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Abstract. In secure multi-party computation, a reactive functionality
is one which maintains persistent state, takes inputs, and gives outputs
over many rounds of interaction with its parties. Reactive functionalities
are fundamental and model many interesting and natural cryptographic
tasks; yet their security properties are not nearly as well-understood as
in the non-reactive case (known as secure function evaluation).
We present new combinatorial characterizations for 2-party reactive func-
tionalities, which we model as finite automata. We characterize the func-
tionalities that have passive-secure protocols, and those which are com-
plete with respect to passive adversaries. Both characterizations are in
the information-theoretic setting.

1 Introduction

Ever since Yao [17] introduced the concept of secure multi-party computation
(SMPC) with his famous Millionaire’s Problem, the majority of research in the
area has focused on understanding secure function evaluation (SFE) tasks.
In an SFE task, all parties provide inputs and then receive outputs according
to a (typically) deterministic function, in a single round of interaction with the
functionality. The functionality that carries out this task has no need for per-
sistent memory — it simply receives inputs from the parties, computes outputs,
and thereafter forgets everything.

Yet, SMPC security models (e.g., [2]) allow for functionalities that maintain
internal state across many rounds of interaction. We call such functionalities
reactive. The most well-known example of an inherently reactive functionality
is bit-commitment, the cryptographic equivalent of a locked box.

In a secure protocol, the parties must achieve the same effect as the func-
tionality. Reactivity introduces new and unique challenges; in particular, there
is a tension between the fact that the parties may individually have a great deal
of uncertainty about the functionality’s internal state, and the fact that the par-
ties collectively must be able to maintain its internal state in order to correctly
simulate its behavior.

To understand reactive functionalities is, therefore, to understand how persis-
tent information can be maintained, updated, kept secret, and computed upon.
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What’s more, from a practical perspective, reactive tasks are fundamental —
any task involving time-sensitive release of information or the ability for parties
to adapt to new information learned from an interaction must be necessarily
reactive.

Background & Related Work. The first security model for which SFE tasks were
understood is the model of passive security against computationally unbounded
adversaries. Beaver [1] & Kushilevitz [12] independently characterized secure
realizability for 2-party SFE tasks in this model. These results characterized
which functionalities have perfectly secure protocols; the same characterization
was later extended to the case where negligible security error is allowed [13, 11].
We strongly leverage this characterization in our own result for the reactive case.

A functionality F is said to be complete (with respect to some security notion
for protocols) if every functionality has a secure protocol in which the parties are
allowed to make use of ideal instances of F . Kilian [6] was the first to characterize
completeness for 2-party SFE functionalities. The result was later generalized to
functionalities with possibly different outputs to the two parties [9]. As before,
we strongly leverage the well-known characterization for the SFE case in our
own result for the reactive case.

These characterizations, and many others for SFE tasks (e.g., [4, 7, 8]) are ex-
clusively combinatorial in nature. Each SFE is associated with its 2-dimensional
input/output table and then classified based on whether this table has a certain
structure — say, a forbidden kind of 2× 2 submatrix.

In some security settings, there exist secure protocols for every SFE func-
tionality (e.g., standalone security in the computationally bounded setting); it is
not hard to see that this also implies secure protocols for all reactive functional-
ities as well. However, hardness (infeasibility) results for reactive functionalities
are much rarer in the literature. Some fundamental reactive functionalities like
bit commitment have been studied in an ad hoc fashion [3]. To the best of our
knowledge, large classes of reactive functionalities have been considered only in
[15, 14, 16]. Of these, only one result of Maji, Prabhakaran, and Rosulek [14]
involves a combinatorial (decidable) characterization. They characterize the 2-
party reactive functionalities which have UC-secure protocols without any setup
(the characterization is the same for both the computationally bounded and
unbounded settings). They model functionalities as deterministic, finite-state
transducers; our work uses the same automata model of reactive functionali-
ties. We note that, while the SMPC paradigm allows one to consider reactive
functionalities that cannot be represented as such finite automata, many im-
portant and natural functionalities can indeed be modeled in this way (e.g., bit
commitment).

1.1 Our Results

We derive combinatorial characterizations for the cryptographic properties of
2-party reactive functionalities. In particular, we characterize triviality (i.e., fea-
sibility) and completeness with respect to computationally unbounded, passive



(a.k.a. semi-honest, or honest-but-curious) adversaries. Ours is the first work to
classify properties of reactive functionalities in this fundamental setting. Follow-
ing [14], we model reactive functionalities as finite automata.

For a reactive functionality F , define a related non-reactive functionality F (k)

which takes a length-k sequence of inputs from each of Alice and Bob, then runs
F for k rounds on these inputs and gives each party their corresponding length-k
sequence of outputs. It is not difficult to see that:

– F is passive-trivial if and only if for all k ∈ N, F (k) is passive-trivial.
– F is passive-complete if and only if F (k) is passive-complete for some k ∈ N.

In this way it is possible to reduce the characterizations for reactive functional-
ities to the corresponding well-known ones for SFE functionalities.

However, the above characterizations are of limited use. Both conditions are
infinitary in nature (requiring either the universe of all protocols to be enumer-
ated, or an infinite number of values k to be checked). Our technical contribu-
tion is in our analyses showing that only a finite number of values k need to be
checked. We obtain characterizations of the following form:

Main Theorem. Let F be a reactive 2-party functionality. There exist con-
stants Kt and Kc, which depend only on the number of states in F , such that:

1. F is passive-trivial if and only if for all k ≤ Kt, F (k) is passive-trivial; and
2. F is passive-complete if and only if F (k) is passive-complete for some k ≤

Kc.

Thus we obtain total decision procedures for determining triviality and com-
pleteness of reactive functionalities. The characterizations for SFE are combina-
torial in nature, and thus ours also inherit that flavor. Also, the statement of
the main theorem is valid even if protocols are allowed a negligible error (though
the final characterization for passive-triviality is the same whether zero error or
negligible error is required).

The bulk of our effort is devoted to proving the existence of the constant Kt

above. The main technical challenge when dealing with reactive functionalities
is accounting for the uncertainty both parties have about the (hidden) internal
state of the functionality. For example, even if the behavior of the functionality
is benign in every state, it may still be possible to elicit non-trivial behavior from
the functionality when both parties have uncertainty about its internal state. To
justify our somewhat complicated analysis, we show that simply inspecting the
local behavior of each state does not suffice to characterize the security properties
of reactive functionalities.

To properly deal with the complications of a functionality’s hidden internal
state, we develop a “normal form” for functionalities that explicitly captures
the common knowledge both parties have about the internal state. The final
characterization follows then by the requirements imposed by this normal form.

Our characterizations are for functionalities that give possibly different out-
puts to each party. Using the normal form described above, we show that, unless
a functionality is passive-complete, it is isomorphic to one with symmetric out-
put. This generalizes an analogous result of [9] for non-reactive functionalities.



2 Preliminaries

A probability p(n) is negligible if for all c > 0, p(n) < n−c for all but finitely
many n. We use bold symbols (e.g., x, y) to denote sequences over some finite
alphabet (e.g., X or Y ). We write |x| to denote the length of a sequence, and we
use ‖ to denote concatenation of sequences (e.g., x‖x). When T is a 2-dimensional
table, and a and b are appropriate indices, we use the notation T [a, b] to denote
the entry of T in row a, column b.

2.1 Passive Security

We use the standard real-ideal paradigm [5] to define protocol security. We ex-
clusively consider security against passive (a.k.a. honest-but-curious, or semi-
honest) and computationally unbounded adversaries, and we call protocols which
achieve this standard passive-secure for short. We say that a protocol uses the
functionality G if the parties are instructed to interact with ideal instances of
the functionality G (i.e., the protocol is in the “G-hybrid model”).

We say that a functionality F is passive-trivial if there is a passive-secure
protocol for F without any setups. We say that F is passive-complete if there
is a passive-secure oblivious-transfer protocol that uses access to ideal instances
of F . In this work, we consider the information-theoretic setting exclusively, so
adversaries are computationally unbounded. Unlike the first characterizations
for SFE functionalities [1, 12], we do not restrict our attention to protocols that
achieve perfect security. Instead, we use the now-standard notion of passive
security, which permits protocols to have a negligible simulation error.

Isomorphism. We call a protocol for F using G a local protocol if it uses just one
instance of G to realize an instance of F , does not use communication between
the parties other than G, and each round of outputs for F is realized in the
protocol by the parties making a single call to G. Then call two functionalities
F and G isomorphic if there is a local, passive-secure protocol for F using G
and vice-versa.

2.2 Notation and Characterizations for SFE

We briefly review known characterizations for passive-triviality and passive-
completeness of SFE functionalities. We state the characterizations in terms of
new notation, which cleanly unifies the cases of symmetric and non-symmetric
output for the two parties. The terminology defined here is used throughout the
work.

A 2-party SFE F is specified by finite sets X and Y , and two deterministic
functions fA : X × Y → {0, 1}∗ and fB : X × Y → {0, 1}∗. We use these default
variable names throughout this work. As a cryptographic functionality, Alice and
Bob provide inputs x ∈ X and y ∈ Y to F , respectively, and receive outputs
fA(x, y) and fB(x, y), respectively.3

3 In this work we consider security only against passive adversaries. As such, issues of
fairness in output delivery are not relevant.



Let restrict(F , A×B) denote the restriction of F to the input domain A×B ⊆
X × Y . For (x, y) ∈ X × Y , we define rectangle(F , x, y) = Ax,y × Bx,y where
Ax,y = {x′ | fB(x′, y) = fB(x, y)} and Bx,y = {y′ | fA(x, y′) = fA(x, y)}. We

say that F is basic on X̃ × Ỹ if: for all y ∈ Ỹ , fB is a constant function on
X̃×{y}, and for all x ∈ X̃, fA is a constant function on {x}× Ỹ . Basic functions
require no interaction to evaluate (a party’s input has no influence on the other’s
output). Finally, an or-minor in F is a tuple (x, x′, y, y′) ∈ X2 × Y 2 with:

fA(x, y) = fA(x, y′); fB(x, y) = fB(x′, y);(
fA(x′, y), fB(x, y′)

)
6=
(
fA(x′, y′), fB(x′, y′)

)
.

Passive-Completeness. or-minors exactly characterize passive-completeness for
SFE functionalities:

Lemma 1 ([9]). The following are equivalent for a 2-party SFE F :

1. F is passive-complete.
2. F has an or-minor.
3. There exist inputs x, y such that F is not basic on rectangle(F , x, y).

Proof. The equivalence of 1 & 2 was shown by Kraschewski & Müller-Quade [9],
generalizing the analogous statement for symmetric-output functions by Kil-
ian [6]. The equivalence of 2 & 3 follows straightforwardly from the definitions
of or-minor and rectangle(F , x, y).

The following useful lemma was also proven in [9]:

Lemma 2 (Symmetrization [9]). Given an SFE F , define the (symmetric)
SFE functionality Fsym, which on input x from Alice and y from Bob gives both
parties output rectangle(F , x, y).

If F has no or-minor, then F is isomorphic to Fsym.

Passive-Triviality. Passive-triviality for SFE functionalities is characterized by
a combinatorial condition called decomposability.

Definition 1 ([1, 12]). An SFE F is decomposable if one of the following
holds:

1. F is basic (defined above); or,
2. There is a partition X = X̃1 ∪ X̃2 so that for all x1 ∈ X̃1, x2 ∈ X̃2 and

y ∈ Y , fB(x1, y) 6= fB(x2, y), and furthermore restrict(F , X̃1 × Y ) and
restrict(F , X̃2 × Y ) are decomposable; or,

3. There is a partition Y = Ỹ1 ∪ Ỹ2 so that for all x ∈ X, y1 ∈ Ỹ1, and
y2 ∈ Ỹ2, fA(x, y1) 6= fA(x, y2), and furthermore restrict(F , X × Ỹ1) and
restrict(F , X × Ỹ2) are decomposable.

Lemma 3 ([13, 11]). F is passive-trivial if and only if it is decomposable.

This lemma was originally proved for the case of perfectly secure protocols
by Beaver [1] & Kushilevitz [12] (independently); later it was extended for the
standard notion of security (allowing negligible error) by Maji, Prabhakaran &
Rosulek [13] and Künzler, Müller-Quade & Raub [11] (independently).



2.3 Model of Reactive Functionalities

We use the model of reactive functionalities from [14]:

Definition 2 ([14]). A (2-party) deterministic finite functionality (DFF)
is a tuple F = (Q,X, Y, δ, fA, fB , q0), where

– Q is a finite set of states,
– X and Y are finite input sets,
– δ : Q×X × Y → Q is the state transition function,
– fA, fB : Q×X × Y → {0, 1}∗ are two output functions, and
– q0 ∈ Q is the start state.

The behavior of F as an ideal functionality is defined formally in Figure 1.4 As
before, we use these standard variable names throughout.

Set variable q := q0. Then repeatedly do:

– Wait for input x ∈ X from Alice and input y ∈ Y from Bob. Give outputs
fA(q, x, y) to Alice and fB(q, x, y) to Bob. Update q := δ(q, x, y) and repeat.

Fig. 1. Semantics of the DFF functionality F = (Q,X, Y, δ, fA, fB , q0)

We extend the functions δ, fA, and fB to sequences of inputs in the natural
way. Let x = (x1, . . . , xk) ∈ Xk and y = (y1, . . . , yk) ∈ Y k. We write δ(q,x,y)
to denote the state of F after receiving inputs (x1, y1), . . . , (xk, yk) starting in
state q. We write fA(q,x,y) to denote the concatenation of Alice’s k outputs
when F receives inputs (x1, y1), . . . , (xk, yk) starting in state q. We write F (k)

to denote the SFE functionality which on input (x,y) with |x| = |y| = k, gives
output fA(q0,x,y) to Alice and fB(q0,x,y) to Bob. Then we have the following
simple observations:

Proposition 1 Let F be a DFF, and F (k) defined above.

1. For all k, there is a passive-secure protocol for F (k) using F .
2. There is a passive-secure protocol for F using {F (k)}k∈N.

Hence:

3. F is passive-trivial if and only if, for all k, F (k) is passive-trivial.
4. F is passive-complete if and only if F (k) is passive-complete for some k.

The secure protocol for F using (the infinite set of functionalities) {F (k)} requires
both parties to maintain their history of inputs x and y. In the (k+ 1)th round
with histories x and y and new inputs x and y, both parties call F (k+1) with
inputs x‖x and y‖y.5

4 As before, issues of fairness in output delivery are not relevant when considering
only passive adversaries.

5 Note that we use the fact that the parties honestly follow the protocol, as they must
faithfully keep track of their history of inputs to simulate F using {F (k)}.



3 Limits of Local Conditions

When classifying a DFF for its cryptographic properties, one is tempted to
examine the behaviors of each state, in isolation, for certain properties. We call
such a test local, and in this section we describe the limitations of such local
tests.

One way that local tests fail stems from the fact that local information is
not enough to determine even whether two states have identical behavior. Given
that, suppose some state has a transition function that contains an or-minor
involving states q, q′. How this or-minor affects the triviality/completeness of
the functionality depends crucially on whether q and q′ have identical behavior.
Still, we will show that, even when redundant states have been removed, local
tests are insufficient to classify the cryptographic properties of DFFs.

We say that two states q and q′ are redundant in F if for all x,y with |x| =
|y| we have fA(q,x,y) = fA(q′,x,y) and fB(q,x,y) = fB(q′,x,y). Redundant
states can easily be collapsed in F using the classical Myhill-Nerode DFA mini-
mization algorithm. Throughout this work we will generally assume without loss
of generality that redundant states have been collapsed. Non-redundant state
pairs (q, q′) have a distinguishing sequence (x,y) satisfying(

fA(q,x,y), fB(q,x,y)
)
6=
(
fA(q′,x,y), fB(q′,x,y)

)
.

Local tests can give an indication of the complexity of some DFFs, but can-
not give a complete characterization. We consider local tests which inspect the
output and transition functions of each state. To formalize this, we define for a
DFF F a related DFF Fst to be a modification to F which always announces its
internal state to both parties. Then the output function of state q in Fst contains
all the relevant information about both the output and transition functions of q
in F .

Lemma 4. Let F be a DFF that contains no redundant states.

1. If any reachable state in Fst has an output function that is not decomposable,
then F is not passive-trivial.

2. If any reachable state in Fst has an output function that contains an or-
minor, then F is passive-complete.

3. The converses of the above statements are false. In fact, there exist func-
tionalities of arbitrary status (i.e., passive-trivial, passive-complete, neither)
without redundant states whose output functions are constant and whose
transition functions are decomposable in every state.

Proof. For items (1) and (2), we can assume without loss of generality that it
is the start state of F that has the offending transition/output functions. More
formally, let F [q] denote F with its start state changed to q. If q is reachable
in F— say, via sequence (x,y) — then a passive-secure protocol for F [q] using
F is to have both parties send an initial “preamble” of (x,y) to F and then
proceed with the dummy protocol.



For items (1) and (2), if it is an output function in F (i.e., not in Fst) that
is non-decomposable (resp. contains an or-minor), then the claim follows much
more easily. There is a natural passive-secure protocol using F that realizes the
start state’s (SFE) output function – the parties simply interact with F for one
round. The claims then follow from the complete characterizations for passive-
triviality and passive-completeness of SFE (see Section 2.2).

(1) We fall into the case described above unless the start state’s output
function is decomposable. So, let G = (gA, gB) denote the SFE which evaluates
the first round only of Fst and Let X̃ × Ỹ denote minimal subsets such that
restrict(G, X̃ × Ỹ ) is not decomposable.

Next we show that the output function of the start state in F (not Fst) is basic
on X̃× Ỹ . If not, then since it is decomposable, it induces either a corresponding
row- or column-decomposition step in G (which includes the F-output as well
as the state). This splits X̃ × Ỹ into at least two smaller subdomains, which by
the minimality condition are decomposable. Thus G is decomposable on X̃ × Ỹ ,
which we have assumed to be false. By this contradiction, we see that the output
function of F ’s start state must be basic on X̃ × Ỹ .

Let q, q′ be two distinct states reachable from the start state by single transi-
tions on (x, y) ∈ X̃× Ỹ . As these states are non-redundant, let (x,y) be a distin-
guishing sequence for them, with |x| = |y| = k. Now consider the SFE function-
ality H = (hA, hB) which on input (x, y) ∈ X̃ × Ỹ gives output fA(q0, x‖x, y‖y)
to Alice and fB(q0, x‖x, y‖y) to Bob. There is a passive-secure protocol for H
using F (H is a submatrix of F (k+1)). By Lemma 3 it suffices to show that H is
not decomposable.

We have that rectangle(G, x, y) ⊆ rectangle(H, x, y), since the first round
of F gives basic output for inputs in X̃ × Ỹ . Also, by our choice of x,y as a
distinguishing sequence we have that H itself is not basic. Consider any partition
of X̃, say, X̃ = X̃0 ∪ X̃1. Since G is minimal and not decomposable, there exists
x0 ∈ X̃0, x1 ∈ X̃1, y ∈ Ỹ such that gB(x0, y) = gB(x1, y). Hence, hB(x0, y) =
hB(x1, y) so X̃ = X̃0 ∪ X̃1 does not satisfy the requirement for decomposability
of H. Symmetrically, no partition of Ỹ satisfies the requirement; hence H is not
decomposable, as desired.

(2) Let (x0, x1, y0, y1) be the inputs of the relevant or-minor in the start state
of Fst; as above, we may assume that the output function of q0 in F is basic
over {x0, x1} × {y0, y1}. Hence, the or-minor occurs entirely in the transition
function of F ; i.e., δ(q0, xi, yj) = ri∨j for some states r0 6= r1. Let (x,y) be a
distinguishing sequence for r0, r1, with |x| = |y| = k. Then it is straight-forward
to verify that (x0‖x, x1‖x, y0‖y, y1‖y) is an or-minor in F (k+1). Note that we
crucially use the fact that the output of F is basic in the first round for the
chosen input sequences.

(3) Let G be an arbitrary symmetric SFE functionality to be chosen later,
and define F to do the following: In the first round, F gives constant output
(regardless of the input) and remembers Alice’s input x in its states, ignoring
Bob’s input. In the second round, F gives constant output and transitions to
state rF(x,y), where y is the input of Bob in the second round (Alice’s input in



this round is ignored). Here, states {ri}i are a set of states distinct from those
used to implement rounds 1 & 2. Finally, in state ri, F gives constant output i
and self-loops.

Note that the transition functions of F are all decomposable (in particular,
at each round the transitions depend on at most one party’s input), as are the
output functions (they are constant functions in each state). A passive-secure
protocol for G can be obtained from F , and vice-versa, in the natural way. Thus,
F and G have the same status (e.g., trivial, complete, neither). We complete
the proof by taking G to be an appropriate passive-trivial, passive-complete, or
intermediate SFE.

4 Characterizing Completeness

Theorem 2. Let F be a DFF with n states. Then F is passive-complete if and
only if there exists k ≤ n4 such that F (k) contains an or-minor.

Proof. The “⇐” direction follows trivially from Proposition 1 and the charac-
terization of completeness for SFE functionalities based on or-minors [6, 9].

For the other direction, let π be a passive-secure protocol for 1-out-of-2 obliv-
ious transfer (OT) using F . For sake of contradiction, suppose that for every k,
F (k) has no or-minor. Following Proposition 1, we can without loss of general-
ity modify π to obtain a passive-secure OT protocol using the collection of SFE
functions{F (k)}k.

Consider an execution of the protocol in which input bits a0, a1 for Alice
and b for Bob are chosen uniformly (i.e., Bob should learn ab and Alice should
learn nothing). Let V denote the messages exchanged in the protocol along with
the list of rectangle(F (k), x, y) values for every time F (k) is invoked with inputs
(x, y) in the protocol. Define Ps,t = Pr[as = t | V ] for s, t ∈ {0, 1}. Importantly,
since no F (k) contains an or-minor, both parties can compute V (Lemma 2),
and hence the Ps,t values.

Suppose Bob guesses Alice’s input as to be the value t that maximizes Ps,t.
By a straight-forward argument, this guess will be correct with probability Ps,t.
Hence, by the security of the protocol, P1−b,0 and P1−b,1 must be close to 1/2
with high probability (recall that b is Bob’s choice bit). However, by the cor-
rectness of the protocol we must also have Pb,ab

close to one and Pb,1−ab
close

to zero with high probability as well.6 Since Alice can also compute these Ps,t

values, this gives her a way to determine Bob’s choice bit b with high probability
(i.e., guess the value b such that Pb,ab

is maximized). Hence, we contradict the
passive-security of the protocol, as desired. We note that this part of the proof
is essentially the same as Kilian’s proof for the case of SFE functionalities [6].

6 The correctness of the protocol implies that Bob’s entire view determines ab with
high probability, whereas Ps,t is computed using less information than Bob’s view.
In particular, V does not include Bob’s inputs to the ideal functionality. However,
every input for Bob from rectangle(F (k), x, y) would have had exactly the same effect
on the interaction, in the absence of an or-minor. In other words, an honest Bob
only needs to remember his input with as much specificity as rectangle(F (k), x, y).



So far we have shown only that some F (k) must have an or-minor. Fix k
to be minimal value such that F (k) contains an or-minor. If k ≤ n4 then we
are done. Otherwise, let d(x,y, i) denote the internal state of F after the first i
rounds when the input sequence is (x,y), when i ≤ k = |x| = |y|. Define

D(x,y,x′,y′, i) :=
(
d(x,y, i), d(x,y′, i), d(x′,y, i), d(x′,y′, i)

)
∈ Q4.

Let (x,x′,y,y′) be the or-minor of F (k). By the pigeonhole principle (since
k > n4) there are distinct indices i, j ∈ {0, . . . , k} such that D(x,y,x′,y′, i) =
D(x,y,x′,y′, j). Then removing positions i through j−1 in the input sequences
x,y,x′,y′ yields an or-minor in F (k−j+i). But this contradicts the minimality
of k, so we must have originally had k ≤ n4.

5 Characterizing Passive Triviality

5.1 Overview

Our approach is to reduce our characterization of DFFs as much as possible to
the known characterizations for SFE (given in Section 2.2). For intuition, suppose
Alice & Bob have performed k rounds with F , giving input sequences x and y,
respectively. When the functionality is passive-trivial, both parties can agree on
A × B = rectangle(F (k),x,y), knowing that (x,y) ∈ A × B. Their uncertainty
about the current state of F is then captured by restrict(δ(k), A×B), where δ(k)

is the extended transition function δ(k)(x,y) = δ(q0,x,y).
Intuitively, both parties can maintain the 2-dimensional table

C = restrict(δ(k), rectangle(F (k),x,y)), along with their respective inputs x and
y to this table. Furthermore, these three pieces of information (x, y, and C) are
enough to determine all future behavior of F . One could imagine a “canonical”
protocol for F in which parties maintain such information (Alice maintaining x
and C; Bob maintaining y and C).

With this as our starting point, we argue the following. First, duplicate rows
& columns within C can be canonically removed. Second, the table C is a sub-
matrix of δ(k); as such, it can contain no or-minor when F is passive-trivial.
Finally, we prove a purely combinatorial lemma stating that any table that
avoids duplicate rows, duplicate columns, and or-minors must be bounded in
its dimensions (the bound is a function of the number of allowed values in the
cells of the table). Hence, when F is trivial, the table C described above has an
a priori, finite bound in size.

Our combinatorial lemma reveals some structure of functions which avoid
or-minors. In that sense, our lemma is reminiscent of similar lemmas used in [4]
and [10], for the n-party setting.

We prove our characterization by converting F into an equivalent “normal
form” F̂ , which simulates F by keeping track of the information (x, y, and

C) described above. In each state of F̂ , we use the internal state variable C to
associate a related submatrix of F (k) for some k. We then show that F is passive-
trivial if and only if each of these submatrices of {F (k)}k is itself passive-trivial.



Importantly, there can be only a finite number of states — hence, a finite number
of F (k) submatrices — to inspect when deciding whether F is passive-trivial.

We highlight one important subtlety in the construction of F̂ . Our combina-
torial lemma shows that the table C has bounded size, but we are also associating
its rows & columns with F-input sequences of length k. Thus, while the table
itself has bounded size, conceivably the row- and column-“labels” become un-
bounded in length. Our construction of F̂ implicitly shows that these row- and
column-labels are not used meaningfully; that is, they can be renormalized to
simply be numerical indices into the table. Hence, the entire state-space of F̂
(which contains this table C as well as two labels indexing into the table) is
indeed finite.

5.2 Combinatorial Lemma

Definition 3 (Grid colorings and their properties). A k-coloring of an
m × n grid is a function C : {1, . . . ,m} × {1, . . . , n} → {1, . . . , k}. A row i
is a duplicate row if C(i, ·) ≡ C(i′, ·) for some i′ 6= i. Duplicate columns are
defined analogously. A tuple (i, i′, j, j′) forms an or-minor in C if C(i, j) =
C(i, j′) = C(i′, j) 6= C(i′, j′).

We will use the following lemma, which states that sufficiently large grid
colorings cannot avoid duplicate rows, duplicate columns, and or-minors.

Lemma 5 (Unavoidable structures of grid colorings). There is a function
R : N→ N satisfying the following property. For every k-coloring C of an m×n
grid, if max{m,n} ≥ R(k), then C contains either a duplicate row, duplicate
column, or an or-minor.

Proof. We prove the lemma for the bound R(2) = 3; R(k) = k · R(k − 1).
Thus R(k) = Θ(k!). In fact, we prove the two stronger statements that (1) if
m ≥ R(k) then C contains either a duplicate row or an or-minor; (2) if n ≥ R(k)
then C contains either a duplicate column or an or-minor. The two proofs are
symmetric and we give the proof of (1) here. The case of R(2) = 3 can be verified
by exhaustion.

For the inductive case, consider a k-coloring C with more than R(k) rows. We
assume that C has no or-minors, and will show that there must be a duplicate
row. By the pigeonhole principle, there must be some color (by symmetry, color
#k) which appears more than R(k)/k = R(k − 1) times in the first column.
The properties we seek are invariant under permuting rows and columns, so
permute the rows and columns so that the north-west corner is colored #k, and
the instances of color #k in the first row and first column are contiguous.

Since C contains no or-minor, we have that C can be partitioned into four
quadrants, NW, NE, SE, SW:

C =

[
NW NE
SW SE

]
,



where NW has more than R(k−1) rows, NW contains only color #k, and NE and
SW contain only colors {1, . . . , k − 1}. Thus, NE is a (k− 1)-coloring with more
than R(k−1) rows and no or-minors. As such it contains duplicate rows. When
augmented to the left with identical sequences of k’s, we obtain corresponding
duplicate rows in C, as desired.

We proved the existence of such an R with R(k) = Θ(k!), which suffices for
our purposes but which may or may not be optimal. We can obtain a lower bound
of 2k−1 on the optimal value of R(k), by considering the following recursively-
defined k-colorings of a 2k−1 × 2k−1 grid:

C1 = [1]; Ck =

[
Uk Ck−1
Ck−1 Uk

]
.

Here Uk denotes the 2k−2×2k−2 grid filled uniformly with color k. The colorings
{Ck}k avoid duplicate rows, duplicate columns, and or-minors. We conjecture
that R(k) = 2k−1 is the optimal value for R as in the lemma statement.

5.3 Normal Form

Let T be a 2-dimensional table with row- and column-labels A and B, respec-
tively. Define an equivalence relation, where a ≈A a′ if for all b ∈ B, we have
T [a, b] = T [a′, b] — that is, a ≈A a′ if rows a and a′ of T are identical. We
define an equivalence relation ≈B analogously. Finally, let [a]A and [b]B denote
equivalence classes under these relations, respectively.

Definition 4. Let T , A, and B be as above. Let eA1 , . . . , e
A
m denote the distinct

equivalence classes of ≈A, and let eB1 , . . . , e
B
n denote the distinct equivalence

classes of ≈B.
We define trim(i, j, T ) for (i, j) ∈ A×B to denote a tuple (i′, j′, T ′), where:

1. T ′ is a table with row-labels A′ = {1, . . . ,m} and column-labels B′ = {1, . . . , n}.
For each i∗, j∗, we have T ′[i∗, j∗] = T [a, b], where a is any representative of
eAi∗ and b is any representative of eBj∗ .

2. eAi′ = [i]A. That is, i′ is the index of i’s equivalence class.
3. eBj′ = [j]B. That is, j′ is the index of j’s equivalence class.

By item (1) we see that T ′ has no duplicate columns or rows. Essentially,
trim removes duplicate rows/columns and re-normalizes the row/column labels.
Furthermore, the mapping i 7→ i′ does not depend on j, the mapping j 7→ j′

does not depend on i, and the mapping T 7→ T ′ does not depend on i or j.

Definition 5. Let T be a 2-dimensional table with row- and column-labels A
and B, respectively, and whose entries are states of a DFF F . Then explode(T )
is a 2-party SFE with input domain (A × X) × (B × Y ). On input (a, x) from
Alice and (b, y) from Bob, the output of explode(T ) is fA(T [a, b], x, y) for Alice
and fB(T [a, b], x, y) for Bob.



Normal form F̂ . Let F = (Q,X, Y, δ, fA, fB , q0) be a DFF. Then define F̂ to

be a functionality given by Figure 2. Note that we define F̂ without explicitly
considering whether it is a DFF (that is, whether it has a finite number of states).

Whether F̂ has a finite number of states depends on F in a way that will be
established later Lemma 8.

Maintain internal state (a, b, C), initialized to a = b = 1 and C = [q0] (that is, a
1× 1 matrix), where q0 is the start state of F .

With internal state (a, b, C), and on input x ∈ Y from Alice and y ∈ Y from Bob:

1. Give output fA(C[a, b], x, y) to Alice and fB(C[a, b], x, y) to Bob.
2. Set A′ × B′ = rectangle(explode(C), (a, x), (b, y)). Write A′ and B′

in some canonical ordering A′ = {(a′1, x′1), . . . , (a′m, x
′
m)} and B′ =

{(b′1, y′1), . . . (b′n, y
′
n)}. (Recall that inputs to explode(C) are tuples of this

form.)
3. Define an m× n table C′ via C′[i, j] := δ(C[a′i, b

′
j ], x

′
i, y

′
j).

4. Set a′ := indexof((a, x), A′) and b′ := indexof((b, y), B′), where indexof(s, S =
{s1, . . . , sn}) denotes the value i such that si = s.

5. Set (a, b, C) := trim(a′, b′, C′).

Fig. 2. Functionality F̂ : the “normal-form” representation of F .

Lemma 6. Let F and F̂ be as above, and let δ(k) denote the function δ(k)(x,y) =
δ(q0,x,y). Suppose that F is not passive-complete. Then, after reading inputs x

and y (with |x| = |y|), F̂ is in state

(a, b, C) = trim(x,y, restrict(δ(k), rectangle(F (k),x,y))).

It then follows that F and F̂ have identical external behavior (since the above

implies that C[a, b] = δ(k)(x,y), and F̂ gives outputs matching those of state
C[a, b] in F).

Proof. The claims are true when x and y are empty sequences. Suppose F̂ is
in state (a, b, C) after receiving inputs (x,y), with |x| = |y| = k. Suppose that

F̂ receives inputs (x, y) at this point; we will prove the claims with respect to
x′ = x‖x, y′ = y‖y. Denote the rows & columns of C as A×B.

First, we prove the desired claims without the call to trim, for a variant of F̂
that does not call trim. It is straight-forward to verify that it makes no difference
to the end result to “postpone” all trim steps taken by F̂ until the last step, at
which point they are clearly idempotent.

By the inductive hypothesis, we have an isomorphism between
restrict(δ(k), rectangle(F (k),x,y)) and C. Thus, we freely identify A × B with



rectangle(F (k),x,y), where a with is identified with x, and b is identified with
y.

Since A × B = rectangle(F (k),x,y), and F (k) has no or-minor (recall we
assume that F is not passive-complete), we have that F (k) is basic on A × B
(Lemma 1). As such, for any x′ ∈ A×X and y′ ∈ B × Y we have that

rectangle(restrict(F (k+1), A×X,B × Y ),x′,y′) = rectangle(F (k+1),x′,y′).

That is, within this domain of inputs, a party’s input can influence the other’s
output only in the k + 1 round.

explode(C) is an SFE whose inputs are then (A×X)× (B×Y ) — which we
associate with input sequences of length k + 1 for Alice & Bob, respectively —
and whose output is the corresponding output of F in the (k+1)-th round only.
But again, when restricted to input domain A×B, the first k rounds of output
are basic, so

rectangle(explode(C),x′,y′) = rectangle(restrict(F (k+1), A×X,B × Y ),x′,y′).

Putting things together, from lines 3–4 of F̂ it follows that C ′ is exactly
restrict(δ(k+1), rectangle(F (k+1),x′,y′)), a′ is identified with x′, and b′ is identi-
fied with y′, as desired.

Lemma 7. If F is not passive-complete, then while interacting with F̂ , Alice
has no uncertainty about (a,C) and Bob has no uncertainty about (b, C), where

(a, b, C) is the internal state of F̂ .

Proof. The claim is true for the initial configuration of F̂ . In round k, both
parties inductively know C (and hence explode(C)) from round k−1. When F is
not passive-complete, then each explode(C) contains no or-minor. Hence, after
giving inputs x and y respectively, and receiving their outputs (computed from

explode(C)), each party can deduce R = rectangle(explode(C), x, y). In F̂ , the
value C is updated based only on this common information R. The value a is
updated based only on R and x; the value b is updated based only on R and y.
Each party thus has enough information to update the values required for the
lemma.

Lemma 8. Let F be a DFF. If F is not passive-complete, then in F̂ the internal
variable C is bounded in size by a constant that depends only on F . Thus F̂ has
a finite number of states (at most R(n)2 · nR(n)2).

Proof. It follows from the definition of F̂ that, in every reachable state (a, b, C),
the table C has no duplicate rows or columns. We will show that C also contains
no or-minor. Then it will follow from Lemma 5 that C has dimensions at most
R(n) × R(n), where n is the number of states in F . Since a and b are row and

column indexes into C, there are at most R(n)2nR(n)2 states in F̂ .
Without loss of generality, assume that F contains no redundant states.

Suppose for contradiction that C contains an or-minor (a0, a1, b0, b1), so that



C(ai, bj) = ri∨j for distinct states r0 and r1. Let x∗,y∗ be a distinguishing
sequence for states r0 and r1, with |x∗| = |y∗| = `.

From Lemma 6, C is a submatrix of δ(k) for some k, so there exist input
sequences x0,x1,y0,y1 with δ(k)(xi,yj) = C[ai, bj ]. Furthermore, {x0,x1} ×
{y0,y1} ⊆ rectangle(F (k),xi,yj), and so (since we are assuming that F is not

passive-complete) F (k) is basic restricted to {x0,x1} × {y0,y1}.
But then (x0‖x∗,x1‖x∗,y0‖y∗,y1‖y∗) is an or-minor in F (k+`), contradict-

ing our assumption that F is not passive-complete. The reasoning is exactly the
same as in the proof of Lemma 4. Importantly, Alice’s input does not influence
Bob’s output (and vice-versa) for the first k rounds, and at least one party’s
total output depends only on whether r0 or r1 was reached in round k.

5.4 Deciding Passive-Triviality

The following theorem and its corollary provide total decision procedures for
determining whether a given DFF is passive-trivial.

Theorem 3. Let F be a DFF and F̂ be as above. Suppose F is not passive-
complete. Then F is passive-trivial if and only if, for every reachable state
(a, b, C) in F̂ , explode(C) is decomposable.

Proof. (⇒) Let (a, b, C) be a reachable state in F̂ . Then from Lemma 6 we
have that C is a submatrix of δ(k) for suitable k. As such, explode(C) is a
submatrix of F (k+1). By Proposition 1, F (k+1), and hence all of its submatrices,
is decomposable.

(⇐) A passive-secure protocol for F̂ (and hence F , since they have identi-
cal external behavior — Lemma 6) is the following. Alice maintains (a,C) and

Bob maintains (b, C) corresponding to the internal state of F̂ at all times, as
in Lemma 7. Inductively they will at each round compute the correct outputs
and can thus update these (a, b, C) values. When Alice receives input x and
Bob receives input y, both parties run a passive-secure protocol for evaluating
explode(C) at inputs a‖x and b‖y, respectively. Since explode(C) is decompos-
able, it follows that such a secure protocol exists; furthermore, both parties know
a common C and can agree upon this protocol.

Corollary 4 Let F be a DFF with n states, and let K := R(n)2 · nR(n)2 , where
R is the function from Lemma 5. Then F is passive-trivial if and only if, for all
k ≤ K, F (k) is decomposable.

Proof. The forward direction (⇒) follows trivially from Proposition 1.
For the other direction, if each of {F (k)}k≤K is decomposable, then F is

not passive-complete (Theorem 2). Then from Lemma 8, there are at most K

distinct states in F̂ . Any reachable state in F̂ is therefore reachable by an input
sequence of length at most K − 1. If state (a, b, C) is reachable by an input
sequence of length k, then explode(C) appears as a submatrix of F (k+1); so if
each of {F (k) | k ≤ K} is decomposable, then so is each explode(C). Hence, F
is passive-trivial by Theorem 3.



5.5 Symmetrization

Theorem 5. Let F be a DFF. If F is not passive-complete, then there exists a
symmetric functionality (that is, one which gives identical output to each party
in every round) G that is isomorphic to F .

This theorem is a generalization of an analogous theorem of Kraschewski and
Müller-Quade [9] for the special case of SFE.

Proof. As described in the discussion after Lemma 1, when F is an SFE, we
can take G to be the SFE that gives output rectangle(F , x, y) to both parties on
input x and y.

Now consider when F is a DFF, and recall its associated F̂ . If F is not
passive-complete, then F̂ is also a DFF (Lemma 8). In state (a, b, C) and on

inputs (x, y) in F̂ , the parties are given the output of explode(C) on inputs

(a, x) and (b, y). Define G to be the same as F̂ , except that both parties are
given output z = rectangle(explode(C), (a, x), (b, y)). Since both parties know C,
Alice without loss of generality knows (a, x), and Bob without loss of generality
knows (b, y), the output z is enough for both parties to infer the corresponding

output of F̂ . Similarly, both parties can infer z from their outputs from F̂ . Thus,
F and G are isomorphic.

6 Conclusion and Discussion

We presented two new characterizations for cryptographic properties of reactive
functionalities, in the setting of computationally unbounded passive adversaries.
We highlight several remaining areas of inquiry:

Active adversaries. While there is a characterization of triviality of reactive func-
tionalities in the UC model [14], there is no such characterization for the stand-
alone model. There is a characterization for completeness of DFFs as well [14],
but it is in the polynomial-time setting. No characterization exists for complete-
ness of reactive functionalities against active adversaries in the information-
theoretic setting.

We conjecture that the characterization for active-completeness of DFFs will
follow that of the SFE case [9]. That is, we expect there to be a suitable definition
of redundant inputs for DFFs so that F is active-complete if and only if F is
passive-complete after removing all redundant inputs. We note that [14] do in
fact define a notion of redundant inputs for DFFs, but only for inputs in the first
round. The characterization we seek would require the simultaneous removal of
redundant inputs in all states.

A characterization of active (standalone) triviality for DFFs will require a
significantly different approach than the one here for passive triviality. We high-
light several fundamental aspects of our techniques that seem incompatible with
active adversaries:



– We use the fact that F can be securely realized using {F (k)}k and vice-versa.
Neither direction of this equivalence holds with respect to active security.
When emulating the kth round of F using F (k), we rely on the fact that
parties honestly maintain their history of inputs and provide them as part
of their input to F (k). To emulate F (k) using F , the protocol invokes k
rounds of F . An active adversary could (depending on F) violate security
by adaptively changing its behavior based on the partial information it learns
about the other party’s input in the first k − 1 rounds.

– In our proofs we use the fact that certain SFE functionalities appear as
a submatrix of some F (k), to demonstrate their triviality. In the passive
security setting, every submatrix of an SFE inherits the triviality of the
parent SFE. This property is not true in the active security setting; the
characterization of standalone-triviality for SFE [13, 11] is not closed under
the submatrix relation.

Randomized functionalities. Compared to deterministic functionalities, our un-
derstanding of randomized functionalities is practically non-existent (an excep-
tion is for completeness of certain classes of SFE functionalities; cf. [7]). For
example, there is still no analog of the Beaver-Kushilevitz characterization of
passive-trivial SFE [1, 12] in the randomized case (not even for perfectly-secure
protocols).

Our characterization in this work reduces the reactive case to the non-reactive
case in some sense. It may be that a similar approach would work even for
DFFs with randomized output (even if the actual characterization for SFE is
unknown). However, we expect that a randomized transition function would
lead to complications that are not present in the deterministic case.
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