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Abstract We investigate the extent to which correlated secret random-
ness can help in secure computation with no honest majority. It is known
that correlated randomness can be used to evaluate any circuit of size
s with perfect security against semi-honest parties or statistical security
against malicious parties, where the communication complexity grows
linearly with s. This leaves open two natural questions: (1) Can the com-
munication complexity be made independent of the circuit size? (2) Is it
possible to obtain perfect security against malicious parties?
We settle the above questions, obtaining both positive and negative re-
sults on unconditionally secure computation with correlated randomness.
Concretely, we obtain the following results.

Minimizing communication. Any multiparty functionality can be real-
ized, with perfect security against semi-honest parties or statistical secu-
rity against malicious parties, by a protocol in which the number of bits
communicated by each party is linear in its input length. Our protocol
uses an exponential number of correlated random bits. We give evidence
that super-polynomial randomness complexity may be inherent.

Perfect security against malicious parties. Any finite “sender-
receiver” functionality, which takes inputs from a sender and a receiver
and delivers an output only to the receiver, can be perfectly realized given
correlated randomness. In contrast, perfect security is generally impos-
sible for functionalities which deliver outputs to both parties. We also
show useful functionalities (such as string equality) for which there are
efficient perfectly secure protocols in the correlated randomness model.

Perfect correctness in the plain model. We present a general
approach for transforming perfectly secure protocols for sender-receiver
functionalities in the correlated randomness model into secure protocols
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in the plain model which offer perfect correctness against a malicious
sender. This should be contrasted with the impossibility of perfectly
sound zero-knowledge proofs.

1 Introduction

Secure computation is a fundamental problem that has been extensively studied
since the 1980s, originating from the seminal works of [35,20,6,11]. In this paper,
we study the power of correlated randomness in secure two-party computation
and multiparty computation with no honest majority. That is, we consider secure
computation with a randomness distribution phase which takes place before the
inputs are known. In this phase the parties receive a sample from a predetermined
joint distribution. While each party only receives its own random string from this
sample, these random strings are correlated as specified by the joint distribution.

From a theoretical point of view, the correlated randomness model is inter-
esting because it can be used to circumvent impossibility results for the plain
model such as the impossibility of information-theoretic security, analogously to
the use of shared secret randomness for encryption. This model can also be of
practical relevance, as it can be instantiated in the following ways:

– MPC with preprocessing. It is often the case that parties can use idle
time before they have any input to run a secure “offline protocol” for gen-
erating and storing correlated randomness. This correlated randomness is
later consumed by an “online protocol” which is executed once the inputs
become available. This paradigm for MPC is particularly useful when it is
important that the outputs are known shortly after the inputs are (i.e., for
low-latency computation). Note that if the online protocol is uncondition-
ally secure, then it has the potential efficiency advantage of not requiring any
“cryptographic” operations. If the online protocol is perfectly secure, then it
has the additional potential advantage of a finite complexity that does not
grow with a statistical security parameter. From here on we will refer to
MPC with correlated randomness also as MPC with preprocessing.

– Commodity-based MPC. In the setting of commodity-based cryptogra-
phy [4], the parties can “purchase” correlated randomness from one or more
external servers. Security in this model is guaranteed as long as at most t
of the servers are corrupted, for some specified threshold t, where corrupted
servers may potentially collude with the parties. In contrast to the obvious
solutions of employing a server as a trusted party or running an MPC pro-
tocol among the servers, the servers are only used during an offline phase
before the inputs are known, and do not need to be aware of the existence
of each other.

– Honest-majority MPC. Recent large-scale practical uses of MPC [10,9]
employed three servers and assumed that at most one of these servers is
corrupted by a semi-honest adversary. Protocols in the correlated random-
ness model can be translated into protocols in this 3-server model by simply
letting one server generate the correlated randomness for the other two.



A prime example of a cryptographic task that can benefit from having access
to correlated randomness is oblivious transfer (OT) [30,16]. Beaver [3] shows
that having access to the inputs and outputs of a random instance of OT can be
used to realize OT on any inputs with unconditional security. This, together with
the fact that OT is complete for secure computation [24,22], shows that every
functionality can be securely computed given access to an appropriate source of
correlated randomness and no additional assumptions.

While the OT protocol from [3] has both perfect security and optimal com-
munication complexity, the protocols obtained using the compilers of [24,22] only
achieve statistical security and their communication complexity grows linearly
with the circuit size of the functionality. The same holds for more recent uncon-
ditionally secure MPC protocols in the preprocessing model [7,13]. This leaves
open the following natural questions:

Question 1. What is the communication complexity of unconditionally secure
computation in the preprocessing model? Can the communication be made in-
dependent of the circuit size?

Question 2. Are there general protocols in the preprocessing model that achieve
perfect security against malicious parties?

While the first question is clearly motivated by the goal of (theoretical and
practical) efficiency, we argue that this is also the case for the second question.
Consider a scenario where two parties wish to securely evaluate a functionality
f(x, y) where x and y are taken from small input domains. Viewing the input
size as constant, it can be shown that the asymptotic complexity of any statisti-
cally secure protocol with simulation error of 2−σ must grow (at least) linearly
with σ, whereas any perfectly secure protocol has constant complexity. Finally,
the question of perfect security is conceptually interesting, as there are very
few examples of perfectly secure cryptographic protocols with security against
malicious parties.

Our Results: We essentially settle the above questions, obtaining both posi-
tive and negative results on unconditionally secure computation with correlated
randomness. In doing so, we present a number of efficient protocols that can
be useful in practice, especially when securely computing (many instances of)
“unstructured” functions on small input domains. Concretely, we obtain the
following results.

Communication complexity. We show that any multiparty functionality can be
realized, with perfect security against semi-honest parties or statistical security
against malicious parties, by a protocol in which the number of bits communi-
cated by each party is linear in its input length. A disadvantage of our protocols
is that their storage complexity (i.e., the number of bits each party receives dur-
ing preprocessing) grows exponentially with the input length. We give evidence
that this disadvantage is inherent even when the honest parties are computa-
tionally unbounded. Concretely, if every two-party functionality had a protocol



with polynomial storage complexity, this would imply an unexpected answer to
a longstanding open question on the complexity of information-theoretic private
information retrieval [12] (see Theorem 14).

We also prove a separation between the communication pattern required by
unconditionally secure MPC in the preprocessing model and the communication
with no security requirement. Concretely, for most functionalities (even ones
with a short output) it is essential that the communication by each party grows
linearly with its input length. In contrast, without security requirements it is
always possible to make the communication by one of the parties comparable to
the length of the output, independently of the input length. The same is true in
the computational model of security under standard cryptographic assumptions.
Concretely, such a communication pattern is possible either without preprocess-
ing using fully homomorphic encryption [19], or with preprocessing by using
garbled circuits [34] (provided that the inputs are chosen independently of the
correlated randomness [5]).

Perfect security. We show that any “sender-receiver” functionality, which takes
inputs from both parties and delivers an output only to the receiver, can be
perfectly realized in the preprocessing model. In contrast, we show that perfect
security is generally impossible for functionalities which deliver outputs to both
parties, even for non-reactive functionalities and even if one settles for “security
with abort” without fairness (Thm. 4). A similar impossibility result for bit
commitment (a reactive functionality) was obtained in [8].

The communication and storage complexity of our perfectly secure protocols
are comparable to those of the statistical protocols, except for eliminating the
dependence on a security parameter. In particular, the storage complexity grows
exponentially with the bit-length of the inputs. We present storage-efficient pro-
tocols for several natural functionalities, including string equality (see Section 1.2
below), set intersection, and inner product (Appendix A). Our positive results
for general functionalities are summarized in Table 1, and for specific sender-
receiver functionalities in Table 2.

Protocol Communication Storage Parties Security

[20,3] O(s) O(s) k perfect, passive

[24,22] O(s) + poly(σ) O(s) + poly(σ) k statistical, active

Theorem 1 O(n) O(2nm) k perfect, passive

Theorem 2 O(n+ σ) O(2n(m+ σ)) k statistical, active

Theorem 3 O(n) O(2n(m+ n)) 2 perfect, active

Table 1. Comparison of our positive results with previous work: s is the size of a
boolean circuit computing the functionality, n is the length of the inputs, m is the
output length, and σ is a statistical security parameter. In the asymptotic complexity
expressions, the number of parties k is viewed as constant. The protocol of Theorem 3
applies only to sender-receiver two-party functionalities.



Protocol f Communication Storage Computation Security

Sec. 1.2 x =? y 2|x| O(|x|) poly(|x|) perfect, active
Thm. 7 x ∩ y poly(|x|) + |y| poly(|x|) exp(|x|, |y|) perfect, active
Thm. 7 x ∩ y poly(|x|, k) + |y| poly(|x|, σ) poly(|x|, |y|, σ) statistical, active
Thm. 8 〈x, y〉 2|x| O(|x|) superpoly(|x|) perfect, active

Table 2. Sender-receiver protocols for specific tasks. Two variants of set intersection
are given: a perfectly secure with exponential computation, and a statistically secure
with efficient computation.

Perfect correctness in the plain model. We present a somewhat unexpected appli-
cation of our positive results in the preprocessing model to security in the plain
model. Consider the goal of securely evaluating a sender-receiver functionality f .
We say that a protocol for f is perfectly correct if the effect of any (unbounded)
malicious sender strategy on the honest receiver’s output can be perfectly sim-
ulated, via some distribution over the sender’s inputs, in an ideal evaluation of
f . For example, consider the string equality functionality f(x, y) which receives
an n-bit string from each party, and delivers 1 to the receiver if x = y and 0
otherwise. A perfectly correct protocol for f should guarantee, for instance, that
if the honest receiver picks its input at random, then the receiver should output
1 with exactly 2−n probability, no matter which strategy the sender uses.

The impossibility of perfectly sound zero-knowledge proofs (which carries
over to the preprocessing model, see Theorem 15) shows that perfect correctness
cannot always be achieved when the honest parties are required to be efficient.
We complement this by a positive result which applies to all functionalities on
a small input domain as well as some natural functionalities on a large input
domain (like string equality). Our result is based on a general approach for
transforming perfectly secure protocols for sender-receiver functionalities in the
preprocessing model into (computationally) secure protocols in the plain model
which additionally offer perfect correctness against a malicious sender.

To summarize, we have the following lower bounds:

– We show limits to what functionalities can be implemented perfectly. Theo-
rem 4 shows that not all two-party functionalities have protocols with perfect
security and abort. This is generalized in Theorem 9 to show a function that
requires Ω(log 1

ε ) communication to compute with ε-security.

– We lower bound the amount of communication that a secure protocol for
a non-trivial functionality must use. Theorem 11 for the perfect case and
Theorems 12, 13 for the statistical case show that for general functionalities
the communication complexity of our protocols is optimal. Another general-
ization (Theorem 10) shows that the negative results extends to the case of
expected round complexity.

– We show that superpolynomial preprocessing is needed in general. Theorem
14 explains that improving on the preprocessing needed for sender-receiver
functionalities will imply a breakthrough in information theoretic PIR.



On the positive side, we show in Theorem 5 and 6 how to use perfectly se-
cure sender-receiver protocols in the preprocessing model to implement perfectly
correct protocols in the plain model (if the preprocessing is small enough).

1.1 Related Work

Beaver [3] showed that OT can be realized with perfect security given prepro-
cessing. Later Beaver [4] generalized the above to the commodity-based model,
a setting where there are multiple servers providing precomputed randomness,
only a majority of which are honest (in the full version, we describe a general
approach for applying our results in the commodity-based model). Beaver also
notes that perfect security is not possible in general because commitment cannot
be realized perfectly, and a proof of this appeared in [8]. However, the question
was left open for standard (non-reactive) functionalities.

Since OT can be precomputed [3] and as it is complete for secure compu-
tation [24], it is possible to compute any function with statistical security. The
result of [22] improves the asymptotical complexity of [24], while [2,7,27] offer
efficient statistically secure protocols in the preprocessing model for arithmetic
and Boolean circuits respectively. A recent result [14] shows that this can be
done with no overhead during the online phase by giving a protocol with opti-
mal communication complexity for the case of “generic preprocessing” (i.e., the
preprocessing does not depend on the function to be evaluated – only on its
size). Our results achieve better online communication complexity as we do not
rely on a circuit representation.

A protocol for computing secret shares of the inner product against malicious
adversaries was proposed in [15]. In Appendix A, we give a protocol for com-
puting the inner product where one party learns the output. In the setting of
malicious corruptions, it is not trivial to reconstruct the results from the shares,
and therefore our protocol takes a substantially different approach than [15].

In [32], a perfectly secure protocol for oblivious polynomial evaluation in
the preprocessing model is presented. [32] also presents a protocol for equality
which is claimed to be perfectly secure but it is however not perfectly secure
according to the standard simulation-based definition — see Section 1.2 below
for a perfectly secure protocol for equality.

The type of correlated randomness needed for realizing multiparty computa-
tion with unconditional security in the presence of an honest majority is studied
in [17,18]. Statistically secure commitment protocol from correlated randomness
are constructed in [31]. Finally [33] gives linear lower bounds on the storage
complexity of secure computation with correlated randomness.

1.2 Warmup: Equality Test

To introduce some of the notation and the techniques that we use later to prove
more general results, we describe the simple protocol in Figure 1 for equality
testing in the preprocessing model.



Functionality:
– The receiver has input x ∈ X, the sender input y ∈ X;
– The receiver learns 1 if x = y or 0 otherwise. The sender learns nothing;

Preprocessing:
1. Sample a random 2-wise independent permutation P : X → X, and a

random string r ∈R X. Compute s = P (r);
2. The preprocessing outputs (r, s) to the receiver and P to the sender;

Protocol:
1. The receiver computes u = x+ r and sends to sender;
2. The sender computes v = P (u− y) and sends to the receiver;
3. The receiver outputs 1 if v = s, and 0 otherwise;

Figure 1. A perfectly secure protocol for equality with preprocessing.

We consider at the sender-receiver version of the functionality, where only
the receiver gets output from the protocol. In this setting, we have a receiver and
a sender holding respectively x, y in some group X. At the end of the protocol,
the receiver learns whether x = y or not. The protocol achieves perfect security
against malicious adversaries and it is optimal in terms of communication com-
plexity. Correctness follows from v = P (u− y) = P (r+ x− y), and this is equal
to s iff x = y.

One can prove that the protocol is perfectly secure by a simulation argument:
The simulator has access to all preprocessed information. In case of a corrupted
sender, the simulator proceeds as follows: the simulator sends a random u to
the adversary and, when the adversary replies v, the simulator computes y =
u−P−1(v) and inputs it to the ideal functionality. In case of a corrupted receiver,
the simulator extracts the input string x (using u, r) and inputs it to the ideal
functionality for equality. If the ideal functionality outputs 1, the simulator sends
v = s to the corrupted receiver, but if it outputs 0, the simulator chooses v ∈R X
such that v 6= s. This simulation is perfect, as the adversary’s view of the protocol
is distributed identically both in the real execution and in the simulation. Note
that it is enough for P to be drawn from a family of pairwise independent
permutations, since the receiver only learns the permutation at two indices.

The protocol is also UC-secure (the simulation is straight line) and is adap-
tively secure. This is the case for all the protocols presented in this work.

2 Preliminaries

Notation. Let [n] denote the set {1, 2, . . . , n}. We use ZX×Y to denote the set of
matrices over Z whose rows are labeled by the elements of X and whose columns
are labeled by the elements of Y .

Computational model. We assume perfect uniform sampling from [m], for any
positive integer m, as an atomic computational step.



Network model. We consider protocols involving n parties, denoted P1, . . . , Pn.
The parties communicate over synchronous, secure and authenticated point-to-
point channels. In some constructions we also use a broadcast channel. We note
that, in the preprocessing model, all these channels can be implemented with
unconditional security over insecure point-to-point channels. Specifically, secure
channels can be perfectly implemented in the preprocessing model using a one-
time pad, authentication (with statistical security) using a one-time message
authentication code (MAC), and broadcast (with statistical security) using the
protocol of [29].

Functionalities. We consider non-reactive secure computation tasks, defined by
a deterministic or randomized functionality f : X1 × . . .×Xn → Z1 × . . .× Zn.
The functionality specifies a mapping from n inputs to n outputs which the
parties want to compute. We will often consider a special class of two-party
functionalities referred to as sender-receiver functionalities. A sender-receiver
functionality f : X × Y → Z gets an input x from P1 (the receiver), an input y
from P2 (the sender) and delivers the output z only to the receiver.

Protocols with preprocessing. An n-party protocol can be formally defined by a
next message function. This function, on input (i, xi, ri, j,m), specifies an n-tuple
of messages sent by party Pi in round j, when xi is its inputs, ri is its randomness
and m describes the messages it received in previous rounds. (If a broadcast
channel is used, the next message function also outputs the message broadcasted
by Pi in Round j.) The next message function may also instruct Pi to terminate
the protocol, in which case it also specifies the output of Pi. In the preprocessing
model, the specification of a protocol also includes a joint distribution D over
R1×R2 . . .×Rn, where the Ri’s are finite randomness domains. This distribution
is used for sampling correlated random inputs (r1, . . . , rn) which the parties
receive before the beginning of the protocol (in particular, the preprocessing is
independent of the inputs). The next message function, in this case, may also
depend on the private random input ri received by Pi from D. We assume that
for every possible choice of inputs and random inputs, all parties eventually
terminate.

Security definition. We work in the standard ideal-world/real-world simulation
paradigm. Our positive results hold for the strongest possible security model,
namely UC-security with adaptive corruptions, while our negative results hold
for the weaker model of standalone security against static corruptions. We con-
sider both semi-honest (passive) corruptions and malicious (active) corruptions.
Using the standard terminology of secure computation, the preprocessing model
can be thought of as a hybrid model where the parties have a one-time access
to an ideal randomized functionality D (with no inputs) providing them with
correlated, private random inputs ri. We consider by default full security (with
guaranteed output delivery) for sender-receiver functionalities, and security with
abort for general functionalities. We mainly focus on the cases of statistical or
perfect security, though some of our results refer to computational security as
well. We will sometimes refer separately to correctness and privacy – the former
considers only the effect of the adversary on the outputs and the latter considers



only the view of the adversary. The full security definition is omitted for lack
of space.

3 Optimal Communication For General Functionalities

In this section, we settle the communication complexity of MPC in the prepro-
cessing model. For simplicity, we restrict the attention to non-reactive function-
alities, but the results of this section apply also to reactive functionalities.

3.1 Upper Bounds on Communication Complexity

The following is a summary of our upper bounds. These will follow from the
Claims 1, 2 and 3 (some of which are in later sections) and by inspection of the
protocols.

Theorem 1. For any n-party functionality f : X1 × . . . × Xn → Z1 × . . . ×
Zn, there is a protocol π which realizes f , in the preprocessing model, and has
the following features against semi-honest parties: (1) π is perfectly secure; (2)
It uses two rounds of communication; (3) Let α =

∑
i∈[n] log |Xi| be the total

input length. Then, the total communication complexity is O(α) and the storage
complexity is O(α2α).

Theorem 2. For any n-party functionality f : X1 × . . .×Xn → Z1 × . . .× Zn
and ε > 0, there is a protocol π which realizes f , in the preprocessing model
against a malicious adversary, such that: (1) π is statistically ε-secure with
abort; (2) It uses two rounds of communication (given broadcast); (3) The to-
tal communication complexity is O(α + n log 1/ε) and the storage complexity is
O(2α · (α+ n log 1/ε)), where α being the total input length, as above.

Theorem 3. For any 2-party sender-receiver functionality f : X × Y → Z,
there is a protocol π which realizes f , in the preprocessing model against a ma-
licious adversary, such that: (1) π is perfectly secure; (2) It uses two rounds of
communication; (3) The total communication complexity is log |X|+ log |Y | and
the storage complexity is O(|X| · |Y | · log |Y |).

3.2 Semi-Honest Two-Party Protocol, via One-Time Truth Table

For the sake of exposition, we focus on protocols where both parties P1, P2

receive the same output f(x, y) ∈ Z, for some function f : X×Y → Z. We view
X,Y and Z as groups and use additive notation for the group operation, i.e.,
(X,+), (Y,+), (Z,+).

In Figure 2 we present a simple protocol that is secure against a semi-honest
adversary if the parties have access to a preprocessing functionality dealing corre-
lated randomness. The protocol has communication complexity log |X|+log |Y |+
2 log |Z|. A protocol with communication complexity log |X| + log |Y | + log |Z|



follows from the protocol in Section 4.3 We start by presenting this slightly less
efficient protocol here, as this protocol is easier to generalize for security against
malicious parties and for the multiparty case (see Figure 3 and the full version).

The protocol uses one-time truth tables (OTTT). Intuitively, OTTT can be
seen as the one-time pad of secure function evaluation. The parties hold shares
of a permuted truth-table, and each party knows also the permutation that was
used for its input. In the two-party case, the truth-table can be seen as a matrix,
where one party knows the permutation of the rows and the other knows the
permutation of the columns. In fact, given that every truth table will be only
used once, a random cyclic-shift can be used instead of a random permutation.

Functionality:
– P1 has input x ∈ X, P2 has input y ∈ Y .
– Both parties learn z = f(x, y).

Preprocessing:
1. Sample random r ∈ X, s ∈ Y and let A be the permuted truth table; i.e.,

Ax+r,y+s = f(x, y) ;

2. Sample a random matrix M1 ∈ ZX×Y and let M2 = A−M1;
3. Output (M1, r) to P1 and (M2, s) to P2;

Protocol:
1. P1 sends u = x+ r to P2;
2. P2 sends v = y + s and z2 = M2

u,v to P1;
3. P1 sends to P2 the value z1 = M1

u,v;
4. Both parties output z = z1 + z2;

Figure 2. Semi-Honest Secure Protocol using One-Time Truth Table

Claim 1. The protocol in Figure 2 securely computes f with perfect security
against semi-honest corruptions.

Proof. When both parties are honest, the protocol indeed outputs the correct
value:

z = z1 + z2 = M1
u,v +M2

u,v = Au,v = Ax+r,y+s = f(x, y).

Security against semi-honest parties can be argued as follows: the view of
P2 can be simulated by choosing a random u ∈ X and defining z1 = z −M2

u,v.
The view of P1 can be simulated by choosing a random v ∈ Y and defining
z2 = z −M1

u,v. As both in the simulation and in the real protocol the values
u, v, z1, z2 are distributed uniformly at random in the corresponding domains,
the protocol achieves perfect security.

3 The protocol of Section 4 has complexity log |X| + log |Y | but only one party gets
output; however, in the semi-honest case, this party may simply transfer the output
(log |Z| bits) to the other party.



3.3 One-Time Truth Tables with Malicious Security

The above protocol is only secure against semi-honest adversaries, as a malicious
party Pi could misreport its output share zi and therefore change the output
distribution. To fix this problem, we will enhance the OTTT protocol using
information theoretic message authentication codes (MAC): the preprocessing
phase will output keys for a one-time MAC to both parties, and will add shares
of these MACs to the truth table. The resulting protocol is only statistically
secure as an adversary will always have a (negligibly small) probability to output
a fake share zi together with a valid MAC. As we will see later (Section 4.1), this
is inherent; i.e., it is impossible to securely compute every function with perfect
security, even in the preprocessing model.

Definition 1 (One-Time MAC). A pair of efficient algorithms (Tag,Ver) is
a one-time ε-secure message authentication code scheme (MAC), with key space
K and MAC space M, if Verk(m,Tagk(m)) = 1 with probability 1 and for every
(possibly unbounded) adversary A:

Pr[k ← K,m← A, (m′, t′)← A(m,Tagk(m)) : Verk(m′, t′) = 1∧m 6= m′] < ε .

The MAC can be instantiated with the standard “am + b” construction: Let
F be a finite field of size |F| > ε−1, and let k = (a, b) ∈ F2. To compute a
MAC tag, let Tagk(m) = am + b and for verification compute Verk(m, t) = 1
iff t = am + b. Without loss of generality, the range of f , the function to be
computed, is Z = F. 4 For the purpose of this application, we will write the
MAC space M as an additive group (M,+).

MAC enhanced OTTT: In Figure 3, the protocol for general two-party compu-
tation in the preprocessing model using OTTT is presented. Note that, as all
the MAC signatures are secret-shared and only one is reconstructed, we can use
the same MAC key for all the entries in the matrix. We assume, for notational
simplicity, that both parties obtain the same output z; the general case may be
handled similarly.

Claim 2. The protocol in Figure 3 computes f with ε-security against a mali-
cious adversary.

The proof of this claim is pretty straightforward and is therefore deferred to the
full version of this paper. In the full version we also show how this protocol can
be generalized to n parties. The main issue here is to have all the honest parties
to output the same value (in particular, if one honest party outputs ⊥ then
all honest parties must output ⊥). This is done using unanimously identifiable
commitments from [21,28].

In the full version, we also prove negative results which complement the above
positive results (see also Appendix B). In particular, we show that the commu-
nication complexity of the above protocols is optimal (for non-trivial functions)
and give evidence that the exponential storage complexity (or randomness com-
plexity) is inherent.

4 Note that we still only need log2 |Im(f)| bits to encode the output of the function.



Functionality:
– P1 has input x ∈ X and P2 has input y ∈ Y .
– Both parties learn f(x, y).

Preprocessing:
1. Sample random keys for an ε-secure MAC scheme k1, k2 ∈ K;
2. Sample random r ∈ X, s ∈ Y and let A ∈ (Z ×M×M)X×Y be a matrix

s.t.
Ax+r,y+s =

(
f(x, y),Tagk1(f(x, y)),Tagk2(f(x, y))

)
;

3. Sample a random matrix M1 ∈ (Z ×M×M)X×Y and let M2 = A−M1;
4. Output (M1, r, k1) to P1 and (M2, s, k2) to P2;

Protocol:
1. P1 sends u = x+ r to P2;
2. P2 sends v = y + s and z2 = M2

u,v to P1;
3. P1 sends z1 = M1

u,v to P2;
4. Each party Pi parses z1 + z2 as (z, t1, t2);
5. If Verki(z, ti) = 1, party Pi outputs z, otherwise it outputs ⊥;

Figure 3. Malicious Secure Protocol using One-Time Truth Table

4 Perfect Security for Sender-Receiver Functionalities

In this section we show that, if only one party receives output, it is possible
to achieve perfect security even against a malicious adversary. We will show, in
Section 4.1, that this is not the case for general functionalities where all parties
receive outputs.

The protocol is presented in Figure 4. The structure of the protocol is similar
to previous constructions, in the sense that the preprocessing samples some
random permutations, and then during the online phase the parties apply the
random permutations on their inputs and exchange the results. However, the
protocol uses the asymmetry between the sender and receiver: every row of
the truth table (corresponding to each input of the receiver) is permuted using
a different random permutation. The sender learns this set of permutations,
permuted under a receiver permutation (implemented by a random circular shift,
as in previous constructions). The receiver learns the truth table where each row
is permuted according to the corresponding permutation.

In the online phase, the sender uses the first message of the receiver to de-
termine which of the permutation to apply to his input. The receiver, using this
value, can perform a look-up in the permuted truth table and output the correct
result. The protocol is intuitively perfectly private as both parties only see each
other’s input through a random permutation. Perfect correctness is achieved be-
cause, in contrast to previous constructions, every message sent by the sender
uniquely determines its input (together with the preprocessing information).

Claim 3. The protocol in Figure 4 securely computes the sender-receiver func-
tionality f with perfect security and optimal communication complexity against
malicious corruptions.



Functionality:
– R has input x ∈ X, S has input y ∈ Y .
– R learns z = f(x, y);

Preprocessing:
1. Sample random r ∈ X;
2. Sample random permutations {Px}x∈X with Px : Y → Y , and let {Qi}i∈X

be a “shifted” sequence of those permutations, where Qx+r = Px;
3. Compute the permuted truth table Ax,Px(y) = f(x, y);
4. Output (A, r) to R and {Qi}i∈X to S;

Protocol:
1. R sends u = x+ r to S;
2. S sends v = Qu(y) to R;
3. R outputs f(x, y) = Ax,v (if v 6∈ Y , then R outputs f(x, y0), for some

fixed value y0);

Figure 4. Perfect Secure Protocol for Sender-Receiver Functionalities, Malicious Ad-
versaries

Proof. When both parties are honest the output is correct:

Ax,v = Ax,Qu(y) = Ax,Px(y) = f(x, y).

If S∗ is a corrupted sender, the simulator samples the preprocessing for S con-
sisting of the permutations {Qi}i∈X . The simulator then picks a random message
u, as the first message of the protocol. Then, it runs v ← S∗({Qi}, y, u), and it
extracts an effective input y′ = Q−1u (v) and inputs y′ to the ideal functionality
to get the ideal-world output z = f(x, y′). The simulator outputs the simulated
view ({Qi}, v). Observe that u and {Qi} are distributed as in the real world and
independently of x. The simulated view considered jointly with f ’s output on
the effective input (i.e., z) is thus distributed identically to the view of S∗ jointly
with the receiver’s output, in the real-world execution.

For a corrupted receiver R∗, the simulator samples A, r, {Qi}, runs u ←
R∗(A, r, x), extracts x′ = u − r, inputs it to the ideal functionality, receives
z = f(x′, y), computes u = A−1x,v(z) and outputs the simulated view (A, r, u).
This is distributed identically to the real-world view of R∗.

Note that even for the case of semi-honest security, this protocol is more effi-
cient than a protocol using 1-out-of-n OT, where the sender acts as the transmit-
ter and offers f(x1, y), . . . , f(xm, y) for each possible xi ∈ X and the receiver acts
as the chooser and selects x. Such protocol would have (online) communication
complexity O(|X| log |Z|), while our protocol requires only log(|X|) + log(|Y |)
bits of communication.

4.1 Impossibility of Perfect Security for General Functionalities

The following theorem shows that the above positive result cannot be extended
to general functionalities (see Appendix B and the full version for a tight tradeoff
between communication and error probability).



Theorem 4. Let f(x1, x2) = (x1 ⊕ x2, x1 ⊕ x2). Then, there is no protocol for
f , in the preprocessing model, which is perfectly secure with abort.

Proof. Assume towards a contradiction that π perfectly realizes f with abort
given preprocessing D. Consider the experiment of running π on a uniformly
random choice of inputs (x1, x2) ∈ {0, 1}2 and correlated random inputs (r1, r2)
drawn from D. Let i1 be the minimal number such that, at the beginning of
round i1, the output of P1 is always determined (over all choices of inputs and
random inputs) regardless of subsequent messages (which may possibly be sent
by a malicious P ∗2 ). That is, when running the above experiment, before round
i1, party P1 may have an uncertainty about the output; but, at the beginning of
round i1, the view of P1 always determines a unique output value b ∈ {0, 1} such
that P1 will either output b or ⊥. The value i2 is defined symmetrically. Note
that i1, i2 are well defined, because the outputs are always determined at the
end of the execution, and, moreover, they are distinct because only one party
sends a message in each round.

Assume, without loss of generality, that i1 < i2 and, moreover, that in the
above experiment there is an execution which terminates with P2 outputting 0,
but where in the beginning of round i1 the output of P2 is not yet determined
(namely, there are messages of P ∗1 that would make it output 1).

We can now describe a malicious strategy P ∗1 that would make an honest P2,
on a random input x2, output 1 with probability p > 1/2. Since this is impossible
in the ideal model, we get the desired contradiction. The malicious P ∗1 proceeds
as follows.

– Run the protocol honestly on a random input x1 until the beginning of round
i1. Let b be the output value determined at this point.

– If b = 1, continue running the protocol honestly.
– Otherwise, continue the protocol by sending a uniformly random message in

each round.

In the event that b = 1, which occurs with probability 1/2, P2 will always output
1. In the event that b = 0, by the above assumption there exist subsequent
messages of P ∗1 making P2 output 1, and hence also in this case P2 outputs 1
with nonzero probability. Overall P2 outputs 1 with probability p > 1/2.

5 Perfect Correctness in the Plain Model

Theorem 15 shows that the impossibility of perfectly sound zero-knowledge
proofs for NP carries over to the preprocessing model. This implies that some
sender-receiver functionalities cannot be securely realized with perfect correct-
ness in the plain model. In this section, we show that the class of functionalities
that can be securely realized with perfect correctness is actually quite rich. To the
best of our knowledge, this important fundamental question has been neglected
in the literature so far.

We present a general transformation from perfect sender-receiver protocols in
the preprocessing model, to protocols with perfect correctness in the plain model.



This is possible for functionalities for which the preprocessing can be realized in
the plain model with perfect privacy (and computational correctness): the main
conceptual contribution is to show how we can turn perfect privacy into perfect
correctness by using an offline/online protocol.

The high level idea of this transformation is to use the “reversibility” of
correlated randomness for turning perfect privacy in the plain model into perfect
correctness in the plain model. Concretely, let π be a perfectly secure protocol
for f in the preprocessing model. Using standard techniques (a combination of
perfectly private OT protocols [26,1] with an information-theoretic variant of the
garbled circuit technique [35,24]), one can get a perfectly private protocol π′ (with
unbounded simulation) for all sender-receiver functionalities in NC1. We then use
π′, with the sender in π playing the role of the receiver in π′, for generating the
correlated randomness required by π. In this subprotocol the receiver picks its
randomness rx from the correct marginal distribution and the sender obtains as
its output from π′ a random input ry sampled from the conditional distribution
defined by rx. This subprotocol prevents a malicious sender from learning any
information about rx other than what follows from ry. Running π on top of the
correlated randomness (rx, ry) generated by the subprotocol gives a perfectly
correct protocol for f .

The approach described so far only guarantees security against semi-honest
parties (in addition to perfect correctness against a malicious sender); however,
using a GMW-style compiler we get (computational) security against malicious
parties while maintaining perfect correctness against a malicious unbounded
sender.

Formally, let D be a distribution over R1 × R2 such that all probabilities
in the support of D are rational. Let Dr1 be a family of distributions over R2

such that the two distributions {(r1, r2) : (r1, r2)← D} and {(r1, r′2) : (r1, r2)←
D, r′2 ← Dr1} are identically distributed. Let PreD : R1 → R2 be a randomized
functionality5 that, on input r1 from party R outputs r2, sampled according to
Dr1 to S (if r1 is not in the support of D, the function outputs ⊥). Applications
and proofs of the following theorems are discussed in the full version.

Theorem 5. Let f be a sender-receiver functionality that admits a perfectly
secure protocol πonline, in the presence of preprocessing D, where all probabilities
in support(D) are rational. Let πpre be a protocol that realizes PreD which is
semi-honest secure and perfectly private against malicious S.
Then, it is possible to securely compute f with semi-honest security and perfect
correctness.

Theorem 6. Assuming one-way permutations exist, the result of Theorem 5
holds with security against malicious parties.

5 As discussed in Section 2, our computational model allows perfect sampling from
the uniform distribution over [m], for all integers m.
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A Protocols For Specific Tasks

In this section, we present protocols for a number of specific sender-receiver
tasks. We focus on the case of perfect security in the malicious model. All of
these protocols have a 2-move structure: the receiver sends a message mX , the
sender replies with a message mY , and the receiver computes its output. Due to
space limitations the proofs are deferred to the full version.

A.1 Set Intersection

In Figure 5, we present a protocol for computing the intersection of two sets x, y
of fixed sizes (k, l, respectively) over some domain U .

Theorem 7. The protocol in Figure 5 realizes the sender-receiver functionality
set intersection with perfect security.



Functionality:
– R has input x consisting of k distinct elements x1, . . . , xk ∈ U ; S has input
y consisting of l distinct elements y1, . . . , yl ∈ U ;

– R learns the intersection z = x ∩ y.
Preprocessing:

1. Pick a random permutation P : U → U and k distinct elements
r1, . . . , rk ∈R U ;

2. S gets P and R gets r1, . . . , rk and s1 = P (r1), . . . , sk = P (rk);
Protocol:

1. R picks a random permutation Q : U → U , under the constraint that
Q(xi) = ri, for all i ∈ [k]. It sends Q to S;

2. S computesM = {P (Q(yj)) | j ∈ [l]}. It sendsM (size-l sorted set) to R;
3. R outputs a set I consisting of all i such that si ∈M;

Figure 5. Protocol for Set Intersection

Optimizing the protocol In the above protocol, both the randomness and the
first message have size O(|U | log |U |) (the space it takes to describe a permu-
tation). This may be super-exponential in the input size. Like for the equality
protocol, we can optimize by taking advantage of k-wise independent families
of permutations, as these may have smaller descriptions (the existence of small
permutation families with this property was recently proven in [25], but this is
only an existential result. Instead we can use the efficient explicit constructions
of [23] but achieve only statistical security).

A.2 Inner product

Let Fp be a finite field of size p, and let t ≥ 1. The inner product functionality
IPt,p is as follows:

– S has input y ∈ Fpt and R has a linear function x : Fpt → Fp, represented
by a vector x ∈ Fpt, so that x(y) = 〈x, y〉 =

∑
i≤t xiyi.

– R outputs x(y).

Some Algebraic Preliminaries Let ei ∈ Ft be the i-th unit vector of length t.
Let F∗ be the multiplicative group of a finite field F. By default, vectors are
column vectors. Fm×n is the set of m× n matrices over F. Let GL(n, p) be the
group (under matrix multiplication) of invertible matrices in Fpn×n. Mi is the
i’th row of a matrix M. Given vectors v1, . . . , vn ∈ Fm, let (v1; . . . ; vn) denote the
matrix M ∈ Fn×m with rows Mi = vTi . We will also need the following algebraic
primitive:

Definition 2 (Good exhaustive operator). Let L : Fpt → Fpt be the lin-
ear, injective operator defined via L(y) = yTL (L represents both the opera-
tor and the matrix implementing it). Consider the (infinite) sequence seqL =
(v, L(v), . . . , L(i)(v), . . . ) generated by L for some v.

We say that L is a g.e.o. for v ∈ Fpt if:



1. seqL is periodic with period length pt−1 for v (i.e., all elements in Ftp, except
0, appear in seqL).

2. The the first t elements in seqL forms a basis for Fpt.

Lemma 1 (instantiating good exhaustive operators). Consider the oper-
ator Lx where Lx(y) = x · y where x, y are viewed as elements of Fpt (the
multiplication is over Fpt). Viewed as a linear function from Fpt to Fpt, we have
Lx(y) = yTLx. Let g be a generator of F∗pt , then Lg is a g.e.o. for v = et (could
use any other vector v).

Functionality:
– Inputs: R gets x 6= 0 ∈ Ftp, and S gets y ∈ Ftp.
– Output: R outputs 〈x, y〉.

Primitives: Let L ∈ Fpt×t be a g.e.o. for et. For a ∈ Ftp\{0}, we let ind(a) denote
the index of the first appearance of a in seqL.

Preprocessing:
1. S gets a random vector r2 = y′ ∈ Ftp.
2. R gets (x′, p2), where x′ is randomly chosen at Ftp \ {0} and p2 = 〈y′, x′〉.

Protocol:
1. R sends δ = ind(x′)− ind(x) (mod pt − 1) to S.
2. S sends the vector m = (eTt L

0(y + Lδy′), eTt L(y + Lδy′), . . . , eTt L
t−1(y +

Lδy′)).
3. R sets M = (eTt ; eTt L; . . . ; eTt L

t−1), r = xTM−1. It outputs rm− p2.

Figure 6. A protocol for IP+t,p

The protocol. In Figure 6, we present a protocol for a slightly modified func-
tionality, IP+t,p, where x is restricted to be non-zero. This also implies a protocol
for IPt,p, as on input x = 0 the receiver can adopt any input x′ 6= 0, and output
0 at the end, ignoring the communication.

Theorem 8. The above protocol is a perfectly secure protocol, with preprocess-
ing, for the functionality IP+t,p, for all t ≥ 1 and prime p. The communication
complexity, randomness size and S’s work are polynomial in |x| = t log p, while
R’s computation is as hard as finding discrete log in F∗pt .

B “Teasers” from the Full Version

The full version of this article contains several other results. Due to space lim-
itation, we can only state the theorems here and invite the interested reader
to look at the full version for further discussion, proofs and applications of the
following theorems.



Theorem 9. Every protocol with preprocessing Π that ε-securely computes the
functionality f(x1, x2) = (x1⊕ x2, x1⊕ x2) with abort, has communication com-
plexity Ω(log 1

ε ).

Theorem 10. Let f(x1, x2) = (x1⊕x2, x1⊕x2). Then there is no protocol for f
in the preprocessing model which is perfectly secure with abort, having expected
communication complexity t, for any t ∈ N.

Theorem 11. Given a perfectly secure protocol for some sender-receiver func-
tionality f : X × Y → Z in the semi-honest model, with sender message domain
MY , and receiver message domain MX . Then,

– If for all y1 6= y2 ∈ Y , there exists x ∈ X such that f(x, y1) 6= f(x, y2), then
|MY | ≥ |Y |.

– If for every z1, z2 ∈ Z and x1 6= x2 ∈ X, we have {y|f(x1, y) = z1} 6=
{y|f(x2, y) = z2}, then |MX | ≥ |X|.

Theorem 12. Let c > 0 be a constant, and consider a sender-receiver function-
ality f : X × Y → {0, 1} where log |X| = n, log |Y | = m. Assume there exists a
subset X ′ ⊆ X of size c ·m, such that {(x′, f(x′, IY ))}x′∈X determines IY , for
all IY ∈ Y ). Then, there exists ε > 0, depending only on c, such that in any ε-
secure protocol with preprocessing for f in the semi-honest model, the sender-side
communication is Ω(m).

Theorem 13. Let c1, c2, c3 > 0 be constants such that (1 + c3)(1 − c2) < 1.
Consider a sender-receiver functionality f : X × Y → {0, 1} where log |X| = n,
log |Y | = m satisfying

– For all x 6= x′ ∈ X, we have H(f(x′, IY )|f(x, IY )) ≥ c1, where IY is picked
uniformly from Y .

– For all y 6= y′ ∈ Y , we have Pr(f(IX , y) = f(IX , y
′)) ≥ c2, where IX is

picked uniformly at random.
– There exists a subset Y ′ ⊆ Y of size (1 + c3)n, such that {y, f(IX , y)}y∈Y

determines IX , for all IX ∈ X).

Then, there exists ε > 0, depending only on the ci’s, such that in any ε-secure
protocol with preprocessing for f , in the semi-honest model, the receiver-side
communication is Ω(n).

Theorem 14. Suppose there is a semi-honest statistically secure protocol in the
preprocessing model for every sender-receiver functionality f : {0, 1}n×{0, 1}n →
{0, 1} with correlated randomness complexity r(n) (i.e., where rX , rY ∈ {0, 1}r(n))
and communication complexity c(n). Then, there is a 3-server statistical PIR
protocol with communication complexity O(r(logN) + c(logN) + logN), where
N is the database size.

Theorem 15. If NP 6⊆ BPP , there exists a sender-receiver functionality that
cannot be efficiently computed with semi-honest security and perfect correctness
(even in the preprocessing model).


