A′, B′) ≤ 1/3 and (X, t) ∈ EAN ⇒ Disj(A′, B′) ≥ 2/3.

In conclusion, we see that from (X, t), we have created distributions A′, B′

in polynomial time such that :



– (X, t) ∈ EAY ⇒ (A′, B′) ∈ IIDY .
– (X, t) ∈ EAN ⇒ (A′, B′) ∈ IIDN .

Hence, EA reduces to IID and from the completeness of IID for NISZKh, we
have EA ∈ NISZKh.

6.4 Closure properties for NISZKh

We now prove some closure properties of NISZKh that we will use to complete
the proof of Theorem 39. Every promise problem Π ∈ NISZKh reduces to IID
and hence, we just have to concentrate on this problem. Note that this problem is
very similar to the SZK-complete promise problem SD and hence we use similar
techniques to those developed in [29, 27] to show closure properties for SZK.
In our case, we just need to show some limited closure properties that will be
enough to prove that ED ∈ NISZKh.

Definition 43. Let Π some promise problem. We define AND(Π) to be the
following promise problem:

– AND(Π)Y = {(x1, . . . , xk) : ∀i ∈ {1, . . . , k} xi ∈ ΠY }.
– AND(Π)N = {(x1, . . . , xk) : ∃i ∈ {1, . . . , k} xi ∈ ΠN}.

Similarly, we define OR(Π) for a pair of instances of Π.

Definition 44. Let Π a promise problem. We define OR(Π) to be the following
promise problem:

– OR(Π)Y = {(x1, x2) : ∃i ∈ {1, 2} xi ∈ ΠY }.
– OR(Π)N = {(x1, x2) : ∀i ∈ {1, 2} xi ∈ ΠN}.

We show that NISZKh is closed under AND and OR.

Lemma 45. NISZKh is closed under AND.

Proof. Let Π be in NISZKh and (x1, . . . , xk) be an instance of AND(Π). We
reduce Π to the IID problem which means that we transform each xi into a pair
of distributions (Xi, Y i) such that xi ∈ ΠY ⇒ (Xi, Y i) ∈ IIDY and xi ∈ ΠN ⇒
(Xi, Y i) ∈ IIDN . Let X = X1 ⊗ · · · ⊗ Xk and Y = Y 1 ⊗ · · · ⊗ Y k. We first
polarize each pair (Xi, Y i) to have statistical difference at most 1/3k or mutual
disjointness at least 2/3. From Lemma 13, we can easily see that (x1, . . . , xk) ∈
AND(Π)Y ⇒ (X,Y ) ∈ IIDY and that (x1, . . . , xk) ∈ AND(Π)N ⇒ (X,Y ) ∈
IIDN , which concludes our proof.

Lemma 46. NISZKh is closed under OR.

Proof. Let Π be in NISZKh. Let (x1, x2) be an instance of OR(Π). We reduce
Π to the IID problem which means that we transform each xi into a pair of
distributions (Xi, Y i) such that xi ∈ ΠY ⇒ (Xi, Y i) ∈ IIDY and xi ∈ ΠN ⇒
(Xi, Y i) ∈ IIDN . We first polarize each pair (Xi, Y i) to have statistical differ-
ence at most 1/3 or mutual disjointness at least

√
2/3. Now, consider the pair

(A,B) obtained by XORing (X1, Y1) and (X2, Y2) (in the sense of Lemma 14).
Using this Lemma, we conclude that (x1, x2) ∈ OR(Π)Y ⇒ (A,B) ∈ IIDY and
that (x1, x2) ∈ OR(Π)N ⇒ (A,B) ∈ IIDN .



6.5 Putting it Together

We can now prove that SZK ⊆ NISZKh and hence conclude the proof of Theorem
39. In the language of the previous section, Fact 40 says that the SZK-complete
problem ED reduces to AND(OR(EA,EA)) via a standard Karp (i .e., many-
one) reduction. Since EA and EA are in NISZKh (Lemma 41) and NISZKh is
closed under AND and OR (Lemma 45 and 46), we conclude that ED ∈ NISZKh

and that SZK ⊆ NISZKh.
An interesting corollary is the following new complete problem for SZK.

Corollary 47. IID is complete for SZK.

7 Computational Zero Knowledge

In this section, we extend the results presented in the previous section to com-
putational zero knowledge. However, the techniques that we have used in the
statistical case cannot be applied directly here, so we take a more indirect route
to proving an equivalence for the computational case. We define the Computa-
tional Image Intersection Density Condition (CIIDC), a natural com-
putational analogue of IID in the style of the Indistinguishability Condition
and the Conditional Pseudoentropy Condition used in [33] (see Section 3.2),
and prove that all problems in ZK satisfy the CIIDC, building on our proof that
every problem in SZK reduces to IID. Next we want to show that every prob-
lem in AM satisfying the CIIDC is in NISZKh. However, as the approach used
in [7] to show IID is in NISZKh does not generalize to the computational case,
following [33], we get around this difficulty by interpreting the Computational
Image Intersection Density Condition as a special type of commitment
scheme that is sufficient for constructing NIZKh proofs. Hence, we show that
any promise problem in ZK ∩ AM has a NIZKh proof. For the other direction,
we prove that ZK equals ZKh, a class which contains NIZKh, concluding that
NIZKh = ZK ∩AM.

7.1 The Computational Image Intersection Density Condition

We define the Computational Image Intersection Density Condition,
and show that any promise problem with a ZK proof satisfies this condition.

Definition 48 (Computational Image Intersection Density Condition
(CIIDC)). A promise problem Π satisfies CIIDC if there is a polynomial time
mapping from strings x ∈ Π to two distributions (X,Y ) specified by circuits
sampling from them such that

1. If x ∈ ΠY , then X and Y are computationally indistinguishable.
2. If x ∈ ΠN , then (X,Y ) have mutual disjointness at least 1/3.

Lemma 49. Every promise problem Π ∈ ZK satisfies CIIDC.



Proof. Since every problem Π ∈ ZK satisfies the SZK/OWF Condition, it
follows that Π can be decomposed into two promise problems, Γ and Θ, such
that Π = Γ ∪ Θ, Γ ∈ SZK = NISZKh and for x ∈ Θ, instance-dependent
one-way functions can be constructed.

On the instances x in Γ , a reduction to IID gives a pair (X0, X1) such that
on x ∈ ΓY , ∆(X0, Y0) is close to 0, and, on x ∈ ΓN , MutDisj(X0, X1) is close to
1. Informally, on the instances in Θ, we apply [20] to the instance-dependent one-
way function to obtain an instance-dependent pseudorandom generator Gx(·),
and consider the pair (Y0, Y1) obtained by comparing the output of Gx(·) to
the uniform distribution. Note that on x ∈ ΘY , (Y0, Y1) will be computationally
indistinguishable, while on x ∈ ΘN , it will be disjoint (since Gx(·) has a small
support), and hence mutually disjoint by Lemma 12.

Since it might not be possible to efficiently distinguish between instances in Γ
and those in Θ, it is not sufficient to simply map x to (X0, X1) when x ∈ Γ , and
to (Y0, Y1) when x ∈ Θ. Rather, we map x to (X,Y ) = XOR((X0, X1), (Y0, Y1)),
which satisfies the CIIDC (by a computational analogue of Lemma 14).

7.2 Noninteractive, Instance-Dependent Commitments

We begin by reviewing Ben-Or and Gutfreund’s [7] proof that IID is in NISZKh

and note that this proof cannot be replicated in the computational case to show
that every Π satisfying the CIIDC is in NISZKh. Ben-Or and Gutfreund show
that IID is in NISZKh by polarizing (X0, X1) ∈ IID to the distributions (Y0, Y1),
setting the help string to σ = Y0(r) and having P prove to V that σ ∈ Supp(Y1)
by sending a random preimage in Y −1

1 (σ). However, this protocol may fail to
even have completeness for promise problems satisfying CIIDC, since the images
of Y0 and Y1 might even be disjoint, although they are computationally indis-
tinguishable. Indeed, we do not expect to show that every problem satisfying
CIIDC is in NIZKh, since NIZKh ⊆ AM but problems outside AM may satisfy
CIIDC (indeed, if one-way functions exist, every promise problem satisfies the
CIIDC). Thus, in showing an equivalence between interactive and noninterac-
tive zero knowledge in the computational case, it is necessary to use a different
approach. Following [33], we view IID/CIIDC as a kind of instance-dependent
commitment scheme, and use it to implement the general construction of non-
interactive zero-knowledge proofs for AM [19].

We show that promise problems that reduce to IID or that satisfy CIIDC
have a natural form of noninteractive, instance-dependent commitment schemes.
In particular, for a promise problem Π which reduces to IID (resp., satisfies the
CIIDC), the sender and the receiver can use the Polarization Lemma to obtain
a pair of distributions (Y0, Y1) that are statistically close on YES instances, and
mutually disjoint on NO instances. To commit to a bit b, the sender draws c
from Yb and outputs c as the commitment. To reveal b, the sender only needs to
prove that c is drawn from Yb by presenting to the receiver the randomness used
in sampling from Yb. Note that this binding property requires that the sender
generates the commitments honestly. (Otherwise, it could always generate the
commitment from the intersection of the supports, even if it negligibly small.)



While assuming an honest sender is usually not suitable in applications of com-
mitments, it turns out to be fine for constructing NIZKh proofs, because the
dealer generates the commitments.

We note that this commitment-based approach can also be used as an al-
ternate, more circuitous proof of NISZKh = SZK, since our results regarding
commitments apply to both IID and CIIDC. Hence, the definitions and the-
orems presented below will deal with both the statistical and computational
variants.

We now give a formal definition of the noninteractive, instance-dependent
commitment schemes we will be using:

Definition 50. A noninteractive, instance-dependent commitment scheme is a
family {Comx}x∈{0,1}∗ with the following properties:

1. The scheme Comx proceeds in the stages: the commit stage and the reveal
stage. In both stages, both the sender and the receiver share as common
input the instance x. Hence we denote the sender and receiver as Sx and,
respectively, Rx, and we write Comx = (Sx, Rx).

2. At the beginning of the commit stage, the sender Sx receives as private input
the bit b ∈ {0, 1} to commit to. The sender then sends a single message
c = S(x, b) to the receiver.

3. In the reveal stage, Sx sends a pair (b, d), where d is the decommitmentstring
for bit b. Receiver Rx either accepts or rejects based on inputs x, b, d and c.

4. The sender Sx and receiver Rx algorithms are computable in time poly(|x|),
given the instance x.

5. For every x ∈ {0, 1}∗, Rx will always accept (with probability 1) if both Sx

and Rx follow their prescribed strategy.

Security Properties. We now define the security properties of noninteractive,
instance-dependent commitment schemes. These properties will be natural ex-
tensions of the hiding and binding requirements of standard commitments:

Definition 51. A noninteractive, instance-dependent commitment scheme Comx =
(Sx, Rx) is statistically (resp., computationally) hiding on I ⊆ {0, 1}∗ if for ev-
ery (resp., nonuniform PPT) R∗, the ensembles {Sx(0))}x∈I and {(Sx(1)}x∈I

are statistically (resp., computationally) indistinguishable.
For a promise problem Π = (ΠY ,ΠN ), a noninteractive, instance-dependent

commitment scheme Comx is statistically (resp., computationally) hiding on the
YES instances if Comx is statistically (resp., computationally) hiding on ΠY .

Definition 52. A noninteractive instance-dependent commitment scheme Comx =
(Sx, Rx) is statistically (resp., computationally) binding for honest senders on
I ⊆ {0, 1}∗ if there exists a negligible function ε such that for all x ∈ I, a com-
putationally unbounded (resp., nonuniform PPT) algorithm S∗ succeeds in the
following game with probability at most ε(|x|):



S outputs a commitment c. Then, given the coin tosses of S, S∗ outputs
pairs (0, d0) and (1, d1) and succeeds if in the reveal stage, Rx(0, d0, c) =
Rx(1, d1, c) = accept.

For a promise problem Π = (ΠY ,ΠN ), a noninteractive, instance-dependent
commitment scheme Comx is statistically (resp., computationally) binding for
honest senders on the YES instances if Comx is statistically (resp., computa-
tionally) binding on ΠY .

Having defined noninteractive, instance-dependent commitment schemes, we
proceed to show that they are equivalent to IID (resp., CIIDC), and conse-
quently, SZK (resp., ZK).

Lemma 53. A promise problem Π has a noninteractive, instance-dependent
commitment scheme that is statistically (resp., computationally) hiding on YES
instances and statistically binding for honest senders on NO instances if and
only if Π reduces to IID (resp., if and only if Π satisfies the CIIDC).

Proof. For the backwards direction, consider a problem Π that reduces to IID
(the computational case will be similar). We construct the following protocol:

Commitment protocol for Π:

1. Preprocessing:
First, reduce x ∈ Π to an instance (X0, X1) of IID. Use the Polarization
Lemma on (X0, X1) to obtain (Y0, Y1) such that, if x ∈ ΠY ,∆(Y0, Y1) ≤ 2−n,
and, if x ∈ ΠN , (Y0, Y1) have mutual disjointness (1− 2−n), where n = |x|.

2. Commit Stage:
Sx(x, b): To commit to bit b ∈ {0, 1}, choose d R← {0, 1}m, where m is the
input length of Yb, set c = Yb(d) and output (c, d).

3. Reveal Stage:
Rx(x, c, b, d): Accept if and only if Yb(d) = c.

On x ∈ ΠY , we know that Y0 and Y1 have negligible statistical difference.
Hence, a commitment to 1 is statistically indistinguishable from a commitment
to 0. Hence, the scheme is computationally hiding on YES instances (actually,
the scheme is statistically hiding.)

When x ∈ ΠN , the pair (Y0, Y1) has mutual disjointness (1−2−n). It directly
follows that only a negligible fraction of commitments can be opened in two ways.

In the case that we are working with a problem which satisfies the CIIDC, we
use the same scheme. However, instead of polarizing, we will simply take direct
products to amplify the mutual disjointness on NO instances while preserving
computational indistinguishability on YES instances (Lemma 13).

For the forward direction, let Comx = (Sx, Rx) be a noninteractive, instance-
dependent commitment scheme that is statistically hiding on YES instances and
statistically binding for honest senders on NO instances, and considerX = Sx(0)
and Y = Sx(1):



– If x ∈ ΠY , we know that ∆(viewR(Sx(0), R), viewR(Sx(1), R)) ≤ ε(|x|), and
hence, ∆(Sx(0), Sx(1)) ≤ ε(|x|).

– If x ∈ ΠN , assume that there exists no negligible function µ(|x|) such that
MutDisj(Sx(0), Sx(1)) = (1−µ(|x|)). Hence for all negligible functions µ(|x|)
and c← Sx(b), Pr

[
c ∈ Sx(b)

]
> µ(|x|). But then, S can always succeed with

probability greater than µ(|x|) at the game described in Definition 52. So,
for some negligible µ, (Sx(0), Sx(1)) have mutual disjointness (1 − µ(|x|)),
and Π reduces to IID.

The proof for the computational case is analogous.

By combining our previous results concerning IID and CIIDC with Lemma 53,
we obtain the following theorem:

Theorem 54. If a promise problem Π is in SZK (resp., ZK), then Π also
has a noninteractive instance-dependent commitment scheme that is statistically
(resp., computationally) hiding on YES instances and statistically binding for
honest senders on NO instances.

Proof. This follows from the fact that any Π ∈ SZK (resp., ZK) reduces to IID
(resp., satisfies CIIDC) (Lemma 49). By Lemma 53, Π has a noninteractive,
instance-dependent commitment scheme.

7.3 From Noninteractive, Instance-Dependent Commitments to
NIZKh

In section, we will show that noninteractive, instance-dependent commitment
schemes are sufficient to obtain NIZKh. We start from the hidden bits model, a
fictitious construction that implements noninteractive zero knowledge uncondi-
tionally for all promise problems in AM. Then, we show how our commitments
can be employed in conjunction with this model to construct NIZKh proofs.

The Hidden Bits Model. The hidden bits model is a model due to Feige, Lapi-
dot and Shamir [19] that allows for an unconditional construction of NIZK. It
assumes that both the prover P and the verifier V share a common reference
string σ, which we will call the hidden random string (HRS). However, only the
prover can see the HRS. We can imagine that the individual bits of σ are locked
in boxes, and only the prover has the keys to unlock them. The prover can se-
lectively unlock boxes and reveal bits of the hidden random string. However,
without the prover’s help, the verifier has no information about any of the bits
in the HRS.

Definition 55 (NIZK in the Hidden Bits Model [19]). A noninteractive
zero knowledge proof system in the hidden-bits model for a promise problem
Π is a pair of probabilistic algorithms (P, V ) (where P and V polynomial-time
bounded) and a polynomial l(|x|) = |σ|, satisfying the following conditions:



1. Completeness. For all x ∈ ΠY , Pr [∃(I, π)s.t. V (x, σI , I, π) = 1] ≥ 2
3 , where

(I, π) = P (x, σ), I is a set of indices in {0, . . . , l(k)}, and σI is the sequence
of opened bits of σ, (σi : i ∈ I), and where the probability is taken over
σ

R← {0, 1}l(|x|) and the coin tosses of P and V .
2. Soundness. For all x ∈ ΠN and all P ∗, Pr [∃(I, π)s.t. V (x, σI , I, π) = 1] ≤ 1

3 ,

where (I, π) = P ∗(x, σ), where the probability is taken over σ R← {0, 1}l(|x|)
and the coin tosses of P ∗ and V .

3. Zero Knowledge. There exists a PPT S such that the ensembles of tran-
scripts {(x, σ, P (x, σ))}x and {S(x)}x are statistically indistinguishable on
ΠY , where σ R← {0, 1}l(|x|).

Note that we have defined the zero-knowledge condition in this model to be
statistical rather than computational. Indeed, the known construction of hidden
bits NIZK proof systems is unconditional and yields statistically indistinguish-
able proof systems.

Theorem 56 ([19]). Every promise problem Π ∈ NP has a hidden bits zero
knowledge proof system (P, V ).

As has been observed before (e.g. [23]), this construction for NP automati-
cally implies one for all of AM.

Corollary 57 ([19]). Every promise problem Π ∈ AM has a hidden bits zero
knowledge proof system (P, V ).

Proof. Informally, this result can be obtained by transforming an AM proof into
a statement that there exists some message from the prover that the verifier
accepts. Since this statement is an NP statement, it can be proven in the hidden
bits NIZK model.

The corollary above shows that there exists an unconditional construction
of NIZK for all problems in AM. However, this construction holds only in the
impractical hidden bits model. In proving our results, we show how to imple-
ment this construction in the help model by exploiting a novel connection to
noninteractive, instance-dependent commitment schemes:

Theorem 58. If Π ∈ AM and Π has a noninteractive, honest-sender, instance-
dependent commitment scheme that is statistically (resp., computationally) hid-
ing on YES instances and statistically binding for honest senders on NO in-
stances, then Π ∈ NISZKh (resp., Π ∈ NIZKh).

Proof. Our general strategy will be to exploit the correspondence between the
algorithms in our definition of an instance-dependent commitment scheme, and
the three algorithms in a NIZKh proof system. More specifically, we will have
the dealer D use the sender algorithm to commit to a hidden bits string (this
is why we can afford to assume the sender is honest). Since the prover P is
allowed to be unbounded, we will use it to exhaustively search for openings to



D’s commitments. Finally, the verifier V will use the receiver algorithm to check
P ’s openings.

Let (PHB, V HB) be a hidden bits proof system for Π and let (Sen,Rec) be the
noninteractive, honest-sender bit commitment scheme for Π. Then, the following
proof system (D,P, V ) is NIZKh:

1. D(x, 1k): Select σD R← {0, 1}m, and run Sen(x, σD
i ) to generate a commit-

ment ci, for all i. Output c = (c1, . . . , cm) as the public help parameter.
2. P (x, c): Exhaustively find a random opening oP

i for each ci (and, implicitly,
each σD

i ). If one commitment ci can be opened as both 0 or 1, P outputs
oP

i according to the distribution O|C=ci
, where (O,C) is the output of S on

a random bit b. Let σP be the secret string obtained by P opening D’s help
string. P runs PHB(x, σP ) to obtain (I, π). Send (I, σP

I , o
P
I , π) to V .

3. V (x, I, oP
I , π): Compute σP

j ,∀j ∈ I. Use Rec to check that the commitments
are consistent. Run V HB(x, I, σP

I , π) and accept if and only if V HB accepts.

In the full version of the paper, we show that the construction above satisfies
the completeness, soundness and zero knowledge properties, concluding that Π
is in NIZKh.

7.4 From ZKh to ZK

In this section, we generalize the results of Ben-Or and Gutfreund [7] that
SZKh = SZK (Theorem 23) to show that adding help to ZK proofs does not
confer any additional power:

Theorem 59 (Theorem 3, restated). ZKh = ZK.

To prove Theorem 23, Ben-Or and Gutfreund employ the techniques of [24,
42, 36], by considering the output of the simulator S for a zero-knowledge proof
for Π as the moves of a virtual prover and a virtual verifier. The simulated
transcripts are compared to the transcripts output by a cheating strategy for
a real prover PS (called the simulation-based prover), which tries to imitate
the behavior of the virtual prover. Intuitively, on YES instances, the output
of the simulator should be statistically close to the output of the simulation-
based prover interacting with the real verifier. On NO instances, however, if
we modify the simulator to accept with high probability (we can easily modify
it to do that), the difference between the two transcripts must be significant.
[7] exploit this to show that any problem in SZKh can be reduced to the in-
tersection of the SZK-complete problems Statistical Difference([35]) and
Entropy Difference([36]). Since the other direction (SZK ⊆ SZKh) follows
from the definitions, the conclusion that SZK = SZKh follows immediately. We
will use the same strategy with ZKh, replacing statistical measures of closeness
with computational ones. To do this, we replace the SZK-complete problems SD
and ED with the Indistinguishability Condition and the Conditional
Pseudoentropy Condition, which characterize the class ZK, and show that
for every Π ∈ ZKh, Π can be reduced to the intersection of a problem which



satisfies Indistinguishability Condition and a problem which satisfies Con-
ditional Pseudoentropy Condition, and is thus in ZK.

7.5 Putting It Together

We can now use the previous sections’ results to prove our main theorems re-
garding computational zero knowledge:

Theorem 60 (Theorem 1, restated). ZKh ∩AM = ZK ∩AM = NIZKh.

Proof. By definition, NIZKh ⊆ ZKh∩AM. For the other direction, we know any
Π ∈ ZK has a noninteractive, instance-dependent commitment scheme (Theo-
rem 54), so a NIZKh proof can built for Π (Theorem 58). Hence, ZKh ∩ AM ⊆
NIZKh, which completes the proof of our theorem.

Theorem 61. Π ∈ ZK = ZKh if and only if Π ∈ IP and Π satisfies the
CIIDC.

Proof. Since a promise problem that satisfies the CIIDC also satisfies the In-
distinguishability Condition (this follows from the fact that of two distri-
butions have disjointness α, they must have statistical difference at least α), the
promise problem must have a ZK proof system by Theorem 26. Conversely, any
problem in ZKh = ZK satisfies CIIDC by Lemma 49.

8 Quantum Statistical Zero Knowledge

In this section, we study different variants of help for quantum noninteractive
statistical zero knowledge. We start by providing complete problems for the class
QNISZK defined by Kobayashi [13] and proceed to define the following two types
of help: pure quantum help and mixed quantum help.

8.1 Complete problems for QNISZK

Kobayashi [13] gave a complete problem for the class of quantum noninterac-
tive perfect zero-knowledge, but not for statistical zero-knowledge. We continue
this line of work and give two complete problems for QNISZK, Quantum En-
tropy Approximation (QEA) and Quantum Statistical Closeness to
Uniform (QSCU).

Let ρ be a quantum mixed state of n qubits which can be created in time
polynomial in n by a quantum machine and t a positive integer. Then,

QEAY = {(ρ, t) : S(ρ) ≥ t+ 1} QSCUY = {ρ : ||ρ− U|| ≤ 1/n}
QEAN = {(ρ, t) : S(ρ) ≤ t− 1} QSCUN = {ρ : ||ρ− U|| ≥ 1− 1/n}

Note that these problems are the quantum equivalents of EA and SCU where
the statistical difference is replaced by the trace distance and the Shannon en-
tropy by the von Neumann entropy.



Theorem 62. QEA and QSCU are complete for QNISZK.

Proof Sketch: We start by showing that QEA belongs to QNISZK by using
results of Ben-Aroya and Ta-Shma ([43]) on quantum expanders. Then, similarly
to the classical case we reduce QSCU to QEA and last by Kobayashi’s results
([13]) we know that QSCU is hard for QNISZK. This concludes the proof. �

8.2 Help in Quantum Noninteractive Zero-Knowledge

In quantum noninteractive zero knowledge, the only model we defined so far is
the model where the prover and the verifier share the maximally entangled state∑

i |i〉P |i〉V which can be created by a dealer with quantum polynomial power
([13]). In the previous section, we provided two complete problems for this class.
Here, we extend this definition to allow the dealer to create as help a quantum
state that depends on the input.

We define two types of help and study the resulting classes:

– Pure Help: In the usual framework of quantum zero-knowledge protocols,
the prover and the verifier use only unitaries. We define QNISZKh as the
class where the prover and the verifier share a pure state (i.e., the outcome
of a unitary operation) created by the dealer in quantum polynomial time.
This state can depend on the input. Note that since the maximally entangled
state is a pure state QNISZK ⊆ QNISZKh. In fact, we show that QNISZKh =
QSZK = QSZKh.

– Mixed Help: The previous definition does not allow the dealer to have some
private coins and hence does not fully correspond to NISZKh. We suppose
now that the prover and verifier share a mixed quantum state created by the
dealer. As before, the dealer has quantum polynomial power and the state
depends on the input. We call the resulting class QNISZKmh and show that
this kind of help is most probably stronger than quantum interaction.

For these classes, the definition of the zero knowledge property remains the
same as in the case of QNISZK (Section 5).

Pure Help. We suppose here that there is a trusted dealer with quantum
polynomial power. On input x, he performs a unitary Dx and creates a pure
state Dx(|0〉) = |hPV 〉 in the space P ×V. The prover gets hP = TrV(hPV ) and
the verifier gets hV = TrP(hPV ). Note that the state hPV is a pure state and
depends on the input.

Definition 63. We say that Π ∈ QSZKh (resp. Π ∈ QNISZKh) if there is an
interactive (resp. noninteractive) protocol 〈D,P, V 〉 that solves Π, has the zero
knowledge property and where the verifier and the prover share a pure state hPV

created by a dealer D that has quantum polynomial power and access to the input.
They also start with an arbitrary polynomial number of qubits initialized at |0〉.



Next, we prove a quantum analogue of Theorem 39, i.e., interactive and nonin-
teractive zero knowledge are equivalent in the pure help model. We remark that
the proof of this statement is much more straightforward than in the classical
case.

Theorem 64. QNISZKh = QSZK = QSZKh

Proof. We start by showing that QSZKh ⊆ QSZK (and hence by definition
QNISZKh ⊆ QSZK). Let Π ∈ QSZKh and 〈D,P, V 〉 denote the protocol. Since
hPV is a pure state, we can create another protocol 〈P̃ , Ṽ 〉 where the verifier
takes the place of the dealer. That is, V generates for his first message the state
|hPV 〉 and sends the hP part to the dealer while keeping the hV part for himself.
At this point, note that the verifier and prover have exactly the same states then
when the dealer generates the state |hPV 〉 and sends it to them.

The protocol is the same so soundness and completeness are preserved. The
first message in 〈P̃ , Ṽ 〉 can be simulated because the circuit of the dealer is
public and computable in quantum polynomial time. The remaining messages in
〈P̃ , Ṽ 〉 can be simulated because of the zero-knowledge property of the protocol
〈D,P, V 〉.

The inclusion QSZK ⊆ QNISZKh (and hence by definition QSZK ⊆ QSZKh)
follows immediately from Watrous’ two-message protocol for the QSZK-complete
problem QSD [12]. The first message of the verifier can be replaced by the
dealer’s help.

Mixed help. In the most general case, the dealer can create as help a mixed
quantum state, i .e., a state that can depend on some private coins or measure-
ments as well as the input.

Definition 65. We say that Π ∈ QNISZKmh if there is a noninteractive proto-
col 〈D,P, V 〉 that solves Π with the zero-knowledge property, where the verifier
and the prover share a mixed state hPV created by a dealer D that has quantum
polynomial power and access to the input. They also start with |0〉 qubits.

Note that the only difference between QNISZKh and QNISZKmh is that the
verifier and the prover share a mixed state instead of a pure state; however, we
show that this difference is significant. In the classical case, a model was studied
where the dealer flips some coins r and sends correlated messages mP (r) and
mV (r) to the prover and the verifier. The resulting class was called NISZKsec

and it was shown by Pass and shelat in [23] that NISZKsec = AM. To create
the secret correlated messages mP (r) and mV (r) in our quantum setting, we
just have to create the following state : |φ〉 =

∑
r |r〉|mP (r)〉|mV (r)〉. This state

can be created in polynomial time because mP (r) and mV (r) can be created
with a classical circuit. The dealer keeps the r part, sends the mP part to the
prover and the mV part to the verifier. From this construction, we can easily
see that AM = NISZKsec ⊆ QNISZKmh. Note that it is not known that NP ⊆
QSZK = QNISZKh so this may be interpreted as evidence that QNISZKh is a
strict subset of QNISZKmh.



Last, when we also allow the verifier to use non-unitary operations (i .e., pri-
vate coins and measurements), we don’t know if help and interaction are equiv-
alent. The case of quantum zero knowledge protocols with non-unitary players
is indeed very interesting and we refer the reader to [44] for more results.
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8. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
Journal of Computer and System Sciences 37(2) (1988) 156–189

9. Nguyen, M.H., Vadhan, S.: Zero knowledge with efficient provers. In: STOC ’06:
Proceedings of the thirty-eighth annual ACM symposium on Theory of computing,
New York, NY, USA, ACM Press (2006) 287–295

10. Ong, S.J., Vadhan, S.: Zero knowledge and soundness are symmetric. In: EURO-
CRYPT ’07: 26th Annual Conference on the Theory and Applications of Crypto-
graphic Techniques. (2007)

11. Kitaev, A., Watrous, J.: Parallelization, amplification, and exponential time sim-
ulation of quantum interactive proof systems. In: Proceedings of the 32nd ACM
Symposium on Theory of computing. (2000) 608–617

12. Watrous, J.: Limits on the power of quantum statistical zero-knowledge. In: FOCS
’02: Proceedings of the 43rd Symposium on Foundations of Computer Science,
Washington, DC, USA, IEEE Computer Society (2002) 459–468

13. Kobayashi, H.: Non-interactive quantum perfect and statistical zero-knowledge.
ISAAC ’03: International Symposium on Algorithms And Computation 2906
(2003) 178–188

14. Babai, L., Moran, S.: Arthur-Merlin games: A randomized proof system and a
hierarchy of complexity classes. Journal of Computer and System Sciences 36
(1988) 254–276



15. Goldwasser, S., Sipser, M.: Private coins versus public coins in interactive proof
systems. In Micali, S., ed.: Advances in Computing Research. Volume 5. JAC
Press, Inc. (1989) 73–90

16. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their va-
lidity, or All languages in NP have zero-knowledge proof systems. Journal of the
Association for Computing Machinery 38(3) (1991) 691–729

17. Impagliazzo, R., Yung, M.: Direct minimum-knowledge computations (extended
abstract). In: CRYPTO ’87: A Conference on the Theory and Applications of Cryp-
tographic Techniques on Advances in Cryptology, London, UK, Springer-Verlag
(1988) 40–51

18. Ben-Or, M., Goldreich, O., Goldwasser, S., H̊astad, J., Kilian, J., Micali, S., Ro-
gaway, P.: Everything provable is provable in zero-knowledge. In: CRYPTO ’88.
(1988) 37–56

19. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
under general assumptions. SIAM Journal on Computing 29(1) (1999) 1–28

20. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM Journal on Computing 28(4) (1999) 1364–1396
(electronic)

21. Naor, M.: Bit commitment using pseudorandomness. Journal of Cryptology 4(2)
(1991) 151–158

22. Gutfreund, D., Ben-Or, M.: Increasing the power of the dealer in non-interactive
zero-knowledge proof systems. In: ASIACRYPT ’00: Proceedings of the 6th Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, London, UK, Springer-Verlag (2000) 429–442 Journal version appeared
as [7].

23. Pass, R., abhi shelat: Unconditional characterizations of non-interactive zero-
knowledge. In: CRYPTO ’05, Springer Berlin / Heidelberg (2005) 118–134

24. Aiello, W., H̊astad, J.: Statistical zero-knowledge languages can be recognized in
two rounds. Journal of Computer and System Sciences 42(3) (1991) 327–345

25. Goldreich, O., Sahai, A., Vadhan, S.: Can statistical zero-knowledge be made non-
interactive?, or On the relationship of SZK and NISZK. In: CRYPTO ’99. (1999)
467–484

26. Goldreich, O., Sahai, A., Vadhan, S.: Honest verifier statistical zero-knowledge
equals general statistical zero-knowledge. In: Proceedings of the 30th Annual ACM
Symposium on Theory of Computing. (1998) 399–408

27. Sahai, A., Vadhan, S.: Manipulating statistical difference. In Pardalos, P., Ra-
jasekaran, S., Rolim, J., eds.: Randomization Methods in Algorithm Design (DI-
MACS Workshop, December 1997). Volume 43 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science., American Mathematical Soci-
ety (1999) 251–270

28. Okamoto, T.: On relationships between statistical zero-knowledge proofs. Journal
of Computer and System Sciences 60(1) (2000) 47–108

29. De Santis, A., De Crescenzo, G., Persiano, G., Yung, M.: On monotone formula
closure of SZK. In: Proc. 26th ACM Symp. on Theory of Computing, Montreal,
Canada, ACM (1994) 454–465

30. Bellare, M., Micali, S., Ostrovsky, R.: Perfect zero-knowledge in constant rounds.
In: STOC ’90: Proceedings of the twenty-second annual ACM symposium on The-
ory of computing. (1990) 482–493

31. Itoh, T., Ohta, Y., Shizuya, H.: A language-dependent cryptographic primitive.
Journal of Cryptology 10(1) (1997) 37–49



32. Micciancio, D., Vadhan, S.: Statistical zero-knowledge proofs with efficient provers:
Lattice problems and more. In: CRYPTO. (2003) 282–298

33. Vadhan, S.: An unconditional study of computational zero knowledge. SIAM
Journal on Computing 36(4) (2006) 1160–1214 Special Issue on Randomness and
Complexity.

34. Ong, S.J., Vadhan, S.: An equivalence between zero knowledge and commitments
(2008) These proceedings.

35. Sahai, A., Vadhan, S.: A complete problem for statistical zero knowledge. Journal
of the ACM 50(2) (2003) 196–249

36. Goldreich, O., Vadhan, S.: Comparing entropies in statistical zero-knowledge with
applications to the structure of SZK. In: Proceedings of the Fourteenth Annual
IEEE Conference on Computational Complexity, Atlanta, GA (1999) 54–73

37. Impagliazzo, R., Levin, L.A., Luby, M.: (Pseudo-random generation from one-way
functions (extended abstracts)) 12–24

38. Shamir, A.: IP = PSPACE. Journal of the ACM 39(4) (1992) 869–877
39. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive

proof systems. Journal of the ACM 39(4) (1992) 859–868
40. Watrous, J.: Zero-knowledge against quantum attacks. In: STOC ’06: Proceedings

of the thirty-eighth annual ACM Symposium on Theory of Computing, New York,
NY, USA, ACM Press (2006) 296–305

41. Holenstein, T., Renner, R.: One-way secret-key agreement and applications to
circuit polarization and immunization of public-key encryption. In: Advances in
Cryptology CRYPTO 2005, New York, NY, USA, ACM Press (2005) 478–493

42. Petrank, E., Tardos, G.: On the knowledge complexity of NP. In: IEEE Sympo-
sium on Foundations of Computer Science. (1996) 494–503

43. Ben-Aroya, A., Ta-Shma, A.: Quantum expanders and the quantum entropy dif-
ference problem. ArXiv Quantum Physics e-prints, quant-ph/0702129 (2007)

44. Chailloux, A., Kerenidis, I.: Increasing the power of the verifier in quantum zero
knowledge. Arxiv Quantum Physics e-prints, quant-ph/07114032 (2007)


