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Abstract. Public-coin zero-knowledge and concurrent zero-knowledge
(cZK) are two classes of zero knowledge protocols that guarantee some
additional desirable properties. Still, to this date no protocol is known
that is both public-coin and cZK for a language outside BPP. Further-
more, it is known that no such protocol can be black-box ZK [Pass et.al,
Crypto 09].

We present a public-coin concurrent ZK protocol for any NP language.
The protocol assumes that all verifiers have access to a globally specified
function, drawn from a collision resistant hash function family. (This
model, which we call the Global Hash Function, or GHF model, can
be seen as a restricted case of the non-programmable reference string
model.) We also show that the impossibility of black-box public-coin
cZK extends also to the GHF model.

Our protocol assumes CRH functions against quasi-polynomial adver-
saries and takes O(log1+ε n) rounds for any ε > 0, where n is the security
parameter. Our techniques combine those for (non-public-coin) black-
box cZK with Barak’s non-black-box technique for public-coin constant-
round ZK. As a corollary we obtain the first simultaneously resettable
zero-knowledge protocol with O(log1+ε n) rounds, in the GHF model.

1 Introduction

Zero-knowledge (ZK) proofs and arguments are protocols that enable a prover
to convince a verifier in the verity of a statement without revealing any informa-
tion other than the fact that the statement is true. This is captured by requiring
that for any efficient adversarial verifier there exists an efficient simulator that,
knowing only whether the statement is correct, essentially recreates the adver-
sary’s view of the entire execution. ZK protocols are a fundamental building
block in cryptographic protocols and applications; furthermore, the techniques
used to construct ZK protocols often evolve and percolate to protocols for other
cryptographic tasks.
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Security.



The first ZK protocols by [16, 15] and others have a very simple form, where
the verifier’s messages consist only of random strings with no additional struc-
ture. In the end of the protocol the verifier evaluates a deterministic predicate of
the communication. The simplicity of this public-coin, or Arthur-Merlin struc-
ture is indeed attractive in of itself; in addition it has been shown over the years
to have many other advantages, such as public verifiability, amenability to dele-
gation, and better resilience to leakage [12, 4]. (In fact, we make use of some of
these advantages in this work.)

However, it also soon became clear that obtaining stronger efficiency and se-
curity properties for ZK protocol while preserving the simple public-coin struc-
ture is challenging. One such parameter is the number of rounds: The basic
protocols of [16, 15] take take super-logarithmic number of rounds — essentially,
via sequential repetition of a basic building block that gives soundness error of
one half. The first protocols that obtain a constant number of rounds have the
verifier commit to its randomness ahead of time, thus losing the PC property
[13]. Furthermore, [14] show that no constant rounds public-coin ZK protocol
with negligible error probability can be proven secure via black-box simulation.
A protocol public-coin ZK protocol with constant number of rounds came only
years later and uses a completely new proof technique, which indeed involved
non-black-box simulation [1].

Another security property that appears to stand at odds with public-coin ZK
is parallel and concurrent ZK (cZK). Here we want the protocol to remain ZK
even when the prover participates in many independent sessions for proving the
same statement, and these sessions are scheduled in an adversarially controlled
concurrent way. Also here known protocols are not public-coin ZK [23, 17, 22],
and for a similar reason: an essential ingredient in these protocols is having the
verifier commit to its randomness ahead of time. Furthermore, also here we know
that no PC protocol can be proven to be concurrent (or even parallel) ZK via
black-box simulation [21]. However, here we do not currently know of any way
to get around this black-box impossibility result. In particular, the technique of
[1] fails, at least in of itself. We are thus left with the question:

Do there exist public-coin concurrent zero-knowledge protocols?

A first indication that the answer might be positive was given by Pass, Rosen
and Tseng [20], who construct a public-coin parallel ZK protocol. That is, their
protocol (which is a relatively simple adapration of the [1] protocol) remains ZK
even under parallel composition. However, their security analysis falls apart in
the general concurrent setting.

We provide a positive answer to this question in the general concurrent set-
ting, albeit with a caveat: We consider a setting where all verifiers have access
to a single hash function h. In that setting, we design a public-coin protocol and
show that this protocol is cZK, unless it is possible to efficiently find collisions
in h. That is, we show how to efficiently construct a simulator, given an ad-
versary, and then provide an explicit efficient reduction that turns an adversary
that breaks the cZK property of the protocol w.r.t. the constructed simulator
into an algorithm that finds collisions in h. We call this model the global hash



function (GHF) model. See further discussion on the GHF model at the end of
the Introduction. That is, we show:

Theorem (informal): Assuming existence of collision resistant hash function fam-
ilies against quasipolynomial adversaries, there exist public-coin cZK protocols in
the GHF model. In contrast, there exist no black-box public-coin cZK protocols
in the GHF model.

Round complexity. We present two public-coin cZK protocols. The first one
has a polynomial number of rounds. The second one, which is considerably more
involved, takes only O(log1+ε n) rounds for any ε > 0, where n is the security
parameter. This almost matches the best known round complexity for cZK, re-
gardless of the public-coin property [22]. Recall that for black-box simulation
this is the best possible [7]

Simultaneously resettable ZK in logarithmic rounds. A question that is
very related to public-coin cZK is the question of simultaneously resettable ZK.
Such ZK protocols remain secure even if a cheating party (playing the role of
either the prover or the verifier) has the ability to repeatedly reset the honest
party to its initial state and random tape, and interact with it several times. The
only known simultaneously resettable ZK protocol [10] in the plain model has
polynomial number of rounds. (In the bare public key model, a protocol with
constant number of rounds is known [9].)

As a corollary of our main result we get a new simultaneously resettable ZK
protocol in the GHF model with only logarithmic number of rounds. The simul-
taneously resettable ZK protocol is obtained from our public-coin cZK protocol
by applying two generic transformations: first we apply the transformation of
[21] to go from a public-coin cZK to a resettably-sound cZK protocol that is also
sound against resetting provers. Then we can apply the transformation of [10]
to get simultaneously resettable ZK. Both transformations do not increase the
round complexity of the protocol.

Our techniques. In a nutshell, our protocols use the multiple-opportunity-slots
simulation technique of the cZK protocols of [23, 17, 22] (which are inherently
not public-coin) to make the public-coin protocol of [1] fully concurrent. In par-
ticular, in the context of the non-black-box simulator of [1], we generalize the
concept of rewinding to re-running of certain portions of the simulation of the
adversary’s code.

The global hash function is used in the universal argument (UA) portion of
the protocol of [1], allowing all instances of the UA in all concurrent sessions to
the use the same hash function. This allows our simulator to amortize the work
spent on preparing the universal arguments across multiple concurrent sessions.

On the global hash function model. We design and analyze our protocols
in the global hash function (GHF) model, where all parties have access to a
public hash function h, and the security of the protocol is argued by way of an



efficient and explicit reduction from an adversary that breaks the security of the
protocol to an adversary that finds collisions in h. Results in this model can be
interpreted in several alternative ways. One interpretation, in the spirit of [24], is
that the protocol indeed uses a single and fixed hash function h (say, SHA2) and
the security (in our case, cZK) property “in practice” is based on the inability
of Mankind to find explicit collisions in h — although such collisions exist in
principle and can be found “in polynomial time”. Note that this interpretation
makes sense both when security is formalized in an asymptotic way and in terms
of concrete, non-asymptotic security guarantees.

Another interpretation of results in this model is that they guarantee se-
curity against uniform-complexity polytime adversaries, as long as the (single)
global hash function used by the protocol is collision resistant in an asymp-
totic way against such adversaries. We note however that this interpretation is
relatively weak. In particular, it is not clear how to translate it into concrete,
non-asymptotic security guarantees.

Yet another interpretation of results in this model is that they guarantee
security in the “global reference string model”, where the reference string is
randomly chosen and consists of the description of a hash function h drawn from
a collision resistant hash function family. Here the zero-knowledge simulator has
to work with a given h rather than making up its own one. In fact, the simulation
should succeed even when the function h is chosen adversarially.

The GHF model for zero knowledge protocols should be contrasted with the
common reference string (CRS) model used elsewhere in cryptography (e.g. for
non-interactive and universally composable zero knowledge [5, 6]). Indeed, the
models are quite different: In the CRS model the public reference string is chosen
as part of the protocol execution, and a distinguisher between a real execution
and an ideal has no a-priori information on that string. In particular, the CRS
model provides no guarantees whatsoever when the reference string is chosen
adversarially, or even when the adversary is allowed to see trapdoor information
related to the reference string.

Furthermore, the impossibility of public-coin black-box cZK protocols ex-
tends to the GHF model, whereas in the CRS model such protocols are known
to exist (in fact, any NIZK protocol is such).

Organization. This extended abstract contains only high level descriptions of
our results as well as our protocols and it’s proof. Detailed definitions, construc-
tions and analysis are given in the full version of this paper [8].

2 Overview of Our Public-Coin cZK Protocol

In the black-box simulation world, there has been a rich set of constructions [23,
17, 22] of fully concurrent ZK protocols; however, these constructions are not
public-coin. In fact, as shown in [21], this is inherent: only languages in BPP
have public-coin black-box parallel ZK protocols (that is, protocols that remain
ZK under parallel composition). In contrast, in the non-black-box simulation



world, known constructions [1, 20] are indeed public-coin; however, they are
only ZK under composition with restricted concurrency (e.g., bounded concur-
rent composition, and parallel composition). Our construction can be viewed as
“upgrading” the existing non-black-box simulation techniques to be fully con-
current, using the recursive the rewinding strategies from black-box cZK while
remaining public-coin. We first a give quick overview of the current techniques
and their limitations. Next, we present high-level ideas behind our construction.

2.1 Current Techniques

Public-coin ZK Protocols

Barak’s Protocol. We briefly recall the idea behind Barak’s protocol. Roughly
speaking, for language L and common input x ∈ {0, 1}n, the prover P and veri-
fier V proceed in three stages.

– Stage 1: V starts by sending P a function h chosen randomly from a family
of collision-resistant hash functions.

– Stage 2: P sends a commitment c ∈ {0, 1}n to 0; V follows by sending a
uniformly random “challenge” r ← {0, 1}n; we informally refer to the pair
of messages (c, r) as a slot, for reasons that will become clear later.

– Stage 3: P proves that either x ∈ L or c is a commitment to a hash of a
program Π such that Π(c) = r.

The proof of Stage 3 proceeds via a public-coin witness indistinguishable uni-
versal argument (UA) [2]. This is the crux of the protocol, and where all the
Difficulties lie. A UA system has the crucial property that the verification time
and communication complexity are independent of the length of the witness.
Still, the prover’s complexity grows with the length of the witness.

Soundness follows from the fact that even if a malicious prover P tries to
commit to some program Π (instead of committing to 0), with high probability,
the V ’s challenge r will be different from Π(c). To prove ZK, consider the non-
black-box simulator that sets c to be a commitment to the hash of the code of
the malicious verifier V ∗; note that by definition it holds that Π(c) = V ∗(c) = r,
and the simulator can use Π as a “fake” witness in the final proof.

Bounded concurrency. Barak’s protocol can be extended to a bounded con-
current ZK protocol by slightly changing the UA statement proven in State 3,
and allowing Π to receive, other than c, some additional auxiliary input. Sound-
ness holds as long as the length of the auxiliary input is significantly shorter
than |r|. Now, the simulator can complete the UA by proving that V ∗ on in-
put c, and having received all messages from other sessions before generating its
second message, outputs r. As long as the total number of concurrent sessions
is bounded, r can be chosen to be longer than the total length of messages V ∗

might receive inside any slot. Therefore, the simulation goes through. However,
this approach is inherently limited to the bounded concurrency setting. In the



unbounded concurrent setting, there is no a priori bound on the length of the
messages that V ∗ receives. However, the protocol cannot allow the committed
program Π to receive an arbitrarily long input, as otherwise soundness falls
apart.

Committing to the simulator’s code. One potential approach to circum-
vent the above limitation is having the simulator S commit to the code of itself
(i.e., S) instead of commiting to the code of V ∗. The intuition behind this idea is
that, although in the unbounded concurrent setting the length of the messages
that V ∗ receives is unbounded, these messages are generated by the simulator S,
and thus can be shortly represented by the code of S. Therefore, if the simulator
S commits to a machine Π that emulates its own execution until the message r
is simulated, it can again prove in the UA argument that Π() = r, since all the
messages V ∗ receives will be generated by Π in emulation of S. (Note that here
we treat the simulator code as already including the code of V ∗ in some form.)
Indeed, this idea is the main enabler in the public-coin parallel ZK protocol of
Pass, Rosen and Tseng [20].

However, when moving to the concurrent setting, this technique runs into
the problem that the running time of S grows exponentially with the number of
“nested concurrent sessions”. This problem is similar to the problem encountered
by black-box simulation in the general, non-public-coin settings. In particular,
this blow-up in simulation running time is demonstrated by the example of
Dwork et. al [11]. To see the problem, consider a concurrent verifier V∗ that
starts two nested sessions, where session 1 is completely “enclosed” in the slot
of session 2. In session 1, the simulator commits to a program Π1 that emulates
S until the challenge message in the first session r1 is sent. S then completes
the simulation of session 1 by proving that Π1 outputs r1. Similarly, in session
2, the simulator commits to a program Π2 that emulates S until it simulates
r2. If Π1 takes T steps to output r1, then it takes S at least another T steps to
give a UA argument that this is true. Therefore, in the second session, Π2 takes
at least 2T steps to output r2 (since Π is emulating S, it needs to simulate the
entire first session including its UA proof before V ∗ outputs r2) and the time
for giving the UA argument in session 2 is at least 2T . Overall, the simulation
time is at least 4T . As in the case of [11], it is not hard to see that with d levels
of nesting (i.e., d sessions, with session i entirely enclosed in the slot of session
i+ 1), the simulation time grows to at least 2dT . (In fact, the situation is even
worse since the prover complexity in the best UAs is at least O(T log T ).)

We remark that the idea described above, as well as the problem of exponen-
tial time simulation, were already described by Deng,Goyal and Sahai [10] in the
context of simultaneously resettable ZK. In their protocol, the simulator com-
mits to the code of the adversarial verifier together with some parts of the code
and state of the simulator. The exponential time simulation problem is resolved
using a combination of new black-box and non-black-box simulation techniques.
However, the resulting concurrent ZK protocol is not public-coin.



cZK Protocols The design of all existing cZK protocols follow the Feige-
Lapidot-Shamir (FLS) paradigm: at the beginning of the protocol, the verifier
sets up a “trapdoor” (e.g., by sending a commitment to a secret random value),
followed by many invocations of a sub-protocol that hides the trapdoor, but
allows a simulator to extract the trapdoor by rewinding some messages in the
sub-protocol, referred to as a slot. Then, the prover proves, using a witness-
indistinguishable proof, that either the statement is true or it knows the trap-
door. Roughly speaking, the protocol is ZK, since the simulator can extract the
trapdoor via rewinding of any slot in the session and use it as a “fake” witness
to “cheat” in simulation. The simulator will use a rewinding strategy to decide
which slots to rewind in order to guarantee successful extraction of a trapdoor
for each session in the concurrent setting.

The “recursive rewinding” problem. A good rewinding strategy of a cZK
protocol needs to also guarantee that the time spent on rewinding is bounded.
As observed already by [11], this turns out to be non-trivial and encounters a
similar difficulty as the exponential-time simulation problem in the context of
non-black-box simulation. To demonstrate the difficulty, consider a simplified
protocol that has the structure describe above, but contains only one slot for
rewinding, and a cheating verifier V ∗ that starts two nested sessions, where the
first session is entirely enclosed in the slot of the second session. To simulate the
second session, the simulator needs to rewind the slot in this session to extract
a trapdoor; however, before V ∗ completes this slot, the simulator needs to first
simulate messages in the first session for V ∗, which requires it to recursively
rewind the slot in the first session. This quickly leads to an exponential number
of rewindings and the simulation time explodes.

Known black-box cZK protocols resolve this problem by having many se-
quential slots in the protocol, so that there are many extraction opportunities
for the simulator. It is shown that when the number of slots is large enough,
there are recursive rewinding strategies [23, 17, 22] that, by carefully choosing
which parts of the execution to rewind, guarantee that the depth of nesting (i.e.,
the depth of recursive rewinding) is bounded and thus the simulation time is
bounded. Below we recall the KP-PRS rewinding strategy, which will be useful
for our construction later.

The KP-PRS rewiding strategy. The simulator of [17, 22] simulates the
view of the cheating verifier in a “main thread”, using the trapdoors extracted
via many recursive rewindings also called “lookahead threads”. The KP-PRS
rewinding strategy tells the simulator which parts of the execution to rewind
based on the transcript simulated so far. The simulation strategy is recursive
since rewindings are also used during the simulation of lookahead threads.

In KP-PRS, the rewinding strategy decides when to rewind the verifier obliv-
iously of the content of the simulated messages, depending only on the number
of simulated messages. More specifically, it divides messages in the main thread
(resp. lookahead threads) into blocks of 2i messages. Then, at the end of each
block, it recursively rewinds the verifier from the beginning of the block once;



by rewinding an entire block, the simulator rewinds all the slots contained in
that block “in one shot”. It has been shown in [18] that the KP-PRS rewinding
strategy can be generalized to consider blocks of length bi for b > 2. Intuitively,
the KP-PRS rewinding strategy is efficient since rewindings are performed only
at selected points (i.e., the end of blocks) and the depth of nesting is bounded
by O(logb n). Furthermore, as long as the number of slots is ω(b logb n), it is
guaranteed that at the end of every session, a trapdoor would be extracted suc-
cessfully.

2.2 Our Approach

At a very high-level, the recursive rewinding problem in the context of black-
box simulation and the exponential time simulation problem in the context of
non-black-box simulation are similar: both are caused by the recursive execution
of the simulator’s code. In the context of black-box simulation the problem
can be solved by providing more slots. We show how to solve the exponential
time simulation problem in the context of public-coin non-black-box simulation.
Towards this, we introduce a non-black-box analog of “rewinding slots” and use
these slots to manage the complexity of the simulation. To illustrate the idea,
consider the following overly simplified protocol (P0, V0) which is a k-slot variant
of Barak’s protocol. Our solution will require to replace the UA in State 3 of the
protocol with a new type of interactive argument we call a “special proof”. The
properties of the special proof and its construction is the focus of the rest of this
section.

An Overly Simplified Protocol (P0, V0):
– Stage 1 (Hash Function Selection): V sends P a randomly chose collision-

resistant hash function h← H.
– Stage 2 (k Slots): This stage contains k sequential slots, where in the ith slot

the prover sends a commitment ci and the verifier replies with a challenge ri.
– Stage 3 (Proof Stage): The prover proves using a special proof that either
x ∈ L, or there is a slot i, in which ci is a commitment to a hash of a program
Π that outputs ri.

The idea of committing to the simulator’s code can be adapted to work with
this protocol as follows: on the main thread, the simulator simulates the view
of V ∗ in a straight line. In every slot, the simulator commits to a program Π
that mimics the simulation of the main thread. When the simulation of a session
reaches Stage 3, the simulator proves that there is a slot i with transcript (ci, ri)
such that ci is a commitment to a program that “predicts” the challenge ri.

With many slots, the simulator now gains the freedom to choose which slot
to use as a witness for the special proof in each session. Similarly to the case of
black-box simulation, the simulator will use a proving strategy to choose which
slot to use in the proof of every session. The simulation might still recursively
prove statements about its own computation, however, the proving strategy will
control the recursion depth and thus also the complexity of the simulation. To do



that, the proving strategy will reuse ideas from the black-box recursive rewinding
strategies.

We start by spelling out the analogy between our situation and the case of
black-box rewinding. At every slot, the simulator will commit to a program Π
that mimics the execution of the main thread from the point in the simulation
where the slot starts to the point where the slot ends. Now, the execution of Π
can be thought of as analogous to the rewinding of the simulation in the slot.
However, the non-black-box simulator does not directly execute Π. Instead, it
generates a special proof about the execution of Π. Thus, the running time
that is spent on the rewinding by the black-box simulator is spent by the non-
black-box simulator on constructing a proof about the execution of Π. Similarly,
constructing a UA proof for a program that recursively constructs proofs for other
programs is analogous to recursive rewindings. Following this observation we will
design a proving strategy based on the KP-PRS rewinding strategy.

A KP-PRS-style proving strategy. Roughly speaking, the simulator divides
the messages in the main thread into blocks of length bi (where b is a parameter
of the simulation); at the end of every block, the simulator constructs special
proofs for slots contained in the block, this corresponds to rewinding the block4.
After constructing the special proof at the end of the block, the simulator can
use it to simulate the proof stage (Stage 3) of the corresponding session.

To turn the overly simplified version above into a working protocol we need
to overcome a number of obstacles, mostly related to the special proof in use.
Below, we proceed in two steps: first we construct a relatively simple public-
coin cZK protocol with O(nε) rounds (for any constant ε), and then improve the
round complexity to O(log1+ε n) to obtain our final protocol.

2.3 An O(nε)-Round Protocol

To realize the proposed KP-PRS-style proving strategy, we need to construct a
“special proof” as described above. In this section, we describe the challenges
in constructing such a proof and how to resolve them to get a O(nε)-round
public-coin cZK protocol.

Using UA as a special proof. The KP-PRS rewinding strategy crucially relies
on the fact that rewindings are only performed at the end of blocks to show that
the depth of nesting and the simulation time are bounded. Similarly, we will
require that the time spent by the simulator on constructing special proofs will
be spent only in the end of blocks. This rules out using standard UA as special
proofs, since constructing a UA requires the simulator to interact with the verifier
and get its random challenges. However, the concurrent verifier might schedule
the UA that corresponds to a session within a block only long after the end of
the block.

4 In fact, the simulator only constructs proofs for sessions that haven’t been “solved”,
that is, sessions for which no previous proof was constructed.



Online/offline UA. To resolve this problem, we observe that the construction
of UA in [2] can be separated into an expensive offline stage and an efficient online
stage as follows. Let x be a statement that can be proven by a UA where the
prover runs in time t. The first verifier message specifies a hash function h and
is independent of the statement x. After the first message is sent, the prover’s
work can be separated into an expensive offline stage that runs in time at most
t, and an efficient online stage that runs in a fixed polynomial time in |x|. More
precisely, we separate the prover in the construction of [2] into an “offline prover”
PUA−OFF and an “online prover” PUA as follows: in the offline stage the verifier
specifies a hash function h. Then, the offline prover PUA−OFF on input x, witness
w and the hash h, constructs a PCP proof σ and a Merkle hash tree HT of σ
using h. Finally, PUA−OFF outputs the string π = σ‖HT which we refer to as
the offline UA proof. In the online stage, the online prover PUA is given x and
oracle access to π. PUA first sends the root of the hash tree to “commit” to the
PCP proof. Then, the verifier sends its PCP queries and PUA produces answers
by querying π. PUA obtains the relevant bits of the PCP proof from σ and the
corresponding authentication paths from HT . See Protocol 1 for a description
of the offline and online stages of the UA.

Pubic Coin Online/Offline UA Argument System

Building Blocks: A family of collision-resistant hash functions H. A PCP proof
system (PPCP,VPCP) with properties as defined in [2]).

Inputs: Common input x ∈ L, and auxiliary input w ∈ RL(x) to PUA−OFF.

Offline Stage

1st Message: The verifier VUA sends a random hash function h← H.

The offline prover PUA−OFF runs PPCP on input (x,w) to construct a PCP proof σ,
and computes the Merkle hash tree HT of σ using h; let δ be the root of HT . We call
π = σ‖HT an offline UA proof string .

Online Stage: The online prover PUA with oracle access to π and input x, interacts
with VUA as follows:

2nd Message: The prover PUA
π sends δ.

3rd Message: The verifier VUA sends a sufficiently long random string r.

4th Message: The prover PUA
π runs VPCP on input (x, r) to generate a set of queries

Q; for each query q ∈ Q, it sends σq and an authentication path in the Merkle
hash tree HT that leads to σq.

VUA’s decision: VUA accepts if all the authentication paths verify, and VPCP on input
(x, r, {σq}q∈Q) accepts.

Fig. 1. The UA construction of [2] as an online/offline UA



Using the online/offline UA in our protocol. In our cZK protocol, the
verifier specifies a hash function in Stage 1, which will be used as the offline
verifier’s message in the UA. Now the simulator can apply the KP-PRS-style
proving strategy: at the end of a block, the simulator constructs an offline UA
proof for each slot contained in that block. When a session enters the proof stage
(Stage 3), the simulator uses a previously constructed offline proofs to generate
messages in the online stage of the UA arguments.

However, the proof given in Stage 3 of the protocol cannot simply be the
online stage of the UA. To see way, recall that following the FLS paradigm, the
proof stage should consist of a witness-indistinguishable proof that x ∈ L or that
the prover obtained a trapdoor for one of the slots in the session. The problem is
that the proving the above statement (or even stating it) requires knowing the
messages sent in all the slots of the session. However, it might be that at the end
of the block, when to simulator needs to construct a proof, some of the slots of
the session were not simulated yet. To fix the problem we use the online/offline
UA to construct a “special-purpose” witness-indistinguishable UA similar to the
one constructed in [19, 2]. Recall that at the end of the block the simulator
constructs an (expensive) offline UA proof for some slot. We change the proof
stage of the protocol as follows: the prover first provides an online proof that
it has a trapdoor for some slot in the session (note that this statement involves
only a single slot). To keep the proof witness-indistinguishable, the proof must
not reveal which slot is used. Therefore, the online stage of this UA is executed in
the following “oblivious” manner: the prover commits to the statement it proves
as well as to all of its online UA messages instead of sending them in the clear,
while the verifier simply sends random coins (here we use the fact that the online
UA is public-coin). The honest prover (that does not have any trapdoor) will just
commit to the all-zero string in every round. We refer to this as an oblivious UA
execution. Then, the prover will provide a standard witness-indistinguishable
proof of knowledge (for NP) to prove that x ∈ L or that the committed online
UA messages form an accepting proof transcript for the statement defined by
one of the slots.

The problem of exponential size state. By separating the work of the UA
prover into offline and online stages, the simulator has the freedom to construct
a proof for a slot at any time and thus the KP-PRS-style proving strategy can be
applied. However, here we encounter yet another difference between black-box
and non-black-box simulation. In the former, after rewinding a slot successfully,
the simulator extracts a short trapdoor of a fixed polynomial length, and thus
can afford to remember all the trapdoors extracted so far and use them to com-
plete the simulation of corresponding sessions in both the main and lookahead
threads. In contrast, the non-black-box simulator does not obtain a short trap-
door; instead, it obtains long offline UA proofs (the length of which is not a priory
bounded by some polynomial), of length proportional to the running time of the
simulator when simulating the execution in a slot. Still, the simulator needs to
remember all previously constructed offline proofs in order to simulate the on-
line stage of the corresponding UAs in the main thread. This means that in each



slot, when the simulator commits to its own code and state, it commits also to a
record of all the offline proofs constructed so far. Thus, the offline proof arguing
about the execution of the slot will be at least as long as all previously generated
offline proofs. Again we encounter the problem of exponential blowup in the size
of the proof. This time, however, it is due to the size of the state kept by the
simulator rather than due to the computation time.5 To resolve this problem,
we first observe that though an offline proof can be arbitrarily long, only a few
(fixed polynomial number of) bits of this proof are accessed when simulating
the online stage of the UA. If the simulator knew which bits in an offline proof
would be accessed later, it could have committed to a program Π containing
only these bits instead of the whole offline proof. Then the space complexity of
Π would have been bounded by a fixed polynomial (depending only on the size
of the cheating verifier), and the size of the offline proofs would not have grown
exponentially. However, this wishful thinking seems doomed, since at the time
when the simulator needs to commit to Π (i.e., when a slot opens), it does not
know which bits of the proof would be accessed, since these bits depend on the
verifier’s queries sent in the proof stage.

A potential alternative strategy is the following: when a slot opens, the sim-
ulator simply commits to a program Π that does not contain any information
about previously constructed offline proofs. Only later, when the simulator needs
to prove that Π predicts the verifier’s random challenge, it does so by providing
the appropriate bits of the proof as an auxiliary input to Π. The simulator can
do so because at the time of constructing an offline proof about Π, the slot
in which Π is committed to is already completely simulated and the simulator
knows which bits of previous offline proofs are accessed during the simulation of
that slot. However, this strategy fails again. This is because the number of bits
accessed in a slot can be an arbitrary polynomial that depends on the number of
concurrent sessions started by the cheating verifier. However, for soundness to
hold, it is crucial that the committed program only receives auxiliary input much
shorter than the length of the verifier’s random challenge, which is bounded by
an a priori fixed polynomial.

A “hash-inverting” oracle. We finally resolve this problem by combining
the ideas behind the above two failed approaches: when a slot opens, the simu-
lator commits to a program Π containing a root of a Merkle hash of each offline
proof; later, the simulator proves that Π, when given appropriate proof bits that
are consistent with the roots, predicts the verifier’s challenge in the slot. For
soundness to hold, the proof bits must be given to the program via a carefully
defined interface. The interface we describe next is inspired by the non-black-box
simulation technique of [10]. The program Π will be given access to a “hash-
inversion” oracle that can “invert” the hash tree. That is, when the program Π
wants to access the bit j of the offline proof P , it will query the oracle with the
root δP of the hash tree of P and the index j. The oracle will answer with the

5 In fact, the time complexity for constructing a UA offline proof and the length of the
proof is at least quasi-linear in the space complexity of the computation.



bit P [j] together with the authentication path certifying that P [j] is consistent
with δP . The oracle will only respond to the query if the value of the root δP is
contained in the initial state of Π committed in the beginning of the slot.

Giving the committed program Π access to such an oracle is different than
just giving it the proof bit as auxiliary input. Even though the number of an-
swer bits Π can obtain from its oracle is not bounded by any fixed polynomial,
soundness still holds. The intuition is that all the oracle’s answers are “compu-
tationally determined” by the starting state of Π. A bit more formally, we prove
that no computationally bounded algorithm can produce two valid oracles that
answer differently to one of Π’s queries. This guarantees that the information
that Π learns from its oracle is independent of the verifier’s challenge r that is
chosen after Π’s code and the hash tree roots are committed to.

We modify the protocol correspondingly: in the proof stage (Stage 3), the
prover proves that either the statement is true, or that, in one of the slots, it has
committed to a program Π that predicts the verifier’s challenge, given access to
a valid hash-inverting oracle as described. When the simulation reaches the end
of a block where the simulator needs to construct a proof for the computation of
a committed program of some slot, the simulator has all the information about
what proof bits were accessed during the simulation of the slot. Therefore, the
simulator can construct the appropriate oracle that Π expects to access. The
main difference between the oracle described above and the oracle used in [10]
is that in [10], the oracle’s answers are information-theoretically determined by
the queries, whereas here, answers of the hash-inverting oracle are only com-
putationally determined. However, as we show, in our settings this suffices for
achieving soundness.

The global hash model. In the description of the modified protocol above,
the committed program is given access to a “hash-inverting” oracle. However,
we did not specify how to choose the hash function inverted by the oracle. For
soundness to hold, the hash function must not be specified by the prover, as
otherwise, a cheating prover may specify a hash function with respect to which
the hash tree roots are not binding. However, letting the verifier choose the hash
function results in a problem with concurrent simulation: let hi be the hash
function specified by the cheating verifier in the ith session. Now, when the sim-
ulation commits to a program Π in a slot of the ith session, Π must contain the
roots of Merkle hash trees using hash hi for all previously constructed offline
proofs. Otherwise, Π will not be able to query its oracle for bits of these proofs.
It follows that whenever the cheating verifier starts a new session and sends a
new hash function hi, the simulator must recompute the hash tree on all pre-
viously constructed offline proofs using hi. This operation may be as expensive
as constructing all these offline proofs from scratch. Since we cannot guarantee
that this expensive hash computations are performed only at the end block, we
can no longer bound the running time of the simulation.

We resolve this problem by considering a global hash function h shared by all
protocol executions. In this case, the simulator can construct Merkle hash trees
of every offline proof using the same shared function h, and use the same hash



tree roots in commitments given in all sessions. Now there is never a need to
recompute a hash tree on a previously constructed proof and simulation running
time is bounded. As explained above, soundness holds only if a cheating prover is
unable to find collisions in h. Therefore we can prove the security of our protocol
in the global hash model where the prover and all concurrent verifiers are given a
single hash function that is assumed to be collision-resistent. The meaningfulness
of this model is discussed in the introduction.

Tackling the number of rewindings per block. To complete the description
of the “special proofs” we need to address one more problem: unlike the KP-PRS
rewinding strategy where the black-box simulator can rewind all slots contained
in a block all at once, our non-black-box simulator creates a separate offline
UA proof for each slot contained in the block. The result is that the time spent
by the simulator on constructing proofs at the end of the block grows with the
number of slots contained in the block. One consequence of this approach is
that the running time of the simulation grows much faster as a function of the
recursion depth. Unlike the case in [22] where the simulation can accommodate a
logarithmic level of nesting, we can only tolerate a constant level of nesting. This
can be ensured at the price of increasing the round-complexity of the protocol:
if the simulator uses blocks of size bi for a b = nε (ε is a constant), the level of
nesting O(logb n) becomes constant. However, to guarantee successful extraction
of the trapdoor, the protocol must use ω(b logb n) = ω(nε) slots.

the simulator’s randomness. So far we described how to construct “special
proofs” that will allow realizing the KP-PRS-style proving strategy. Our starting
point was the analogy between a simulator that commits to it own code and a
rewinding black-box simulator. However, before we can implement this high-level
idea, we need to introduce a final modification to the protocol that will enable
the simulator to commit to its own code. The difficulty has to do with the way
that the simulator generates its randomness. As described above, the simulator
needs to use randomness to simulate the prover’s messages. In particular, in every
slot the simulator uses randomness to commit to a program Π that emulates
the execution of the simulator itself, and in every session the simulator uses
randomness to generate messages in the special proofs. Since the program Π
must precisely emulate the simulation, it must use the same randomness as
the simulator. This could be done, for example, by using a PRF: the simulator
will choose a PRF seed s and use it to generate all the randomness needed. The
committed program Π will use the same seed s to generate identical randomness.
The problem is that the simulator commits to (a hash of) the code of Π that
contains the seed s using randomness generated from s. Since the committed
program is correlated with the randomness of the commitment, we cannot rely
on the hiding property of the commitment.

This problem can be circumvented, as pointed out in [20], by committing
to a program Π that does not contain s and instead receives s as a (short)
auxiliary input. This allows us to use the hiding property of the commitment.
However, we still encounter a similar problem when generating special proofs. In



the special proof, the simulator proves that Π on input s (and given access to
some oracle) predicts the verifier’s random challenge. Thus, the witness of the
special proof includes s and it is therefore correlated with the randomness used
to generate the special proof. When this is the case we cannot rely on the witness-
indistinguishability property of the special proof. We finally resolve this problem
by letting the simulator use a list of PRF seeds s0, . . . , sm, all generated from the
last seed sm in a “reverse chain” fashion, that is, si = PRFsi+1

(“NEXT”) (where
“NEXT” is an arbitrary fixed value in the domain of the PRF). In simulation,
the simulator orders all the special proofs simulated in the concurrent execution
according to the order in which their first message is sent. The simulator starts
by using the first seed s0, and when the ith special proof starts, it switches to
using seed si. Therefore, all the randomness used in the simulation before the
ith special proof starts can be recovered using si−1. Let Π be the program used
as a witness in the ith special proof. Since Π only emulates the main simulation
until a point prior to the beginning of the ith special proof, Π only needs to
receive the seed si−1 in order to run correctly. Now, both the witness si−1 for
the ith special proof and the randomness used to generate the ith special proof
are generated using PRF from seed si. In this setting, we can prove that the
special proofs are witness-indistinguishable based on the properties of the PRF.

Putting all the elements together. We obtain a O(nε)-round public-coin
cZK protocol (P1, V1) as informally described below. As this protocol only serves
as an intermediate step towards our final protocol, we omit the formal descrip-
tion.

An O(nε)-round public-coin cZK protocol (P1, V1):
– Stage 1 (Global Hash): P and V obtain the global hash function h.
– Stage 2 (k Slots): P and V run k slots. In the ith slot the prover sends a

commitment ci and the verifier responds with a random challenge ri.
– Stage 3 (Proof Stage): the prover proves using a “special purpose” witness-

indistinguishable UA that either x ∈ L, or there is a slot i, in which ci is a
commitment to a hash of a program Π containing a set of hash tree roots,
such that, Π on a short input s, and with access to some valid hash-inverting
oracle, outputs ri.

2.4 Improving the Round Complexity

In this section, we describe at a high-level how to improve the round complexity
of the protocol (P1, V1) to obtain our final protocol with O(log1+ε n) rounds, for
any constant ε. Towards this, recall that as discussed in Section 2.3, the reason
that we set the number of slots in (P,V) to nε is to guarantee a constant nesting
depth. This is required, since the simulation running time increases too fast as a
function of the nesting depth. Thus, the key to improving the round complexity
is to better control the growth of the simulation running time as a function of
the nesting depth.

Let us first review the contributions to the simulation running time in the
protocol (P1, V1). Recall that at the end of a block, the simulator needs to



generate an offline UA proof for each slot that it contains. The time spent by
the simulation on constructing proofs at the end of the block can therefore be
attributed to two factors: first, if the simulation of a slot takes time T , the time
for constructing an offline UA proof about that slot is poly(T ), where the specific
polynomial depends on the underlying UA system. Second, since the simulator
may potentially construct an offline UA proof for each slot contained in it, the
number of offline proofs that needs to be constructed can be m, the number of
concurrent sessions started by the verifier. Overall, the time spent at the end
of a block can be m · poly(T ). This implies a polynomial factor increase in the
simulation running time for every level of nesting. To decrease the simulation
time, we address both factors mentioned above:

– To improve the time complexity for constructing a single offline proof, we
make use of a UA system where the offline prover’s time complexity is quasi-
linear; we can get such system by instantiating the construction of [2] with
an underlying PCP system that has quasi-linear prover complexity [3].

– To decrease the number of proofs constructed at the end of each block, we
modify the protocol and the simulation strategy so that essentially, only one
offline proof needs to be constructed at the end of each block. This is harder
to achieve and we describe the ideas in more details below.

As a result of the above modifications, the time spent by the simulation at
the end of a block improves to Õ(T ), allowing the nesting depth to grow up to
O( logn

log logn ) and leading to a protocol with log1+ε n slots, and O(log1+ε n) rounds.
The main idea behind achieving the second improvement described above is

that instead of constructing an offline proof about the simulation of each slot,
the simulator constructs a single “block-proof” arguing about the simulation of
the whole block and then reuses the block-proof for the slots contained in the
block. In the block-proof, the simulator proves that the committed program Π
that mimics the execution of the main thread in the block outputs a transcript
τ of the block (which includes the verifier’s challenge messages of all the slots
contained in this block). In order to use a block-proof to argue about one slot
(c, r) contained in the block, the simulator creates, in addition to the block-proof,
a second offline UA proof that r is contained in τ—we call this a “session-proof”
(note that a UA is used since the transcript τ may be long). Informally speaking,
putting the block-proof and the session-proof together, the simulator can now
“cheat” by proving that c is a commitment to the hash of a program that outputs
a transcript containing the random challenge. Intuitively, soundness still holds,
as it is hard for a cheating prover to find a program that outputs any transcript
of polynomial length that will contain the random challenge. To implement this
idea, we need to make a few changes to the protocol as highlighted below.

– Let (ci, ri) be the ith slot in a session j, and let B be the block of minimal
size that contains (ci, ri). As described above, at the end of block B, the
simulator constructs a “block-proof” about the execution of Π that mimics
the execution of the main thread in this block. For the simulator to be able to
reuse this block-proof in the ith slot of session j, ci must be a commitment to



Π. However, at the time the commitment ci is generated, the simulator does
not know when the message ri will be scheduled and which block will be the
minimal block containing this slot. Thus, the simulator does not know which
program to commit to. To resolve this problem, we modify a slot to consist of
n commitments ci,1, . . . , ci,n from the prover (and still one random challenge
ri from the verifier). Now, when a slot opens, the simulator can commit to all
the programs that emulate the execution of the simulation in all the blocks
that are currently open (that is, all blocks that may potentially contain this
slot), and later generate a proof with respect to one of these commitments.

– We modify the special proof to consist of both the session-proof and the
corresponding block-proof. The special proof will consist of two separate
oblivious executions of the online stage of the UA standing for both proofs.
Then, a witness-indistinguishable proof is given that either the statement is
true or that the transcripts of UA hidden in the two oblivious executions are
both accepting, and together form a trapdoor for one slot in the session.

Finally, we remark that now indeed only one block-proof is created after
each block. However, it seems that we haven’t gained anything as the simulator
still needs to create a session-proof for each slot contained in it. However, since
the length of τ is bounded by the running time of V∗, the time complexity
for constructing the session-proof is always bounded by a fixed polynomial in
the running time of V∗. Therefore, only the time complexity for constructing
the block-proof grows with the nesting depth. This suffices for the purpose of
controlling the simulation time from growing too fast.

3 The Final Protocol

In this section we give an informal description of our public-coin concurrent ZK
protocol in the global hash model (Protocol 3). The number of rounds of the
protocol depends on the parameter k. Next, we describe the notations used to
describe Protocol 3.

Primitives. Protocol 3 makes use of a statistically binding commitment Com
(described for simplicity as a non-interactive commitment), a witness indistin-
guishable argument of knowledge (WIAOK), and a hash function h sampled ran-
domly from a family of collision-resistant hash functions and given to both par-
ties as a common input. In the description of the language Λ1 below we abuse
notation and use h as a hash tree rather then a simple hash function. That is,
δ = h(P ) represents a root of a Merkle hash tree applied to a long string P . For
an index j, we can compute the authentication path from δ to P [j], certifying
that the value of δ is consistent with P [j].

Oblivious UA. Our protocol uses the online/offline public-coin UA protocol as
given by Protocol 1, where the verifier’s hash function sent in the offline stage is
replaced by the global hash h. In Protocol 3 the online part of the online/offline



UA is executed twice in an oblivious way. That is, the online UA prover com-
mits to the statement it wants to prove, and to all UA messages. The online UA
verifier is only given the length of the proven statement (recall that the verifier
messages in online UA are simply its random coins and therefore it can compute
these messages without knowing the statement). For example, when proving any
statement of the form (h, hΠ , hτ , c, r) ∈ Λ2 (the language Λ2 is described be-
low) using an oblivious UA, the verifier is only given the length of the canonical
statement |“(h, 0n, 0n, c1,1, r1) ∈ Λ2”|. After the two oblivious executions of the
online UA are completed, a WIAOK is used to prove that the transcript of each
oblivious UA execution is consistent with valid online UA proof for the appro-
priate statements. That is, there exist openings for all the commitments sent by
the prover in the oblivious UA executions into messages, such that these mes-
sages (together with the random messages sent by the verifier) form an accepting
online UA proof for the statement of interest.

Block-proofs and session-proofs. We refer to the first oblivious UA as a
block-proof and the second as session-proof. Block-proofs are proofs of mem-
bership in the language Λ1 defined as follows: (h, hΠ , hτ ) ∈ Λ1 if (hΠ , hτ ) are
hashes of a program Π and a transcript τ respectively, such that program Π,
given access to some valid oracle, and some short auxiliary input, produces the
transcript τ . Session-proofs are proofs of membership in the language Λ2 defined
as follows: (h, hΠ , hτ , c, r) ∈ Λ2 if c is a commitment to the hash hΠ and hτ is
the hash of a transcript τ that contains the message r. More formally, for the
super-polynomial function T (n) = nlog logn the languages Λ1, Λ2 are defined in
Figure 2:

Block-proof: (h, hΠ , hτ ) ∈ Λ1 iff there exist:

– Π - description of a program such that |Π| < T (n).
– τ - a transcript such that |τ | < T (n).
– O - description of an oracle such that |O| < T (n).
– β - Auxiliary input Π such that |β| < |r| − n.

And the following conditions hold:

– hΠ = h(Π), hτ = h(τ) and ΠO(β) generates τ within T (n) steps.
– O contains an answer to every query Π makes and only contains query-answer

pairs of the form ((j, q), (b, a)) such that:
• The description of Π contains the variable δj .
• There is a string Pj such that δj = h(Pj), b = Pj [q] and a is the corre-

sponding authentication path.

Session-proof: (h, hΠ , hτ , c, r) ∈ Λ2 iff there exists randomness ρ for Com and a
transcript τ, |τ | < T (n) such that c = Com(hΠ ; ρ) ,hτ = h(τ), and τ contains r.

Fig. 2. Block-proof and session-proof



Common Input: x ∈ L.
Auxiliary Input to P: w ∈ RL(x).
Common Reference String: A hash function h.

1. P and V repeat the following for every i ∈ [k]:
(a) P computes ci,j ← Com(h(0n), Un) for j ∈ [n] and sends {ci,j}j∈[n] to V.
(b) V samples a random string ri ← U2n and sends ri to P.

2. P and V run an oblivious UA for a statement of the same length as
“(h, 0n, 0n) ∈ Λ1”. All commitments sent by P are to the all-zero string.

3. P and V run an oblivious UA for a statement of the same length as
“(h, 0n, 0n, c1,1, r1) ∈ Λ2”. All commitments sent by P are to the all zero
string.

4. P proves to V using a public-coin WIAOK that either x ∈ L or there exists
i ∈ [k], j ∈ [n] and a hash values hΠ , hτ such that both of the following hold:
(a) The transcript of the first oblivious UA is consistent with an accepting

proof for the statement: “(h, hΠ , hτ ) ∈ Λ1”.
(b) The transcript of the second oblivious UA is consistent with an accepting

proof for the statement: “(h, hΠ , hτ , ci,j , ri) ∈ Λ2”.

Fig. 3. Pubic Coin cZK Protocol (Protocol 3)
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