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Abstract. We give new proofs for the hardness amplification of effi-
ciently samplable predicates and of weakly verifiable puzzles which gen-
eralize to new settings. More concretely, in the first part of the paper,
we give a new proof of Yao’s XOR-Lemma that additionally applies to
related theorems in the cryptographic setting. Our proof seems simpler
than previous ones, yet immediately generalizes to statements similar in
spirit such as the extraction lemma used to obtain pseudo-random gener-
ators from one-way functions [H̊astad, Impagliazzo, Levin, Luby, SIAM
J. on Comp. 1999].
In the second part of the paper, we give a new proof of hardness amplifi-
cation for weakly verifiable puzzles, which is more general than previous
ones in that it gives the right bound even for an arbitrary monotone
function applied to the checking circuit of the underlying puzzle.
Both our proofs are applicable in many settings of interactive crypto-
graphic protocols because they satisfy a property that we call “non-
rewinding”. In particular, we show that any weak cryptographic proto-
col whose security is given by the unpredictability of single bits can be
strengthened with a natural information theoretic protocol. As an ex-
ample, we show how these theorems solve the main open question from
[Halevi and Rabin, TCC2008] concerning bit commitment.

1 Introduction

In this paper, we study two scenarios of hardness amplification. In the first
scenario, one is given a predicate P (x), which is somewhat hard to compute
given x. More concretely: Pr[A(x) = P (x)] ≤ 1 − δ

2 for any A in some given
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complexity class, where typically δ is not too close to 1 but at least polynomially
big (say, 1

poly(n) < δ < 1 − 1
poly(n) ). One then aims to find a predicate which is

even harder to compute.
In the second scenario, one is given a computational search problem, speci-

fied by some relation R(x, y). One then assumes that no algorithm of a certain
complexity satisfies Pr[(x,A(x)) ∈ R] > 1 − δ, and again, is interested in find-
ing relations which are even harder to satisfy. It is sometimes the case that R
may only be efficiently computable given some side information generated while
sampling x. Such problems are called “weakly verifiable puzzles”.

Our aim is to give proofs for theorems in both scenarios which are both
simple and versatile. In particular, we will see that our proofs are applicable in
the interactive setting, where they give stronger results than those previously
known.

1.1 Predicates

Overview and previous work. Roughly speaking, Yao’s XOR-Lemma [39] states
that if a predicate P (x) is somewhat hard to compute, then the k-wise XOR
P⊕k(x1, . . . , xk) := P (x1)⊕ · · · ⊕ P (xk) will be even harder to compute. While
intuitive, such statements are often somewhat difficult to prove. The first proof
of the above appears to be by Levin [31] (see also [11]). In some cases, even
stronger statements are needed: for example, the extraction lemma states that
one can even extract several bits out of the concatenation P (x1)P (x2) . . . P (xk),
which look pseudorandom to a distinguisher given x1, . . . , xk. Proving this state-
ment for tight parameters is considered the technically most difficult step in the
original proof that one-way functions imply pseudorandom generators [17]. Ex-
cluding this work, the easiest proof available seems to be based on Impagliazzo’s
hard-core set theorem [23], more concretely the uniform version of it [19, 1]. A
proof along those lines is given in [20, 13]. Similar considerations are true for
the more efficient proof that one-way functions imply pseudorandom generators
given by Haitner et al.[15].

Contributions of this paper. In this paper, we are concerned with statements of
a similar nature as (but which generalize beyond) Yao’s XOR-Lemma. We give
a new theorem, which is much easier to prove than the hard-core set theorem,
and which is still sufficient for all the aforementioned applications.

Our main observation can be described in relatively simple terms. In the
known proof based on hard-core sets ([23, 19]), the essential statement is that
there is a large set S, such that for x ∈ S it is computationally difficult to
predict P (x) with a non-negligible advantage over a random guess. Proving the
existence of the set S requires some work (basically, boosting, as shown in [30]).
We use the idea that the set S can be made dependent on the circuit which
attempts to predict P . The existence of a hard set S for a particular circuit is a
much easier fact to show (and occurs as a building block in some proofs of the
hard-core theorem). For our idea to go through, S has to be made dependent on
some of the inputs to C as well as some other fixed choices. This technique of



switching quantifiers resembles a statement in [2], where Impagliazzo’s hard-core
set theorem is used to show that in some definitions of pseudo-entropy it is also
possible to switch quantifiers.

Besides being technically simpler, making the set S dependent on C has an
additional advantage. For example, consider a proof of the XOR Lemma. To get
a contradiction, a circuit C is assumed which does well in predicting the XOR,
and a circuit D for a single instance is built from C. On input x, D calls C
as a subroutine several times, each time “hiding” x as one of the elements of
the input. Using our ideas, we can ensure that x is hidden always in the same
place i, and even more, the values of the inputs x1, . . . , xi−1 are constant and
independent of x. This property, which we call non-rewinding, is useful in the
case one wants to amplify the hardness of interactive protocols.

We remark that in this paper we are not concerned with efficiency of XOR-
Lemmas in the sense of derandomizing them (as in, e.g., [28, 24, 26]).

1.2 Weakly Verifiable Puzzles

Overview and Previous Work. The notion of weakly verifiable puzzles was in-
troduced by Canetti et al. [4]. A weakly verifiable puzzle consists of a sampling
method, which produces an instance x together with a circuit Γ (y), checking
solutions. The task is, given x but not necessarily Γ , to find a string y for which
Γ (y) = 1. One-way functions are an example: Γ (y) just outputs 1 if f(y) = x
(since Γ depends on the instance it can contain x). However, weakly verifiable
puzzles are more general, since Γ is not given at the time y has to be found.

Canetti et al. show that if no efficient algorithm finds solutions with proba-
bility higher than δ, then any efficient algorithm finds k solutions simultaneously
with probability at most δk + ε, for some negligible ε. This result was strength-
ened by [25], showing that requiring some δ′ > δ+ 1/poly(n) fraction of correct
answers already makes efficient algorithms fail, if k is large enough. Indepen-
dently of the current work, Jutla [29] improved their bound to make it match
the standard Chernoff bound. A different strengthening was given in [16], where
it was noted that the algorithm in [4] has an additional property which implies
that it can be applied in an interactive cryptographic setting, also they studied
how much easier solving a weakly verifiable puzzle becomes if one simply asks for
a single correct solution from k given puzzles. Also independently of our work,
Chung et al. [6] give a proof for the threshold case (similar to Jutla) which is
also applicable in an interactive setting; however, their parameters are somewhat
weaker than the ones given by most other papers. Finally, [9] gives yet another
strengthening: they allow a weakly verifiable puzzle to have multiple solutions
indexed by some element q, and the adversary is allowed to interactively obtain
some of them. They then study under what conditions the hardness is amplified
in this setting.

Contributions of this paper. In this work, we present a theorem which unifies
and strengthens the results given in [4, 16, 25, 29, 6]: assume a monotone function
g : {0, 1}k → {0, 1} specifies which subpuzzles need to be solved in order to solve



the resulting puzzle (i.e., if c1, . . . , ck are bits where ci indicates that a valid
solution for puzzle i was found, then g(c1, . . . , ck) = 1 iff this is sufficient to give
a valid solution for the overall case.) Our theorem gives a tight bound for any
such g (in this sense, previous papers considered only threshold functions for g).
Furthermore, as we will see our proof is also applicable in an interactive setting
(the proof given in [25, 29] does not have this property). Our proof is heavily
inspired by the one given in [4].

1.3 Strengthening Cryptographic Protocols

Overview and Previous Work. Consider a cryptographic protocol, such as bit
commitment. Suppose that a non-perfect implementation of such a protocol is
given, which we would like to improve. For example, assume that a cheating
receiver can guess the bit committed to with some probability, say 3/5. Further-
more, suppose that a cheating sender can open the commitment in two ways
with some probability, say 1/5. Can we use this protocol to get a stronger bit
commitment protocol?

Such questions have been studied in various forms both in the information
theoretic and the computational model [8, 7, 10, 19, 21, 38, 16].

However, all of the previous computational work except [16] focused on the
case where the parties participating in the protocol are at least semi-honest, i.e.,
they follow the protocol correctly (this is a natural assumption in the case for the
work on key agreement [10, 19, 21], as in this case the participating parties can
be assumed to be honest). An exception to this trend was the work by Halevi
and Rabin [16], where it was shown that for some protocols, the information
theoretic bounds also apply computationally.

The above are results in case where the protocol is repeated sequentially. The
case where the protocol is repeated in parallel is more complicated [3, 35, 34, 18,
12, 5].

Contributions of this paper. We explicitly define “non-rewinding” (which was,
however, pointed to in [16]) which helps to provide a sufficient condition for
transforming complexity theoretic results into results for cryptographic proto-
cols. Using, the above results, and specifically that the above results are non-
rewindable, we show that we can strengthen any protocol in which the security
goal is to make a bit one party has unpredictable to the other party, in the case
where an information theoretic analogue can be strengthened. We also study
interactive weakly verifiable puzzles (as has been done implicitly in [16]), and
show that natural ways to amplify the hardness of these work.

We only remark that our proof is applicable to parallel repetition for non-
interactive (two-round) protocols (e.g. CAPTCHAs).

Due to space restrictions, many of the proofs and even some of the formal
statements of theorems have been omitted. We encourage the interested reader
to look at the full version of this paper [22].



2 Preliminaries

Definition 1. Consider a circuit C which has a tuple of designated input wires
labeled y1, . . . , yk. An oracle circuit D(·) with calls to C is non-rewinding if there
is a fixed i and fixed strings y∗1 to y∗i−1 such that for any input y to D, all calls
to C use inputs (y∗1 , . . . , y

∗
i−1, y) on the wires labeled y1, . . . , yi.

Definition 2. Let C be a circuit which has a block of input wires labeled x. An
oracle circuit D which calls C (possibly several times) treats x obliviously if the
input x to D is forwarded to C directly, and not used in any other way in D.

We say that an event happens almost surely if it has probability 1−2−n poly(n).
We denote by [m] the set {1, . . . ,m}. The density of a set S ⊆ {0, 1}n is

µ(S) = |S|
2n . We sometimes identify a set S with its characteristic function S :

{0, 1}n → {0, 1}. We often denote a tuple (x1, x2, . . . , xk) by x(k).
If a distribution µ over some set is given, we write x← µ to denote that x is

chosen according to µ. We sometimes identify sets with the uniform distribution
over them. We let µδ be the Bernoulli distribution over {0, 1} with parameter δ,
i.e., Prx←µδ [x = 1] = δ. Furthermore, µkδ is the distribution over {0, 1}k where
each bit is i.i.d. according to µδ.

When two interactive algorithms A and B are given, we will denote by
〈A,B〉A the output A has in an interaction with B, and by 〈A,B〉B the output
which B has. We sometimes consider probabilities like Pr[〈A,B〉A = 〈A,B〉B ],
in which case the probability is over random coins of A and B (if any), but they
are chosen the same on the left and the right hand side.

3 Efficiently Samplable Predicates

3.1 Single Instance

Informal Discussion. Fix a predicate P : {0, 1}n → {0, 1} and a circuit
C(x, b, r) which takes an arbitrary x ∈ {0, 1}n, a bit b ∈ {0, 1}, and some
randomness r as input. We may think of C as a circuit which tries to distinguish
the case b = P (x) from the case b = 1−P (x). Our idea is to identify a set S for
which we can show the following:

1. If x is picked randomly from S, then Pr[C(x, P (x), r) = 1] ≈ Pr[C(x, 1 −
P (x), r) = 1].

2. C can be used to predict P (x) for a uniform random x correctly with prob-
ability close to 1− 1

2µ(S)

On an informal level, one could say that S explains the hardness of computing P
from C’s point of view: for elements from S the circuit just behaves as a uniform
random guess, on the others it computes (or, more accurately, helps to compute)
P . Readers familiar with Impagliazzo’s hardcore lemma will notice the similarity:
Impagliazzo finds a set which explains the computational difficulty of a predicate
for any circuit of a certain size. Thus, in this sense Impagliazzo’s theorem is



stronger. The advantage of ours is that the proof is technically simpler, and that
it can be used in the interactive setting (see Section 3.3) which seemingly comes
from the fact that it helps to build non-rewinding proofs.
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Fig. 1. Intuition for the proof of Theorem 1. In both pictures, on the vertical axis,
the advantage of the circuit in guessing right over a random guess is depicted. The
elements are then sorted according to this quantity. The point x∗ is chosen such that
the area of A is slightly smaller than the area of B.

The Theorem. The following theorem formalizes the above discussion. It will
find S by producing a circuit which recognizes it, and also produces a circuit Q
which uses C in order to predict P .

Theorem 1. Let P : {0, 1}n → {0, 1} be a computable predicate. There is an al-
gorithm Gen which takes as input a randomized circuit C(x, b, r) and a parameter
ε, and outputs two deterministic circuits Q and S, both of size size(C)·poly(n, 1

ε ),
as well as δ ∈ [0, 1], such that almost surely the following holds:



Large Set: S(x, P (x)) recognizes a set S∗ = {x|S(x, P (x)) = 1} of density at
least µ(S∗) ≥ δ.

Indistinguishability: For the above set S∗ we have∣∣ Pr
x←{0,1}n,r

[C(x, P (x), r) = 1]− Pr
x←{0,1}n,r

[C(x, P ′(x), r) = 1]
∣∣ ≤ ε, (1)

where P ′(x) := P (x)⊕S(x), i.e., P ′ is the predicate which equals P outside S
and differs from P within S.

Predictability: Q predicts P well: Pr
x←{0,1}n

[Q(x) = P (x)] ≥ 1− δ

2
.

Additionally, these algorithms have the following properties:

1. Unless δ = 1 algorithm Q predicts slightly better:3 Pr[Q(x) = P (x)] ≥ 1 −
δ
2 + ε

4 .
2. If P is efficiently samplable (i.e., pairs (x, P (x)) can be generated in polyno-

mial time), Gen runs in time poly(n, 1
ε ).

3. Gen, S, and Q can be implemented with oracle access to C only (i.e., they
do not use the description of C).

4. When thought as oracle circuits, S and Q use the oracle C at most O( nε2 )
times. Also, they both treat x obliviously, and their output only depends on
the number of 1’s obtained from the oracle calls to C and, in case of S, the
input P (x).

The proof uses no new techniques. For example, it is very similar to Lemma
2.4 in [19], which in turn is implicit in [31, 11] (see also Lemma 6.6 and Claim
7 on page 121 in [20]). Our main contribution here is to give the statement and
to note that it is very powerful. The proof itself is only given in the full version
of the paper [22], which we encourage the reader to view. It is only remarkable
for how straight-forward it is (given the statement).

Proof Overview. We assume that overall C(x, P (x), r) is more often 1 than
C(x, 1−P (x), r). Make S the largest set for which the Indistinguishability prop-
erty is satisfied as follows: order the elements of {0, 1}n according to ∆x :=
Prr[C(x, P (x), r) = 1] − Prr[C(x, 1 − P (x), r) = 1], and insert them into S se-
quentially until both Prx←S,r[C(x, P (x), r) = 1] > Prx←S,r[C(x, 1−P (x), r) = 1]
and indistinguishability is violated. Then, it only remains to describe Q. For any
x /∈ S note that Pr[C(x, P (x), r) = 1]− Pr[C(x, 1− P (x), r) = 1] ≥ ε, as other-
wise x could be added to S. Thus, for those elements P (x) is the bit b for which
Pr[C(x, b, r) = 1] is bigger. In this overview we assume that Pr[C(x, b, r) = 1]
can be found exactly, so we let Q(x) compute the probabilities for b = 0 and
b = 1, and answer accordingly; we will call this rule the “Majority Rule”. Clearly,
Q(x) is correct if x /∈ S, and in order to get “predictability”, we only need to
argue that Q is not worse than a random guess on S.

Consider now Figure 1 (a), where the elements are ordered according to ∆x.
The areas depicted A and B are roughly equal, which follows by the way we
3 This implies that δ ≥ ε

2
, which can always be guaranteed.



chose S (note that Prx←S,r[C(x, P (x), r) = 1] − Prx←S,r[C(x, 1 − P (x), r) =
1] = Ex←S [∆x]).

At this point our problem is that the majority rule will give the incorrect
answer for all elements for which ∆x < 0, and as shown in Figure 1 (b), this
can be almost all of S, so that in general the above Q does perform worse than
a random guess on S. The solution is to note that it is sufficient to follow the
majority rule in case the gap is bigger than ∆x∗ . In the full proof we will see that
if the gap is small so that −∆x∗ ≤ Pr[C(x, 0, r) = 1]− Pr[C(x, 1, r) = 1] ≤ ∆x∗

then a randomized decision works: the probability of answering b = 0 is 1 if the
gap is −∆x∗ , the probability of answering b = 0 is 0 if the gap is ∆x∗ . When the
gap is in between then the probability of answering b = 0 is linearly interpolated
based on the value of the gap. So for example, if the gap is 0, then b = 0 with
probability 1

2 .4 A bit of thought reveals that this is exactly because the areas A
and B in Figure 1 are almost equal.

In the full proof, we also show how to sample all quantities accurately enough
(which is easy) and how to ensure that S is a set of the right size (which seems
to require a small trick because ∆x as defined above is not computable exactly,
and so we actually use a different quantity for ∆x). We think that the second is
not really required for the applications later, but it simplifies the statement of
the above theorem and makes it somewhat more intuitive.

3.2 Multiple instances

Informal Discussion. We explain our idea on an example: suppose we want
to prove Yao’s XOR-Lemma. Thus, we are given a predicate P : {0, 1}n →
{0, 1} which is somewhat hard to compute, i.e., Pr[C(1)(x) = P (x)] < 1 − δ

2

for any circuit C(1) coming from some family of circuits (the superscript (1)
should indicate that this is a circuit operating on a single instance). We want to
show that any circuit C(⊕k) from a related family predicts P (x1)⊕ · · · ⊕ P (xk)
from (x1, . . . , xk) correctly with probability very close to 1

2 , and aiming for a
contradiction we now assume that a circuit C(⊕k) exists which does significantly
better than this is given.

As a first step, we transform C(⊕k) into a circuit C(k)(x1, b1, x2, b2, . . . , xk, bk)
as follows: C(k) invokes C(⊕k)(x1, . . . , xk) and outputs 1 if the result equals
b1 ⊕ · · · ⊕ bk, otherwise it outputs 0. We see that we would like to show
Pr[C(k)(x1, P (x1), . . . , xk, P (xk)) = 1] ≈ 1

2 .
Here is the key idea: we apply Theorem 1 sequentially on every position i

of C(k). Done properly, in each position one of the following happens: (a) we
can use C(k) to predict P (x) from x with probability at least 1 − δ

2 , or (b) we
find a large set S∗i such that if xi ∈ S∗i , C(k) behaves roughly the same in case
bi equals P (xi) and in case bi is a uniform random bit. If (a) happens at any
point we get a contradiction and are done, so consider the case that (b) happens

4 It may be instructive to point out another rule which does not work: if one produces
a uniform random bit in case the gap is smaller than ∆x∗ then elements in the region
marked A with negative gap larger than ∆x∗ are problematic.



k times. Recall now how C(k) was built from C(⊕k): it compares the output of
C(⊕k) to b1 ⊕ · · · ⊕ bk. If xi lands in the large set for any i we can assume that
bi is a random bit (and it is very unlikely that this happens for no i). Then,
C(k) outputs 1 exactly if C(⊕k) correctly predicts a uniform random bit which is
independent of the input to C(⊕k). The probability such a prediction is correct
is exactly 1

2 , and overall we get that C(⊕k) is correct with probability close to 1
2 .

The theorem gives the formal statement for C(k), in the full version the
transformation to C(⊕k) is done as an example.

The Theorem. Fix a predicate P : {0, 1}n → {0, 1} and a boolean circuit
C(k)(x1, b1, . . . , xk, bk). We are interested in the probability that the circuit out-
puts 1 in the following Experiment 1:

Experiment 1:
∀i ∈ {1, . . . , k} : xi ← {0, 1}n
∀i ∈ {1, . . . , k} : bi := P (xi)
r ← {0, 1}∗

output C(k)(x1, b1, . . . , xk, bk, r)

We will claim that there are large sets S∗1 , . . . , S
∗
k with the property that for

any xi which falls into S∗i , we can set bi to a random bit and the probability of the
experiment producing a 1 will not change much. However, we will allow the sets
S∗i to depend on the xj and bj for j < i; we therefore assume that an algorithm
GenS is given which produces such a set on input ti = (x1, b1, . . . , xi−1, bi−1).

Experiment 2:
for i := 1 to k do

ti := (x1, b1, . . . , xi−1, bi−1)
S∗i := GenS(ti)
xi ← {0, 1}n
if xi ∈ S∗i then bi ← {0, 1} else bi := P (xi) fi

end for
r ← {0, 1}∗

output C(k)(x1, b1, . . . , xk, bk, r)

Theorem 2 essentially states the following: assume no small circuit can predict
P (x) from x with probability 1 − δ

2 . For any fixed circuit C(k), any ε, and any
k there is an algorithm GenS which produces sets S∗i with µ(S∗i ) ≥ δ and such
that the probability that Experiment 1 outputs 1 differs by at most ε from the
probability that Experiment 2 outputs 1.

Theorem 2. Let P be a computable predicate, k, 1
ε ∈ poly(n) parameters. There

are two algorithms Gen and GenS as follows: Gen takes as input a randomized
circuit C(k) and a parameter ε and outputs a deterministic circuit Q of size
size(C(k)) · poly(n) as well as δ ∈ [0, 1]. GenS takes as input a circuit C(k),
a tuple ti, and a parameter ε and outputs a deterministic circuit Sti(x, b) of
size(C(k)) · poly(n). After a run of Gen, almost surely the following properties
are satisfied:



Large Sets: For any value of ti := (x1, b1, . . . , xi−1, bi−1) the circuit Sti(xi, P (xi))
recognizes a set S∗i := {xi|S(ti, xi, P (xi)) = 1}. The probability that in an
execution of Experiment 2 we have µ(S∗i ) < δ for any of the S∗i which occur
is at most ε.

Indistinguishability: Using sets S∗ti as above in Experiment 2 gives∣∣Pr[Experiment 1 outputs 1]− Pr[Experiment 2 outputs 1
∣∣ ≤ ε. (2)

Predictability: Q predicts P well: Pr
x←{0,1}n

[Q(x) = P (x)] ≥ 1− δ

2
.

Additionally, these algorithms have the following properties:

1. Unless δ = 1 algorithm Q predicts slightly better: Pr[Q(x) = P (x)] ≥ 1− δ
2 +

ε
16k .

2. If P is efficiently samplable (i.e., pairs (x, P (x)) can be generated in polyno-
mial time), Gen and GenS run in time poly(n).

3. Gen, GenS, Sti , and Q can be implemented with oracle access to C only (i.e.,
they don’t use the description of C).

4. When thought of as oracle circuits, Sti and Q use the oracle C at most
O(k

2n
ε2 ) times. Also, they both treat x obliviously and are non-rewinding.

Finally, their output only depends on the number of 1’s obtained from the
oracle calls to C and, in case of Sti , the input P (x).

The proof is given in the full version, but follows the informal discussion
above. We encourage the interested reader to see the full version [22].

3.3 Cryptographic Protocols which output single bits

Again we start with an example: consider a slightly weak bit commitment proto-
col, where the receiver can guess the bit the sender committed to with probability
1− δ

2 . In such a case, we might want to strengthen the scheme. For example, in
order to commit to a single bit b, we could ask the sender to first commit to two
random bits r1 and r2, and then send b ⊕ r1 ⊕ r2 to the receiver. The hope is
that the receiver has to guess both r1 and r2 correctly in order to find b, and so
the protocol should be more secure.

In the case where the protocol has some defect that sometimes allows a sender
to cheat, we might also want to consider the protocol where the sender commits
twice to b, or, alternatively, that he commits to r1, then to r2, and sends both
b⊕r1 and b⊕r2 to the receiver. In this case, one can hope that a cheating receiver
still needs to break the protocol at least once, and that the security should not
degrade too much.

Just how will the security change? We want to consider a scenario in which
the security is information theoretic. We can do this by assuming that instead
of the weak protocol, a trusted party distributes a bit X to the sender and some
side information Z to the receiver. The guarantee is that for any f , Pr[f(Z) =
X] ≤ 1− δ

2 . In such a case, one can easily obtain bounds on the security of the



above protocols, and the hope is that the same bounds hold in the computational
case. The theorem below states that this is indeed true (for protocols where the
security consists of hiding single bits).

We remark that while the two aforementioned examples of protocol compo-
sition are already handled in [16] (their result applies to any direct product and
any XOR as above), Theorem 3 handles any information theoretic amplification
protocol as long as it can be implemented efficiently.

Definition 3. A pair (X,Z) of random variables over {0, 1} × Z, where Z is
any finite set, is δ-hiding if

max
f :Z→{0,1}

Pr[f(Z) = X] ≤ 1− δ

2
. (3)

Theorem 3. Let a cryptographic protocol (which we think of as “weak”) W =
(AW , BW ) be given in which AW has as input a single bit c. Assume that there is
a function δ such that for any polynomial time adversary B∗W there is a negligible
function ν such that

Pr
x←{0,1}

[〈AW (x), B∗W 〉B = x] ≤ 1− δ

2
+ ν(n), (4)

where the probability is also over the coins of AW and B∗W (if any).
Let further an information theoretic protocol I = (AI , BI) be given. In I, AI

takes k input bits (X1, . . . , Xk) and has a single output bit. Furthermore, assume
that I is hiding in the sense that for k independent δ-hiding random variables
(Xi, Zi), any (information theoretic) adversary B∗I , and for some function η(k):

Pr
[
〈AI(X1, . . . , Xk), B∗I (Z1, . . . , Zk)〉A =
〈AI(X1, . . . , Xk), B∗I (Z1, . . . , Zk)〉B

]
<

1
2

+ η(k). (5)

Let S = (AS , BS) be the protocol where A and B first execute k(n) copies of W
sequentially, where A uses uniform random bits as input. Then, they run a single
execution of protocol I. In the execution to I, A uses his k input bits to the weak
protocols as input. The output of A in S is the output of A in the execution of I.
We also need that (AI , BI) and k(n) are such that I can be run in time poly(n)
for k = k(n).

Then, for any polynomial time B∗S there is a negligible function ν′ such that

Pr[〈AS , B∗S〉A = 〈AS , B∗S〉B ] ≤ 1
2

+ η(k) + ν′(n) . (6)

Proof. Let x ∈ {0, 1}n be the concatenation of the randomness which A uses in
an execution of the protocol W and his input bit c. We let P : {0, 1}n → {0, 1}
be the predicate which outputs c = P (x).

In order to obtain a contradiction, we fix an adversary B∗S for the proto-
col S which violates (6). We would like to apply Theorem 2. For this, we define
C(k)(x1, b1, . . . , xk, bk) as follows: C(k) first simulates an interaction of B∗S with



AS , where AS uses randomness xi in the ith invocation of the weak protocol W .
After this, B∗S is in some state in which it expects an invocation of the informa-
tion theoretic protocol. C(k) simulates this information theoretic protocol, but it
runs AI with inputs b1, . . . , bk instead of the actual inputs to the weak protocols.
In the end, B∗S produces a guess for the output bit of AS , and C(k) outputs 1 if
this guess equals the output of AI(b1, . . . , bk) in the simulation.

In Experiment 1 of Theorem 2, bi = P (xi) is used, and so C(k) exactly
simulates an execution of the protocol S. Since we assume that B∗S contradicts
(6), we see that the probability that C(k) outputs 1 in Experiment 1 is, for
infinitely many n and some constant c at least 1

2 + η(k) + n−c.
We now apply Theorem 2 on the circuit C(k) with parameter n−c/3. This

yields a parameter δT2 (the subscript indicates that it is from Theorem 2). We
claim that

δT2 ≤ δ almost surely. (7)

To see this, we assume otherwise and obtain a contradiction. In Experiment
2, Let Γi be the communication produced by the weak protocol W in round i.
Assuming all sets S∗i in the execution are of size at least δ (this happens with
probability at least 1−n−c/3), the tuples (bi, Γi) are δ-hiding random variables.
Consequently, when the circuit C(k) simulates the information theoretic protocol
I using bits bi, it actually simulates it in an instance in which it was designed
to be used. Since (5) holds for an arbitrary adversary in this case we get that

Pr[C(k) outputs 1 in Experiment 2|No set S∗i was of measure less than δ]

≤ 1
2

+ η(k). (8)

Therefore, the probability that C(k) outputs 1 in Experiment 2 is at most 1
2 +

η(k) + n−c

3 , and using “indistinguishability” the probability that C(k) outputs 1
in Experiment 1 is at most 1

2 + η(k) + 2n−c

3 . However, our assumption was that
the probability that C(k) outputs 1 is at least 1

2 + η(k) + n−c, and so almost
surely Gen does not output such a big δT2, establishing (7).

Theorem 2 also provides us with a non-rewinding circuit Q which treats x
obliviously and which satisfies “predictability”. We explain how to use Q to
break (4), the security property of the weak protocol W .

Since Q(x) is non-rewinding, it uses the input x exclusively in a fixed posi-
tion i, together with a fixed prefix (x1, . . . , xi−1), in all calls to C(k). We first
extract i and the prefix.

We now explain a crucial point: how to interact with AW in order to cheat.
We simulate the i − 1 interactions of AW with B∗S up to and including round
i− 1 using (x1, . . . , xi−1) as the input bit and randomness of A. In round i, we
continue with the actual interaction with AW . Here, AW uses randomness x (on
which we, however, do not have access).

After this interaction, we need to be able to extract the bit c of AW . For this,
we evaluate Q(x), which we claim is possible. Since Q is oblivious and deter-
ministic, the only difficulty is in evaluating the calls to C(k)(x1, b1, . . . , xk, bk, r).



All calls use the same values for x1, . . . , xi. Recalling how C(k) is defined, we see
that we can continue from the state we had after the interaction with AW in
order to evaluate C(k) completely (note that all the bi are given, so the we can
also evaluate the information theoretic protocol I).

We get from Theorem 2 that Q satisfies, almost surely, infinitely often, us-
ing (7)

Pr
x←{0,1}n

[Q(x) = P (x)] ≥ 1− δ

2
+

1
48knc

. (9)

This therefore gives a contradiction to (4): in order to get rid of the “almost
surely”, we just consider the algorithm which first runs Gen and then applies
the above protocol – this only loses a negligible additive term in the probability.

4 Weakly Verifiable Puzzles

4.1 Interactive Weakly Verifiable Puzzles

Consider a bit commitment protocol, in which a sender commits to a single bit
b. In a first phase the sender and the receiver enact an interactive protocol, after
which the sender holds some opening information y, and the receiver has some
way of checking whether (y, b) is a valid decommitment. If the protocol is secure,
then it is a computationally hard problem for the sender to come up with two
strings y0 and y1 such that both (y0, 0) and (y1, 1) are valid decommitments, in
addition, he may not even know the function the receiver will use to validate
a decommitment pair,5 and thus in general there is no way for the sender to
recognize a valid pair (y0, y1). We abstract this situation in the following defini-
tion; in it we can say that the solver produces no output because in the security
property all efficient algorithms are considered anyhow.

Definition 4. An interactive weakly verifiable puzzle consists of a protocol
(P, S) and is given by two interactive algorithms P and S, in which P (the
problem poser) produces as output a circuit Γ , and S (the solver) produces no
output.

The success probability of an interactive algorithm S∗ in solving a weakly
verifiable puzzle (P, S) is:

Pr[y = 〈P, S∗〉S∗ ;Γ (y) = 1] (10)

The puzzle is non-interactive if the protocol consists of P sending a single mes-
sage to S.
5 One might want to generalize this by saying that in order to open the commitment,

sender and receiver enter yet another interactive protocol. However, our presentation
is without loss of generality: the sender can send the randomness he used in the first
protocol instead. The receiver then checks, if this randomness together with b indeed
produces the communication in the first round, and whether in a simulation of the
second protocol he accepts.



Our definition of a non-interactive weakly verifiable puzzle coincides with the
usual one [4]. The security property of an interactive weakly verifiable puzzle is
that for any algorithm (or circuit) S∗ of a restricted class, the success probability
of S∗ is bounded.

An important property is that S∗ does not get access to Γ . Besides bit
commitment above, an example of such a puzzle is a CAPTCHA. In both cases
it is not obvious whether a given solution is actually a correct solution.

4.2 Strengthening interactive weakly verifiable puzzles

Suppose that g is a monotone boolean function with k bits of input, and (P (1), S(1))
is a puzzle. We can consider the following new puzzle (P (g), S(g)): the sender
and the receiver sequentially create k instances of (P (1), S(1)), which yields cir-
cuits Γ (1), . . . , Γ (k) for P . Then P (g) outputs the circuit Γ (g) which computes
Γ (g)(y1, . . . , yk) = g(Γ (1)(y1), . . . , Γ (k)(yk)).

Intuitively, if no algorithm solves a single puzzle (P (1), S(1)) with higher prob-
ability than δ, the probability that an algorithm solves (P (g), S(g)) should not be
more than approximately Pru←µkδ [g(u) = 1]. (Recall that µkδ is the distribution
on k-bits, where each bit is independent and 1 with probability δ.) The following
theorem states exactly this.

Theorem 4. There exists an algorithm Gen(C, g, ε, δ, n) which takes as input
a circuit C, a monotone function g, and parameters ε, δ, n, and produces a cir-
cuit D such that the following holds. If C is such that

Pr[Γ (g)(〈P (g), C〉C) = 1] ≥ Pr
u←µkδ

[g(u) = 1] + ε, (11)

then, D satisfies almost surely,

Pr[Γ (1)(〈P (1), D〉D) = 1] ≥ δ +
ε

6k
. (12)

Additionally, Gen and D only require oracle access to both g and C, and D is
non-rewinding.

Furthermore, size(D) ≤ size(C)· 6kε log( 6k
ε ) and Gen runs in time poly(k, 1

ε , n)
with oracle calls to C.

The monotone restriction on g in the previous theorem is necessary. For example,
consider g(b) = 1− b. It is possible to satisfy g with probability 1 by producing
an incorrect answer, but Pru←µδ [g(u) = 1] = 1− δ.

4.3 Proof of Theorem 4

Algorithm Description. If k = 1, Gen creates the circuit D which runs C and
outputs its answer. Then either g is the identity or a constant function. If g is
the identity, the statement is trivial. If g is a constant function, the statement
is vacuously true. D is non-rewinding.



In the general case, we need some notation. For b ∈ {0, 1}, let Gb denote
the set of inputs Gb := {b1, . . . , bk|g(b, b2, . . . , bk) = 1} (i.e., the first input bit is
disregarded and replaced by b). We remark that G0 ⊆ G1 due to monotonicity
of g. We will commonly denote by u = u1u2 · · ·uk ∈ {0, 1}k an element drawn
from µkδ . After a given interaction of C with P (g), let c = c1c2 · · · ck ∈ {0, 1}k
denote the string where ci is the output of Γ (i) on input yi, which is the ith
output of C. We denote the randomness used by P (g) in execution i by πi.

For π∗, b ∈ {0, 1}n × {0, 1} we now define the surplus Sπ∗,b. It denotes how
much better C performs than “it should”, in the case where the randomness
of P (g) in the first instance is fixed to π∗, and the output of Γ (1)(y1) is ignored
(i.e., we don’t care whether C solves the first puzzle right), and b is used instead:

Sπ∗,b := Pr
π(k)

[c ∈ Gb|π1 = π∗]− Pr
u←µkδ

[u ∈ Gb], (13)

where the first probability is also over the interaction between P (g) and C as
well as randomness C uses (if any).

The algorithm then works as follows: first pick 6k
ε log(n) candidates π∗ for

the randomness of P (g) in the first position. For each of those, simulate the
interaction (P (g), C) and then get estimates S̃π∗,0 and S̃π∗,1 of Sπ∗,0 and Sπ∗,1
such that |S̃π∗,b − Sπ∗,b| ≤ ε

4k almost surely.
We consider two cases:

– One of the estimates satisfies S̃π∗,b ≥ (1− 3
4k )ε.

In this case, we fix π1 := π∗ and c1 := b, and invoke Gen(C ′, g′, (1− 1
k )ε, δ, n),

using the function g′(b2, . . . , bk) = g(c1, b2, . . . , bk) and circuit C ′ which is
defined as follows: C ′ first (internally) simulates an interaction of P (1) with
C, then follows up with an interaction with P (g′).

– For all estimates S̃x∗,b < (1− 3
4k )ε.

In this case, we output the following circuit DC : in a first phase, use C to
interact with P (1). In the second phase, simulate k − 1 interactions with
P (1) and obtain (y1, . . . , yk) = C(x, x2, . . . , xk). For i = 2, . . . , k set ci =
Γi(yi). If c = (0, c2, . . . , ck) ∈ G1 \ G0, return y1, otherwise repeat the second
phase 6k

ε log( 6k
ε ) times. If all attempts fail, return the special value ⊥ (or an

arbitrary answer).

Due to space constraints, the proof of correctness of the above algorithm is
omitted, but can be found in the full version [22].

5 Example: Bit Commitment

Theorems 3 and 4 can be used to show how to strengthen bit commitment
protocols, which was the main open problem in [16]. We explain this as an
example here. Assume we have given a weak bit protocol, where a cheating
receiver can guess a bit after the commitment phase with probability 1− β

2 , and
a cheating sender can change the bit he committed to with probability α. We
show that such a protocol can be strengthened if α < β − 1/ poly(n).



We should point out that a different way to prove a similar theorem exists:
one can first show that such a weak bit-commitment protocol implies one-way
functions (using the techniques of [27]). The long sequence of works [17, 32,
36, 33, 14] imply that one-way functions are sufficient to build bit commitment
protocols (the first two papers will yield statistically binding protocols, the last
three statistically hiding protocols). However, this will be less efficient and also
seems less natural than the method we use here.

In the example, we first define weak bit commitment protocols. We then
recall a theorem by Valiant [37], and then show how to use it to strengthen bit
commitment. However, due to space constraints, the example only appears in
the full version [22].
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