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Abstract. Motivated by recent developments in fully homomorphic en-
cryption, we consider the folklore conjecture that every semantically-
secure bit-encryption scheme is circular secure, or in other words, that
every bit-encryption scheme remains secure even when the adversary is
given encryptions of the individual bits of the private-key. We show the
following obstacles to proving this conjecture:

1. We construct a public-key bit-encryption scheme that is plausibly
semantically secure, but is not circular secure. The circular security
attack manages to fully recover the private-key.
The construction is based on an extension of the Symmetric Ex-
ternal Diffie-Hellman assumption (SXDH) from bilinear groups, to
ℓ-multilinear groups of order p where ℓ ≥ c · log p for some c > 1.
While there do exist ℓ-multilinear groups (unconditionally), for ℓ ≥

3 there are no known candidates for which the SXDH problem is
believed to be hard. Nevertheless, there is also no evidence that
such groups do not exist. Our result shows that in order to prove
the folklore conjecture, one must rule out the possibility that there
exist ℓ-multilinear groups for which SXDH is hard.

2. We show that the folklore conjecture cannot be proved using a black-
box reduction. That is, there is no reduction of circular security of a
bit-encryption scheme to semantic security of that very same scheme
that uses both the encryption scheme and the adversary as black-
boxes.

Both of our negative results extend also to the (seemingly) weaker con-
jecture that every CCA secure bit-encryption scheme is circular secure.
As a final contribution, we show an equivalence between three seemingly
distinct notions of circular security for public-key bit-encryption schemes.
In particular, we give a general search to decision reduction that shows
that an adversary that distinguishes between encryptions of the bits of
the private-key and encryptions of zeros can be used to actually recover
the private-key.

⋆ This research was partially supported by the Israel Science Foundation (grant
No. 1041/08). Parts of this research were conducted while the author was an in-
tern at Microsoft Research, New England.



1 Introduction

Modern cryptographic applications, both practical and theoretical, have led to
the study of increasingly complex types of attacks on encryption schemes. For
example, chosen plaintext attacks (CPA) and chosen ciphertext attacks (CCA)
extend the classical notion of semantic security [?] by allowing an attacker access
to encryptions of arbitrary messages of its choice (in the CPA model) and to a
decryption oracle (in the CCA model).

A different type of attack that has been recently considered is when the
attacker manages to obtain encryptions of messages that are related to the (pri-
vate) decryption-key. The notion of key dependent message (KDM) security was
first considered by Camenisch and Lysyanskaya [?] and (independently) by Black
et al.[?]. Informally, an encryption scheme is KDM secure for a class of functions
F if it is infeasible to distinguish between an oracle that on input f ∈ F out-
puts an encryption of f evaluated on the decryption-key and an oracle that just
returns encryptions of zeros.

Perhaps the most basic type of KDM attack is one in which the attacker is
just given an encryption of the entire decryption-key. Security with respect to
such a KDM attack is also known as “circular security” since the key encrypts
itself.1

While some encryption schemes have been proved to be circular secure under
plausible cryptographic assumptions (e.g., [?, ?]), it is natural to ask whether
semantic security actually guarantees circular security. A folklore example shows
that this is not the case: given any private-key encryption scheme we can slightly
modify the encryption algorithm by checking if the input message is the (sym-
metric) key itself or not. If not, then the encryption proceeds as usual. But, if
the input message equals the key, then the encryption algorithm is modified to
output the key in the clear. The resulting scheme is still semantically secure2

and yet it is not circular secure, since an adversary that gets an encryption of
the key trivially breaks security. The counterexample can be easily extended to
the public-key setting by having the encryption algorithm check whether a given
input message functions as a “good” decryption-key.3

The foregoing counterexample shows that, in general, semantic security does
not suffice for circular security. Motivated by recent developments in fully homo-
morphic encryption (see Section ??), we restrict our attention to a specific class
of encryption schemes - those that encrypt their input bit-by-bit (also called bit-

1 Circular security may also refer to larger key cycles were there are t keys arranged
in a directed cycle and the adversary sees encryptions under every key of its next
neighbor’s key. We only consider the case t = 1.

2 Semantic security follows from the fact that the probability that the message (which
is selected before the keys) equals the key is negligible.

3 The (public-key) encryption algorithm can do so by encrypting sufficiently many ran-
dom messages and checking whether the given input message (used as a decryption-
key) correctly decrypts these ciphertexts.



encryption schemes).4 Thus, we ask whether every bit-encryption scheme that
is semantically secure is also circular secure. An alternative way to phrase the
question is whether every semantically secure (either private-key or public-key)
encryption scheme remains secure even if the adversary is given encryptions of
the individual bits of the decryption-key (in order, of course).

At this point it is worthwhile to point out two ways in which the counterex-
ample (for full fledged encryption schemes) uses the fact that the encryption
algorithm is given the entire decryption-key as its message:

1. It is easy to identify when the decryption-key is given as the input message
to the encryption algorithm (trivially in the private-key setting and almost
as easily in the public-key setting); and

2. In the semantic security setting, the event that the message equals the
decryption-key is sufficiently rare that we can modify the encryption al-
gorithm to handle this event in a special way without jeopardizing security.

In the case of bit-encryption schemes both properties no longer hold and
constructing a counterexample seems to be more difficult.5 In fact, the above
has led to a folklore conjecture, which we call the bit-encryption conjecture,
that every secure bit-encryption scheme (either private-key or public-key) is in
fact circular secure. Let us state this as:

Conjecture 1 (Bit-Encryption Conjecture). Every semantically secure public-key
bit-encryption scheme is circular secure.

The focus of this work is to show obstacles to proving the validity of this conjec-
ture. Focusing on the public-key case only strengthens our negative results since
every public-key scheme is also a private-key scheme. (In Section ?? we also
discuss the (seemingly) weaker conjecture that every CCA secure bit-encryption
scheme is circular secure.)

1.1 Our Results

We address the question of circular security for bit-encryption schemes and show
the following results:

4 We assume that the encryption algorithm does not maintain a state between exe-
cutions. Note that the folklore counterexample for full fledged encryption can be
adapted to stateful bit-encryption schemes by having the encryption algorithm
record its last n (single-bit) messages in a buffer (where n is the length of the
decryption-key), and outputting the decryption-key in the clear whenever the buffer
equals the decryption-key.

5 In fact, for the very same reasons, even constructing an encryption scheme for loga-
rithmically long messages that is semantically secure but circular insecure seems to
be difficult. We note that our negative results extend also to this case but in this
work we only discuss the single bit case.



A circular insecure bit-encryption scheme based on ℓ-multilinear maps. We con-
struct a (plausibly) semantically secure public-key encryption scheme for which,
given encryptions of the bits of the decryption-key, it is possible to fully recover
the decryption-key (i.e., the strongest type of attack). The security of our con-
struction is based on an extension of the Symmetric External Diffie-Hellman
(SXDH) assumption (see, e.g., [?, ?, ?, ?]) to multilinear groups, which we de-
scribe next.

An ℓ-multilinear map is a (non-degenerate) mapping e : G1× · · ·×Gℓ → GT

where G1, . . . , Gℓ and GT are cyclic groups of prime order p, such that for every
g1 ∈ G1, . . . , gℓ ∈ Gℓ, every i ∈ [ℓ] and a ∈ Zp it holds that

e(g1, . . . , g
a
i , . . . , gℓ) = e(g1, . . . , gℓ)

a.

Recall that, informally, the Decisional Diffie Hellman (DDH) assumption
is said to hold in the cyclic group G if it is infeasible to distinguish between
g, ga, gb, gab and g, ga, gb, gc where g is a generator of G and a, b and c are random
exponents. The standard SXDH assumption extends the DDH assumption to 2-
multilinear (a.k.a bilinear) groups by stating that there exist groups (G1, G2)
equipped with a bilinear map for which the DDH assumption holds (separately)
for each one of the groups G1 and G2. We further extend the SXDH assumption
by assuming that there exist ℓ-multilinear groups for which DDH is hard in each
one of the ℓ groups. For our result to hold we need ℓ ≥ c · log p for some c > 1.

Since, for ℓ > 2, we do not have candidate ℓ-multilinear groups for which we
conjecture SXDH to be hard, we do not interpret our construction as a coun-
terexample, but rather as an obstacle to proving the bit-encryption conjecture
(Conjecture ??). Our construction shows that in order to prove that every se-
mantically secure bit-encryption scheme is circular secure one would have to rule
out the existence of ℓ-multilinear groups for which SXDH is hard.

The possibility of constructing ℓ-multilinear group schemes for which dis-
crete log is hard was previously considered by Boneh and Silverberg [?], who
showed cryptographic applications of multilinear maps as well as difficulties in
constructing such group schemes based on known techniques in algebraic geom-
etry. We note that [?] only considered the special case of G1 ≡ . . . ≡ Gℓ and the
hardness of discrete log for G1 (in fact, if G1 ≡ . . . ≡ Gℓ then SXDH becomes
trivially easy6).

We also note that the standard SXDH assumption was previously used in the
context of circular security by Acar et al.[?] and Cash et al.[?]. Both Acar et al.
and (independently) Cash et al. address the question of whether every encryption-
scheme (not necessarily a bit-encryption scheme) is secure if the adversary gets
a key-cycle of length 2. They show strong negative evidence by constructing an
encryption scheme (that is not a bit-encryption scheme) that is semantically
secure based on (standard) SXDH but is insecure if the adversary gets a key

6 Using the fact that the groups are equals, we can solve DDH in G1. Specifically,
given g, ga, gb, gc ∈ G1 just compare e(ga, gb, g, . . . , g) and e(gc, g, . . . , g), where we
use the fact that gb ∈ G2 = G1. If c = ab then equality holds but if c is random then
the two values are different with overwhelming probability.



cycle of length 2. In contrast, we show a bit-encryption scheme (based on the
aforementioned extension of SXDH to multilinear groups) that is insecure when
the adversary gets a cycle of length 1, that is, an encryption of the secret key (see
the discussion above for why bit-encryption is more interesting in this context).

Impossibility of black-box reductions. We show that a black-box reduction can-
not be used to prove the bit-encryption conjecture. Our black-box impossibility
result differs from standard black-box impossibility results in that we do not
consider the possibility of constructing a circular secure bit-encryption from any
semantically-secure bit-encryption but rather the question of whether every se-
mantically secure bit-encryption is by itself already circular secure.

In other words, we prove that there cannot exist a general black-box reduction
that transforms any circular security attack into a semantic security attack. By
black-box we mean that the reduction uses both the attack and the primitive
(in our case the encryption scheme) in a black-box manner (for a discussion of
different types of black-box separations, see [?]).

We note that for the application to fully homomorphic encryption (see Sec-
tion ??), a construction of a circular-secure scheme from any bit-encryption
scheme would most likely not be helpful. Indeed, in order to be useful, such
a construction would have to preserve both the homomorphic properties and
the decryption depth (for the bootstrapping operation). Thus, we focus on the
question of whether every bit-encryption scheme is by itself circular secure.

We mention that Haitner and Holenstein [?] also showed a (different) black-
box impossibility result for KDM security. See the full version for a comparison
of the results.

From indistinguishability to key-recovery. We show an equivalence between three
natural notions of circular security for public-key bit-encryption schemes. In all
three scenarios we give the adversary access to an oracle that on input i returns
an encryption of the i-th bit of the decryption-key. We refer to this oracle as the
KDM oracle. The three security notions differ in the task that a hypothetical
adversary, which has access to the KDM oracle, has to accomplish in order to
be deemed successful (i.e., break security). We consider the following possible
tasks:

1. The adversary needs to fully recover the decryption-key.
2. The adversary gets as input an encryption of a random bit and needs to

guess the value of this bit.
3. The adversary is given access to either the KDM oracle or an oracle that

always returns encryptions of 0 and needs to distinguish in which of the two
cases it is. This is the standard notion of circular security as defined in [?, ?].

We show that the three foregoing notions are actually equivalent. In partic-
ular, this result implies a general search to decision reduction that transforms
any circular security distinguisher into an adversary that, given access to the
KDM oracle, can fully recover the decryption-key d. (In contrast, in the setting
of semantic security, finding the key can be a much harder task than recovering
the message from the ciphertext.)



1.2 Connection to Fully Homomorphic Encryption and Full KDM

Security

Other than being an interesting and natural question on its own, the question of
circular security for bit-encryption schemes is further motivated by recent break-
throughs in the construction of fully homomorphic encryption schemes (FHE)
and fully KDM secure encryption schemes.

Fully Homomorphic Encryption. Informally, an FHE is an encryption scheme for
which given an encryption of a message m and any circuit C, one can compute
an encryption of C(m) without knowing the decryption-key.

Gentry [?] constructed the first FHE and gave a general technique called
bootstrapping for the construction of FHE schemes. Gentry’s idea is to first
construct an encryption scheme that is somewhat homomorphic (that is, ho-
momorphic with respect to some limited class of circuits), and then, using the
bootstrapping technique, to transform it into an FHE. The bootstrapping tech-
nique inherently uses the assumption that the underlying somewhat homomor-
phic encryption is circular secure.7 Since most of these schemes are bit encryption
schemes and their circular security is only conjectured and not proved (based
on their semantic security), the question of circular security for bit-encryption
is especially important for the construction of secure FHE. In particular, prov-
ing the bit-encryption conjecture would establish the existence of an FHE based
solely on (say) the hardness of the learning with errors (LWE) problem (see [?]).

Our KDM equivalence theorem for bit-encryption (see end of Section ??) is
also of particular interest to the current candidate FHE schemes. As alluded to
above, the theorem implies that a KDM distinguisher can be used to construct an
attacker that given access to the KDM oracle actually finds the decryption-key.
However, for the current candidate fully homomorphic bit-encryption schemes,
the KDM oracle can actually be simulated using only the public-key.8 Thus, the
equivalence theorem gives a generic (and simple) search to decision reduction for
these schemes that transforms any attack that breaks semantic security into an
attack that finds the decryption-key (without using an external KDM oracle).

Full KDM Security from Semantic Security. An additional motivation for the
study of the circular security of bit-encryption schemes arises from the recent

7 Actually, there are two variants of the bootstrapping technique. The one that we
refer to assumes circular security and constructs an FHE. The other variant does not
assume circular security but only achieves leveled FHE (i.e., an encryption scheme
that is homomorphic with respect to any circuit of some a priori fixed depth) and
also increases the length of the public-key multiplicatively in the depth of supported
circuits.

8 This follows from the facts that (1) the public-key of these schemes actually contains
encryptions of the bits of the decryption-key (for bootstrapping), and (2) ciphertexts
can be re-randomized. An oracle query for the i-th bit of the decryption-key can be
simulated by re-randomizing the ciphertext in the public-key that is an encryption
of the i-th bit of the decryption-key.



work of Applebaum [?] (following [?, ?]) who showed an amplification theorem
for KDM security. Specifically, [?] showed that an encryption scheme that is
KDM secure for any fixed class of polynomial-size circuits, can be constructed
from an encryption scheme that is KDM secure only with respect to the class of
projections and negation of projections (i.e., any function f of the form f(d) = di
or f(d) = 1− di). Thus, proving a slightly stronger variant of the bit-encryption
conjecture would imply that semantic security is a sufficient assumption for the
construction of a very strong form of KDM security.

1.3 Chosen Ciphertext Security vs. Circular Security

Recall that an encryption scheme is CCA-2 secure if it is semantically secure even
when the attacker has access to a decryption oracle that decrypts any ciphertext
other than the challenge ciphertext.

Since we show difficulties to proving that every semantically secure bit-
encryption is circular secure, it is natural to ask whether a stronger notion
of security, such as CCA security, might instead suffice. We first note that our
black-box impossibility result extends also to this case. That is, we show that
there is no blackbox reduction of circular-security even to CCA-2 security.

Actually, assuming the existence of doubly-enhanced trapdoor permutations,
the conjecture that every CCA bit-encryption scheme is circular-secure is equiv-
alent to the bit encryption conjecture. This equivalence follows from the fact
that the Naor-Yung paradigm [?] transforms a semantically secure but circular
insecure scheme into a CCA secure but circular insecure one.9 Using this observa-
tion we can extend our construction of a circular-insecure bit-encryption scheme
(based on multilinear SXDH, see Section ??) to a CCA-2 secure but circular-
insecure bit-encryption scheme (assuming, in addition to multilinear SXDH, the
existence of doubly-enhanced trapdoor permutations).10

Remark. We also mention that the converse direction that asks whether every
circular secure bit-encryption scheme is also CCA secure is in fact false (assum-
ing that there exist circular secure bit-encryption schemes at all). For example,
taking any circular secure scheme and modifying it by adding to the public-key
an encryption of the decryption-key, yields a scheme that is circular secure but
is not even CCA-1 secure.

9 Recall that the Naor-Yung paradigm consists of a double encryption of the plaintext
using independent keys and a non-interactive zero-knowledge (NIZK) proof of con-
sistency. A circular security attack on the underlying scheme immediately translates
into a circular security attack on the constructed CCA secure scheme. Note that
the Naor-Yung transformation can be made to achieve not only CCA-1 security but
even CCA-2 security (see [?] or [?]).

10 We note that this equivalence does not directly imply the extension of our black-box
result to the CCA case because the Naor-Yung transformation makes non black-
box use of the encryption scheme. Instead we prove the extension of the black-box
result directly (without even assuming the existence of doubly-enhanced trapdoor
permutations).



Organization

In Section ?? we define KDM security and the cryptographic assumptions that
we will use. In Section ?? we present our “multilinear map” based circular in-
secure bit-encryption scheme. In Section ?? we prove the equivalence of three
notions of KDM security. Finally, in Section ??, we present our black-box im-
possibility result.

2 Preliminaries

We denote by x ∈R S a random variable x that is uniformly distributed in the
set S.

Semantic Security and CCA Security. In this work we consider only bit-encryption
schemes, that is, encryption schemes that encrypt only single bit messages. We
use the standard definition of semantic-security and CCA security (as in [?])
restricted to single-bit messages.

2.1 KDM and Circular Security for Bit-Encryption

To model KDM security we need to specify what information is given to the ad-
versary and what it means for the adversary to break security. The former is the
simpler of the two - we simply give the adversary access to an oracle (henceforth
called the KDM oracle) that on input i returns a (random) encryption of the i-th
bit of the decryption-key. Formally, for a pair (e, d) of encryption and decryption
keys, we define an oracle Oe,d(i) which on input i ∈ [|d|] returns Ence(di).

Turning to the second part of the definition, we consider three possible ways
in which an adversary can break security. The strongest type of attack (which
corresponds to the weakest definition of security) that we consider is full key
recovery. Security against this type of attack means that no efficient adversary,
which gets encryptions of the individual bits of the decryption-key, can find
the entire decryption-key. Using the definition of the oracle Oe,d we can define
circular security of bit-encryption with respect to key-recovery:

Definition 2. A public-key bit-encryption scheme (KeyGen,Enc,Dec) is cir-
cular secure with respect to key recovery if for every probabilistic polynomial-time
oracle machine A it holds that

Pr
(e,d)←KeyGen(1n)

[

AOe,d(e) = d
]

< neg(n).

It is worth noting that, in contrast to the semantic security setting, in the
KDM setting the decryption-key is information theoretically determined and
therefore there is at least some hope to recover the actual decryption-key used
by the scheme.11

11 In the semantic security model, there may be many decryption keys corresponding
to the same encryption-key and a semantic security adversary (which only has ac-
cess to functions of the encryption-key) cannot hope to always find the particular
decryption-key being used.



Next, we consider an adversary that is given an encryption of a random bit,
as well as access to the KDM oracle, and needs to guess the value of the bit:

Definition 3. A public-key bit-encryption scheme is circular secure with re-
spect to message recovery if for every probabilistic polynomial-time oracle ma-
chine A it holds that

Pr
(e,d)←KeyGen(1n),

b∈R{0,1}

[

AOe,d(e, Ence(b)) = b
]

<
1

2
+ neg(n).

Lastly, we consider the standard definition of circular security as put forth
by [?, ?]. Their definition requires that if be infeasible for an adversary to dis-
tinguish between the KDM oracle and an “all zeros” oracle that always returns
encryptions of 0. Formally, for an encryption-key e, we define Je to be an or-
acle that on input i just returns Ence(0) (i.e., an encryption under e of the
bit 0). In contrast to the two prior definitions, indistinguishability of oracles
does not inherently imply semantic security and therefore we explicitly add this
requirement.

Definition 4. A semantically-secure public-key bit-encryption scheme is circu-
lar secure with respect to indistinguishability of oracles if for every probabilistic
polynomial-time oracle machine A it holds that

∣

∣

∣

∣

Pr
(e,d)←KeyGen(1n)

[

AOe,d(e) = 1
]

− Pr
(e,d)←KeyGen(1n)

[

AJe(e) = 1
]

∣

∣

∣

∣

< neg(n).

In Section ?? we show that the three notions of circular security presented above
are actually equivalent.

2.2 Hardness assumptions in bilinear and ℓ-multilinear groups

We first define bilinear and ℓ-multilinear maps and then define the computational
assumptions that we use.

An ℓ-multilinear map is a non-degenerate12 function e : G1×· · ·×Gℓ → GT ,
where G1, . . . , Gℓ, GT are cyclic groups of prime order p such that for every
g1 ∈ G1, . . . , gℓ ∈ Gℓ, every i ∈ [ℓ] and a ∈ Zp, it holds that:

e(g1, . . . , g
a
i , . . . , gℓ) = e(g1, . . . , gℓ)

a.

An ℓ-multilinear group scheme is an algorithm that for every security pa-
rameter n produces a description of ℓ+ 1 groups of order p (where p is an n-bit
prime) together with an efficiently computable ℓ-multilinear map that maps the
first ℓ groups to the (ℓ+ 1)-th group:

12 By degenerate we mean a function that maps all inputs to the identity element of
GT .



Definition 5. Let ℓ = ℓ(n) be a polynomially bounded function. An ℓ-multilinear
group scheme is a probabilistic polynomial-time algorithm GS that on input 1n

outputs params = (p, (G1, . . . , Gℓ, GT ), (g1, . . . , gℓ, gT ), e) where 2n−1 < p < 2n

is an n-bit prime, G1, . . . , Gℓ and GT are concise descriptions of ℓ+1 groups of
order p (that allow efficient evaluation of the group operation), with the respec-
tive generators g1, . . . , gℓ, gT and e : G1×· · ·×Gℓ → GT is a concise description
of an efficiently computable ℓ-multilinear map.

For every ℓ there exist trivial examples of ℓ-multilinear group schemes. How-
ever, our computational hardness assumptions do not hold for these trivial ex-
amples.13 In fact, for ℓ ≥ 3 we do not know of a candidate ℓ-multilinear group
scheme for which the discrete log problem is believed to be hard (in any of the
groups). Nevertheless, there is also no negative evidence that such group schemes
do not exist. For ℓ ≤ 2 there do exist candidate group schemes for which discrete
log is conjectured to be hard (discussed next).

Computational Assumptions. Loosely speaking, the DDH assumption for a cyclic
group G states that the distributions (g, ga, gb, gab) and (g, ga, gb, gc) are com-
putationally indistinguishable, where g is a generator of G and a, b and c are
random exponents. The SXDH assumption extends DDH to 2-multilinear (a.k.a
bilinear) groups by assuming that there exist groups G1, G2 equipped with a
bilinear map such that the DDH assumption holds for both G1 and G2 (sepa-
rately). We further extend SXDH to the ℓ-multilinear SXDH assumption which
states that there exists an ℓ-multilinear group scheme for which DDH is hard
for all ℓ groups G1, . . . , Gℓ. Note that 1-multilinear SXDH corresponds exactly
to DDH and that 2-multilinear SXDH corresponds to the standard SXDH as-
sumption. We emphasize that we only have candidate group schemes for which
the ℓ-multilinear SXDH assumption is conjectured to hold for ℓ ≤ 2 (see, e.g.,
[?, ?, ?, ?]).

Definition 6. The ℓ-multilinear SXDH assumption states that there exists an
ℓ-multilinear group scheme GS such that for every function i : N→ N for which
i(n) ∈ [ℓ(n)], the following ensembles are computationally indistinguishable:

1. {params, i(n), ga
i(n), g

b
i(n), g

ab
i(n)}n∈N; and

2. {params, i(n), ga
i(n), g

b
i(n), g

c
i(n)}n∈N

where a, b, c ∈R Zp and params
def
= (p, (G1, . . . , Gℓ, GT ), (g1, . . . , gℓ, gT ), e) is

distributed as GS(1n).

13 A trivial example of an ℓ-multilinear group scheme is when G1, . . . , Gℓ are all the ad-
ditive group mod p. Since exponentiation in the additive group corresponds to mod-
ular multiplication, being multilinear means that for every a, z1, . . . , zℓ ∈ Zp it holds
that e(z1, . . . , a · zi, . . . , zℓ) = a · e(z1, . . . , zℓ). Hence, the mapping e(z1, . . . , zℓ) =∏ℓ

i=1
zi mod p is a multilinear map for these groups. Note however that discrete

log in the additive group is equivalent to modular division and can be efficiently
computed.



3 A Circular Insecure Bit-Encryption Scheme

In this section we show a construction of a bit-encryption scheme (KeyGen,Enc,Dec)
that is (plausibly) semantically secure but is not circular secure. In Section ??

we present the construction and prove its correctness. See the full version for
the proof of semantic security (based on the hardness of ℓ-multilinear SXDH, for
ℓ ≥ c · log p for some constant c > 1). In Section ?? we use the multilinear map
to show a circular security attack on the scheme.

Notation. For a matrix X, we let X[i, j] denote the (i, j)-th entry of X.

3.1 The Encryption Scheme

Let GS be any ℓ-multilinear group scheme (as in Definition ??).

Construction 7. Consider the following public-key bit-encryption scheme (KeyGen,Enc,Dec):

KeyGen(1n)
1. Invoke the group scheme algorithm to obtain params← GS(1n) (where

params equals (p, (G1, . . . , Gℓ, GT ), (g1, . . . , gℓ, gT ), e)).
2. Select X ∈R Z

2×ℓ
p (i.e., a 2× ℓ matrix with random entries in Zp).

3. Set U =

[

g
X[0,1]
1 g

X[0,2]
2 . . . g

X[0,ℓ]
ℓ

g
X[1,1]
1 g

X[1,2]
2 . . . g

X[1,ℓ]
ℓ

]

.

4. Select s ∈R {0, 1}
ℓ and set α =

∑ℓ

i=1 X[si, i] mod p.
5. The (public) encryption-key is (params, U, α) and the (private) decryption-

key is (X, s).

Enc(params,U,α)(σ) (where σ ∈ {0, 1})

1. Select at random r1, . . . , rℓ ∈R Zp.
2. Output (gr11 , (U [σ, 1])r1), . . . , (grℓℓ , (U [σ, ℓ])rℓ).

Dec(X,s)((c1, d1), . . . , (cℓ, dℓ))

1. If c
X[0,1]
1 = d1 output 0 and otherwise output 1.

Before proceeding, we wish to highlight a few points. First, we note that
both α and s are not used by the encryption or decryption algorithms and seem
unneeded. Second, we note that (ignoring the presence of α in the public-key)
even by setting ℓ = 1 we obtain a secure encryption scheme (under DDH) and
it is not clear why we need a larger ℓ (recall that we need ℓ >> log p).

The reason for the existence of α and s is (solely) to help the KDM attacker
whereas the large value of ℓ helps maintain semantic security despite the fact
that α is revealed in the public-key.14 The key idea is that in the semantic
security setting, an attacker has essentially no information about s (because ℓ is

14 Note that when using small values of ℓ (in particular using ℓ = 1), the fact that α is
revealed in the public-key makes the scheme totally insecure.



sufficiently large that α looks random) whereas, in the KDM setting, the attacker
can obtain additional information about s (specifically encryptions of the bits of
s) and can use this additional information to verify that α is consistent with s.

The above gives us a way to distinguish between the KDM oracle and the
all zeros oracle thereby breaking circular security with respect to indistinguisha-
bility of oracles. Using Theorem ?? this attack can be transformed into a full
key-recovery attack.

We proceed to show that Construction ?? is indeed correct. See the full
version for the proof that it is also semantically-secure (based on multilinear
SXDH).

Correctness. Consider a pair of encryption and decryption keys ((params, U, α), (X, s))
and let ((c1, d1), . . . , (cℓ, dℓ)) be an encryption of a bit σ ∈ {0, 1}. If σ = 0 then

d1 = c
X[0,1]
1 and the ciphertext decrypts correctly to 0. If σ = 1 then d1 = c

X[1,1]
1

and therefore, except with negligible probability, d1 6= c
X[0,1]
1 . Hence, the cipher-

text decrypts correctly to 1 (except with negligible probability).

Note that we can easily eliminate the negligible decryption error by sampling
X from a statistically close distribution in which X[0, 1] 6= X[1, 1].

3.2 The KDM Attack

We show a distinguisher that breaks the circular security with respect to indis-
tinguishability of oracles (Definition ??) of Construction ??. Using Theorem ??,
we can obtain a KDM attack that breaks circular security with respect to key
recovery (Definition ??).

Our distinguisher gets as input a public-key and has access to either the KDM
oracle that on input i returns an encryption of the i-th bit of the decryption-key
or to the all-zeros oracle that always returns an encryption of 0. The goal of the
distinguisher is to distinguish between the two cases.

Consider the following distinguisher which has access to an alleged KDM
oracle and gets as input an encryption-key (params, U, α):

1. For i = 1, . . . , ℓ:

(a) Query the oracle for an encryption ((c1, d1), . . . , (cℓ, dℓ)) of si (the i-th
bit of s).

(b) Set yi = ci and zi = di.

2. If e(y1, . . . , yℓ)
α ≡p

∏ℓ

i=1 e(y1, . . . , yi−1, zi, yi+1, . . . , yℓ) then output 1 and
otherwise output 0 (where ≡p denotes congruence mod p).



We first show that when using the KDM oracle, the distinguisher always outputs

1. Indeed, in this case yi = grii and zi = g
ri·X[si,i]
i . Therefore,

ℓ
∏

i=1

e(y1, . . . , yi−1, zi, yi+1, . . . , yℓ) ≡p

ℓ
∏

i=1

e(gr11 , . . . , g
ri−1

i−1 , g
riX[si,i]
i , g

ri+1

i+1 , . . . , grℓℓ )

≡p

ℓ
∏

i=1

e(gr11 , . . . , grℓℓ )X[si,i]

≡p e(gr11 , . . . , grℓℓ )
∑ℓ

i=1
X[si,i] mod p

≡p e(y1, . . . , yℓ)
α

and so the distinguisher outputs 1 in this case.

Next, consider the case that the distinguisher uses the all zeros oracle. In this

case we yet again have yi = grii but now zi = g
ri·X[0,i]
i and so we have:

ℓ
∏

i=1

e(y1, . . . , yi−1, zi, yi+1, . . . , yℓ) ≡p

ℓ
∏

i=1

e(gr11 , . . . , g
ri−1

i−1 , g
ri·X[0,i]
i , g

ri+1

i+1 , . . . , grℓℓ )

≡p

ℓ
∏

i=1

e(gr11 , . . . , grℓℓ )X[0,i]

≡p e(y1, . . . , yℓ)
∑ℓ

i=1
X[0,i] mod p.

But, since the group GT is cyclic, it holds that:

Pr
[

e(y1, . . . , yℓ)
α ≡p e(y1, . . . , yℓ)

∑ℓ
i=1

X[0,i] mod p
]

= Pr

[

ℓ
∑

i=1

X[si, i] ≡p

ℓ
∑

i=1

X[0, i]

]

≤ 2−ℓ +
1

p
.

Hence, except with negligible probability, the distinguisher outputs 0 when given
access to the all zeros oracle and we conclude that our distinguisher breaks the
circular security of the scheme (with an overwhelming gap).

4 Equivalence of KDM Notions for Bit-Encryption

In this section, we establish an equivalence between the three notions of circular
security for bit-encryption that were defined in Section ??.

Theorem 8. For every public-key bit-encryption scheme the following are equiv-
alent:

1. The scheme is circular secure with respect to key recovery.

2. The scheme is circular secure with respect to message recovery.

3. The scheme is circular secure with respect to indistinguishability of oracles.



In particular, Theorem ?? implies that an adversary that merely distinguishes
between a KDM oracle and an all zeroes oracle with a non-negligible gap can be
used to fully recover the decryption-key.

We provide sketches of the proofs. See the full version for full proofs.

Lemma 9. Every public-key bit-encryption scheme that is circular secure with
respect to key recovery is also circular secure with respect to message recovery.

Proof Sketch. Let (KeyGen,Enc,Dec) be a public-key bit-encryption scheme,
and suppose that there exists an adversary A that has access to the KDM oracle
and is given as input an encryption-key e and an encryption of a random bit b
and manages to guess b with non-negligible advantage. We use A to construct a
key-recovery adversary (which also has access to the KDM oracle).

Intuitively, it seems as though in order to find di (the i-th bit of the decryption-
key d), the key-recovery adversary can just invoke its KDM oracle on i to obtain
ci = Ence(di) and then run A on input (e, ci) (while answering A’s oracle queries
using its own KDM oracle). The intuition is that since A is a message recovery
attacker, it should output the bit di. The problem with this intuition is that A
is only guaranteed to work when given an encryption of a random bit that is
independent of the decryption-key (which is obviously not the case for di).

We resolve this problem by restricting our attention to the set S of all keys
(e′, d′) for which A manages to recover messages with non-negligible advantage.
We make two simple observations:

1. The set S contains a polynomial fraction of the keys (this follows from the
fact that A has a non-negligible advantage over all key pairs).

2. If a fixed key pair (e, d) is in S, then there should be a non-negligible gap
between the distribution A(e, Ence(0)) and the distribution A(e, Ence(1)).

Note that for a fixed (e, d), the distributionA(e, Ence(di)) is exactlyA(e, Ence(0)
if di = 0 and A(e, Ence(1)) if di = 1. Therefore, to find di we approximate the
following probabilities:

– The probability µ0 that A outputs 1 when given an encryption of 0.
– The probability µ1 that A outputs 1 when given an encryption of 1.
– The probability ν that A outputs 1 when given an encryption of di. (To

approximate this probability we use fresh calls to the KDM oracle.)

We guess that di is the bit b such that ν is closer to µb than to µ1−b and we are
correct with overwhelming probability (over the coins used for the approxima-
tions). By repeating this procedure for every i ∈ [|d|] we obtain an overwhelming
probability of finding d for every (e, d) ∈ S. Since S is sufficiently large, this gives
us a non-negligible probability of finding D even for a random key-pair (e, d). ⊓⊔

Lemma 10. Every public-key bit-encryption scheme that is circular secure with
respect to message recovery is circular secure with respect to indistinguishability
of oracles.



Proof Sketch. Let (KeyGen,Enc,Dec) be a public-key bit-encryption scheme
that is circular insecure with respect to indistinguishability of oracles. That is,
there exists an adversary A that gets as input an encryption-key e and access to
an oracle that is either the KDM oracle or the all-zeros oracle and manages to
distinguish between the two cases.15 We use A to construct a circular security
message recovery adversary A′ for the scheme.

For simplicity, assume that A is just given an encryption-key e and a list of
ciphertexts c1, . . . , cℓ (where ℓ is the length of the decryption-key d) and manages
to distinguish between the case that for every i the ciphertext ci is an encryption
of the i-th bit of d and the case that for every i the ciphertext ci is an encryption
of 0.16

We use a hybrid argument to argue that there exists an i ∈ [ℓ] such that A,
given input e, (c1, . . . , cℓ), distinguishes between the following two cases:

1. c1, . . . , ci−1 are encryptions of the first i − 1 bits of d and ci, . . . , cℓ are
encryptions of 0.

2. c1, . . . , ci are encryptions of the first i bits of d and ci+1, . . . , cℓ are encryp-
tions of 0.

The hybrid argument only tells us that A distinguishes the two cases for
a random pair of keys. The first step of our message-recovery adversary A′ is
to find i (this can be done by approximating the output distribution of A for
every hybrid with respect to random key pair) and to check that A distinguishes
between the two cases for the specific keys (e, d) (where A′ uses the KDM oracle
to generate the two neighboring distributions).

If A does not distinguish between the two cases then A′ just outputs 0 and 1
with probability 1

2 . If on the other hand, A does distinguish (and by the hybrid
argument there is a non-negligible probability for this event), then the i-th bit of
dmust be 1 (otherwise the two cases are identically distributed), and therefore A′

can decrypt its challenge ciphertext c by running A on c1, . . . , ci−1, c, ci+1, . . . , cℓ
where c1, . . . , ci−1 are encryptions of the first i− 1 bits of d and ci+1, . . . , cℓ are
encryptions of 0. If c is an encryption of 0 then the input to A corresponds to the
(i−1)-th hybrid whereas if c is an encryption of 1 then the input corresponds to
the i-th hybrid. The fact that A distinguishes between these two hybrids gives
A′ a non-negligible advantage in guessing the value of b. ⊓⊔

To complete the equivalence theorem, we also need to show the following:

15 Actually, since Definition ?? explicitly requires semantic security, we may instead
have an adversary that directly breaks semantic security. The same adversary also
breaks circular security with respect to message recovery.

16 In the general case we need to handle an adversary that can ask for t encryptions
of each bit of the decryption-key, where t is a bound on the running time of the
adversary. To handle this case, we construct an intermediate adversary A′ that dis-
tinguishes between t encryptions of 0 and t encryptions of 1. We use an additional
hybrid argument to show how to convert A′ to a single message adversary (see the
full version for details).



Lemma 11. Every public-key bit-encryption scheme that is circular secure with
respect to indistinguishability of oracles is also circular secure with respect to key
recovery.

Intuitively, given a key recovery adversary we can obtain an indistinguishability
of oracles adversary by running the key-recovery adversary using the alleged
KDM oracle. If the oracle is indeed the KDM oracle then with non-negligible
probability the adversary finds the decryption-key whereas if the oracle is the
all zeros oracle then it should be infeasible to find the decryption-key. Since it
is easy to check whether the output of the key-recovery adversary is a “good”
decryption-key or not, we obtain a non-negligible advantage in distinguishing
between the two oracles. See the full version for the full proof.

5 A Black-Box Impossibility Result

In this section we show that the bit-encryption conjecture cannot be proved by
a black-box reduction. Actually, as discussed in Section ??, we prove a stronger
result, that the circular security of every CCA-2 secure bit-encryption cannot be
proved using a black-box reduction.

We start off by defining what we mean by a black-box reduction of circular
security of bit-encryption to semantic security and to CCA-2 security:

Definition 12. A black-box reduction of circular security to semantic security
for bit-encryption schemes is a probabilistic polynomial-time algorithm R such
that for every encryption scheme (KeyGen, Enc, Dec) and every circular se-
curity adversary A for which there exists a polynomial p and infinitely many n

such that:
∣

∣

∣

∣

Pr
(e,d)←KeyGen(1n)

[AOe,d(e) = 1]− Pr
(e,d)←KeyGen(1n)

[AJe(e) = 1]

∣

∣

∣

∣

>
1

2
+

1

p(n)

there exists a polynomial p′ such that for infinitely many n:

Pr
(e,d)←KeyGen(1n)

b∈R{0,1}

[R(KeyGen,Enc,Dec),A(e, Ence(b)) = b] >
1

2
+

1

p′(n)

where the probabilities are also over the coin tosses of all algorithms.

A black-box reduction of circular security to CCA-2 security is defined simi-
larly except that the reduction R also has oracle access to the oracle Dec′d that
decrypts any message (using the decryption-key d) except for the challenge ci-
phertext.

We prove the following theorem:

Theorem 13. There exists no black-box reduction of circular security to se-
mantic security for bit-encryption schemes. Furthermore, there also exists no
fully black-box reduction of circular security to CCA-2 security for bit-encryption
schemes.



Note that the furthermore clause actually implies the theorem since CCA-2
security implies semantic security. Therefore, to prove Theorem ??, it suffices to
show a single encryption scheme and a successful circular security adversary for
the scheme such that the scheme is CCA-2 secure even given access to the circular
security adversary. Since we consider a reduction in which the circular security
adversary is used in a black-box manner, we may even consider an inefficient
circular security adversary.

For a given encryption-scheme, consider an inefficient circular security adver-
sary A that given an encryption-key e first finds the corresponding decryption-
key d (suppose that d is uniquely determined by e), then asks its oracle for
encryptions of all the key bits, decrypts these ciphertexts to obtain d′1, . . . , d

′
n

(where n = |d|) and outputs 1 if d′
def
= d′1, . . . , d

′
n equals d and ⊥ otherwise.

Indeed, A breaks circular security and therefore to prove Theorem ??, it suffices
to show a single encryption scheme for which it is infeasible to break semantic
security even given oracle access to A.

Intuitively, we would like to argue that the adversary A specified above can-
not be used to break the security of any CCA-2 secure encryption scheme (al-
though to prove the theorem it suffices to show a single such scheme). The
intuition is that for such schemes, it is infeasible, given only the encryption-key,
to produce encryptions of all of the key bits.17 Therefore, it seems as though the
reduction cannot use the circular security adversary A in any meaningful way
and that A can be simulated by always returning ⊥. Thus, it seems as though
the scheme remains CCA-2 secure even given oracle access to A.

The problem with the foregoing argument is that the reduction may decide
to query A not on its own challenge encryption-key e but on some related key e′.
In such a case we can no longer argue that A can be simulated by just returning
⊥. While it seems strange for a generic reduction (which should work for any
CCA-2 encryption-scheme) to run A on keys other than its own, we cannot rule
out this possibility.

We overcome this difficulty by restricting our attention only to reductions
that also use the encryption-scheme as a black-box. Such reductions should also
work when given an inefficient encryption-scheme. We use this fact to construct
a specific inefficient CCA-2 secure encryption scheme that has the additional
important property that its encryption keys are totally unrelated. Therefore,
intuitively, querying the adversary A on a key e′ 6= e cannot help the reduction
break semantic security.

Proof (of Theorem ??).
We construct an inefficient encryption scheme (KeyGen,Enc,Dec) and an

inefficient circular security adversary A for (KeyGen,Enc,Dec) such that no al-
gorithmR that makes only polynomially many oracle calls to (KeyGen,Enc,Dec)
and A can break CCA-2 security. The encryption scheme that we construct has
two main properties:

17 If it were feasible to generate encryptions of all the key bits than a CCA attacker
could use the decryption oracle on these encryptions to find the decryption-key and
break the security of the scheme.



1. Given only the encryption-key it is infeasible to generate encryptions of all
of the bits of the private-key.

2. Encryption keys of the scheme are totally unrelated.

As is usual in black-box separations, our construction is randomized. That
is, we construct a family of encryption schemes and consider a random encryp-
tion scheme in the family. Specifically, consider a totally random length tripling
injective function G : {0, 1}n → {0, 1}3n and a collection of 2n random injec-

tive functions E
def
= {Ee : {0, 1} × {0, 1}n → {0, 1}3n}e∈G({0,1}n). We define the

following family of encryption schemes (indexed by G, E):

KeyGen(1n) : select at random d ∈ {0, 1}n and output (e, d) such that e = G(d).

Ence(σ) : select at random r ∈ {0, 1}n and output Ee(σ, r).

Decd(c) : output b ∈ {0, 1} if there exists an r ∈ {0, 1}n such that c = Ee(b, r),
where e = G(d). Otherwise output ⊥.

Note that (KeyGen,Enc,Dec) essentially form an idealized encryption scheme
and that there is no correlation between different encryption keys. Additionally,
note that both the set of encryption keys and the sets of ciphertexts are a random
exponentially vanishing subset of {0, 1}3n and therefore a polynomially bounded

adversary only has probability poly(n)
22n < 2−n to produce a valid public-key or

ciphertext without invoking the oracles KeyGen and Enc.

Consider the following inefficient circular security adversary for (KeyGen,Enc,Dec):

A(e, (c1, . . . , cn)) : output 1 if there exist r1, . . . , rn ∈ {0, 1}
n and d ∈ {0, 1}n

such that G(d) = e and for every i ∈ [n], it holds that ci = Ee(di, ri).
Otherwise output ⊥.

The attacker A indeed breaks the circular security (with respect to indis-
tinguishability of oracles) of (KeyGen,Enc,Dec) for every G, E . We proceed to
show that the reduction cannot utilize A to break CCA-2. That is, we will show
that for every probabilistic polynomial-time algorithm R and all sufficiently large
n it holds that

Pr
G,E

(e,d)←G(1n)
b∈R{0,1}

[R(KeyGen,Enc,Dec),A,Dec′d(e, Ence(b)) = b] <
1

2
+ 2 · 2−n (1)

where the probability is also over the coin tosses of all the algorithms and
Dec′d is the aforementioned CCA-2 decryption oracle. The existence of a single
G, E that is semantically secure follows (from standard black-box techniques, see
[?]).

Our main step is to show that R can essentially simulate A by itself (Proposi-
tion ??). Once we get rid of A, it is not hard to see that R cannot break semantic
security (Proposition ??).



Proposition 14. There exists a probabilistic polynomial-time algorithm R′ such
that for all sufficiently large n it holds that

∣

∣

∣

∣

∣

Pr
G,E

(e,d)←G(1n)
b∈R{0,1}

[

R(KeyGen,Enc,Dec),A,Dec′d (e, Ence(b)) = b
]

− Pr
G,E

(e,d)←G(1n)
b∈R{0,1}

[

R′(KeyGen,Enc,Dec),Dec′d (e, Ence(b)) = b
]

∣

∣

∣

∣

∣

< 2−n.

Proposition 15. For any (computationally unbounded) algorithm R′ that makes
at most polynomially many oracle queries and for all sufficiently large n, it holds
that

Pr
G,E,b∈R{0,1}

[R′(KeyGen,Enc,Dec),Dec′d(e, Ence(b)) = b] <
1

2
+ 2−n

See the full version for the proofs of Proposition ?? and ??.
From Propositions ?? and ?? we obtain Eq. (??). Using standard techniques

in black-box separations (specifically an application of Markov’s inequality and
the Borel-Cantelli lemma, see [?]), the latter implies that there exist specific ora-
cles G and E for which the corresponding encryption scheme (KeyGen,Enc,Dec)
is CCA-2 secure. Thus, we have found an adversary A that breaks the circular
security of (KeyGen,Enc,Dec) but on the other hand (KeyGen,Enc,Dec) is
CCA-2 secure even given oracle access to A. ⊓⊔

Remark. Our black-box impossibility result only considers reductions that treat
both the adversary and the primitive (in our case the encryption scheme) as
black boxes. We note that the discussion preceding the proof of Theorem ??

shows that a reduction that uses only the adversary as a black-box must query
the adversary on keys that are somehow related to the challenge encryption-key.
Since such a reduction should work for all bit-encryption schemes, we view this
as an additional obstacle to proving the bit-encryption conjecture.
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