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Abstract

Since the seminal work of Garg et al. (FOCS’13) in which they proposed the first candidate
construction for indistinguishability obfuscation (iO for short), iO has become a central cryp-
tographic primitive with numerous applications. The security of the proposed construction of
Garg et al. and its variants are proved based on multi-linear maps (Garg et al. Eurocrypt’13)
and their idealized model called the graded encoding model (Brakerski and Rothblum TCC’14
and Barak et al. Eurocrypt’14). Whether or not iO could be based on standard and well-studied
hardness assumptions has remain an elusive open question.

In this work we prove lower bounds on the assumptions that imply iO in a black-box way,
based on computational assumptions. Note that any lower bound for iO needs to somehow rely
on computational assumptions, because if P = NP then statistically secure iO does exist. Our
results are twofold:

1. There is no fully black-box construction of iO from (exponentially secure) collision-resistant
hash functions unless the polynomial hierarchy collapses. Our lower bound extends to
(separate iO from) any primitive implied by a random oracle in a black-box way.

2. Let P be any primitive that exists relative to random trapdoor permutations, the generic
group model for any finite abelian group, or degree-O(1) graded encoding model for any
finite ring. We show that achieving a black-box construction of iO from P is as hard as
basing public-key cryptography on one-way functions.

In particular, for any such primitive P we present a constructive procedure that takes any
black-box construction of iO from P and turns it into a a construction of semantically
secure public-key encryption form any one-way functions. Our separations hold even if the
construction of iO from P is semi-black-box (Reingold, Trevisan, and Vadhan, TCC’0)
and the security reduction could access the adversary in a non-black-box way.
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1 Introduction

The celebrated work of Barak et al. [BGI+01] initiated a formal study of the notion of program
obfuscation which is the process of making programs unintelligible while preserving their func-
tionalities. The main result of [BGI+01] was indeed a negative one showing that a strong form
of obfuscation, called virtual black-box obfuscation, is indeed impossible for general circuits. The
same work [BGI+01] also defined a weaker notion of obfuscation, called indistinguishability obfus-
cation (iO). The security of iO only requires that the obfuscation of two equivalent and same-size
circuits C1, C2 should be computationally indistinguishable in the eyes of efficient adversaries.

The first candidate construction for iO was presented in the breakthrough work of et al.
[GGH+13b]. [GGH+13b] showed how to construct iO for NC1 circuits based on multi-linear as-
sumptions [GGH13a], and also showed how to boost iO for NC1 to iO for general circuits based
on learning with error (LWE) assumption [Reg05]. The work of [GGH+13b] led to an active area
with a long list of results using iO as a “central hub” [SW14] for cryptographic tasks/primitives
and basing them on iO together with one-way functions or other (relatively weak) standard as-
sumptions. Interestingly, as shown by [KMN+14] the one-way function itself could be based on iO
and the worst-case assumption that NP 6= BPP, leading to tens of applications solely based on
iO and NP 6= BPP.1

Assumptions behind iO. Since the first candidate construction of iO was presented by [GGH+13b]
a few other variants of this constructions with different assumptions are presented. Brakerski and
Rothblum [BR14] showed that in an idealized model based on multilineal maps, known as the graded
encoding model one can achieve iO (or even VBB obfuscation) assuming the bounded speedup
hypothesis. Barak et al. [BGK+13] improved the result of [BR14] by making the construction
unconditionally secure in the graded encoding model. Miles et al. [MSW15] take another step in
this direction by making the construction even more secure by allowing unlimited additions across
different “levels” of the encoding. Pass et al. [PST14] constructed iO for NC1 circuits based on
(subexponentially secure) semantically-secure multilinear encodings. Their work was the first result
basing iO on falsifiable assumptions [Nao03], however they relied on super-polynomial assumptions.
Gentry et al. [GLSW14] constructs iO based on subgroup elimination assumptions.

Despite all the efforts mentioned above to base iO on hardness assumptions, the assumptions
behind the constructions of iO seem to be qualitatively different compared to other cryptographic
primitives, even in comparison with very powerful primitives such as fully homomorphic encryption
[RAD78, Gen09] which could be constructed from LWE [BV14]. The recent beautiful work of [AS15]
proved the first limitation on the power of iO by ruling out constructions of collision-resistant hash
functions from iO and OWF (even if the iO could use OWF in a non-black-box way).

To the best of our knowledge, no lower-bounds on the complexity of the assumptions behind
iO are proved yet. The same work of [AS15] ruled out fully black-box constructions of iO from
private-key functional encryption schemes (PFE), but this result requires the iO to also handle
circuits with PFE gates. We note, however, that obfuscating circuits in plain model with no oracle
gates is in fact sufficient for all applications of iO. Moreover, since iO exists if NP = P, any lower
bound on the complexity of (standard definition of) iO in which we only aim at obfuscating circuits
in plain model needs to rely on computational assumptions (unless we first prove NP 6= P.

1Note that we cannot hope to get OWFs from iO alone without any hardness for class NP since iO exist uncon-
ditionally if NP = P.
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In this work we initiate a formal study on the assumption complexity of iO from a lower-bound
perspective.2 We prove our results in the black-box framework of Impagliazzo Rudich [IR89] and its
refinements by Reingold et al. [RTV04]. Lower bounds against black-box constructions/reductions
are considered fundamental due to the abundance of black-box techniques as well as their (typical)
efficiency advantage over their non-black-box counterparts.

Since applications of iO almost always lead to non-black-box constructions, it could be argued
that a black-box separation for iO is not meaningful. Note, however, that in this work we are not
studying which primitives could be constructed from iO in a black-box way. We are instead looking
at the complexity of assumptions behind iO. An instructive analogy is zero knowledge proofs for
NP (ZKP). Using ZKPs for general NP statements also makes constructions non-black-box (since
some piece of code is used as witness used by the prover) yet, we can indeed construct ZKPs for
NP from one-way functions in a fully black-box way [GMW86, Nao91, HILL99].3 Therefore, even
though iO leads to non-back-box constructions, the construction of iO itself could very much be
black-box, and so separating it from classical primitives is also meaningful.

1.1 Our Results

Our first lower bound holds for any primitive implied by a random oracle (e.g., exponentially
secure one-way functions or collision-resistant hash functions) and it is proved for fully black-box
constructions that treat the primitive and the adversary in a black-box way (see Definition 2.1).

Theorem 1.1 (Fully black-box separation from primitives implied by random oracle). Unless the
polynomial hierarchy collapses, there is no fully black-box construction of iO from collision-resistant
hash functions or more generally any primitive implied by a random oracle in a black-box way.

Intuition behind the proof. To prove theorem 3.1 we will first prove a useful lemma (see
Lemma 3.2) which, roughly speaking, asserts that for any pair of circuits C1, C2, either (1) a
(computationally unbounded) polynomial-query attacker can guess which one is obfuscated in the
random oracle model with a probability close to one, or that (2) there is a way to obfuscated them
into the same output circuit B. The latter could be used as a witness that C1 and C2 compute
the same function, assuming that the obfuscation is an iO. Now consider the set of equivalent and
same-size circuit C = {(C0, C1) | C0 ≡ C1 ∧ |C0| = |C1|}. If Case (1) happens for an infinite subset
of C, we get a poly-query attacker against iO in the random oracle model which is sufficient for
deriving the black-box separations of Theorem 1.1. On the other hand, if Case (1) happens only
for a finite subset of C, we get an efficient procedure to certify the equivalence of two given circuits,
implying NP 6= P. We prove Lemma 3.2 by reducing it to a result by Mahmoody and Pass [MP12]
who ruled out the existence of non-interactive commitments from one-way functions. Roughly
speaking, we construct a non-interactive commitmet scheme based on common input (C1, C2) in
the random oracle model, and we show that: the cheating receiver strategy of [MP12] implies our
Case (1), and the cheating sender strategy of [MP12] implies our Case (2). The result of [MP12]
shows that either of these strategies always exist. See Section 3 for the formal and detailed proof.

2As mentioned above, we do not allow oracle gates for the circuits that are going to be obfuscated.
3It is also instructive to note that even though ZKP for NP could be constructed from OWFs in a fully black-box

way, it is conceivable that a separation would hold if we require a proof system for satisfiability of circuits with oracle
gates.
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Our second lower bound does not rule out black-box construction of iO based on believable
assumptions, but shows that achieving such constructions for a large variety of primitives is as
hard has solving another long standing open question in cryptography; namely, basing public-key
encryption on one-way functions. It also captures a larger class of security reductions known as
semi-black-box reductions [RTV04] that allow the security reduction to access the adversary in a
non-black-box way (see Definition 2.2).

Theorem 1.2 (Hardness of semi-black-box construction). Let P be a primitive that provably ex-
ists relative to random trapdoor permutation oracle, the generic group model (for any finite abelian
group) or the degree-O(1) graded encoding model (for any finite ring). Any semi-black-box con-
struction of iO from P (constructively) implies a construction of semantically secure public-key
encryption from one-way functions.

Primitives captured by Theorem 1.2. Theorem 1.2 captures a large set of powerful crypto-
graphic primitives that could be constructed in idealized models. For example trapdoor permuta-
tions (and any primitive implied by TDPs in a black-box way) trivially exist relative to the idealized
model of random TDPs. Even primitives that we do not know how to construct from TDPs in a
black-box way (e.g., CCA secure public key encryption) are known to exist in the random TDP
model [BR93]. The generic group model defined by Shoup [Sho97] (see Definition 2.8) is an ideal-
ized model in which (a black-box form of) DDH assumption holds unconditionally. Therefore, our
separation of Theorem 1.2 covers any primitive that could be constructed from DDH assumption
in a black-box way. The same holds for bilinear assumptions in the graded encoding model (see
Definition 2.9) of degree 2. Namely, primitives that could be constructed from bilinear assumptions
(in a black-box way) exist in the degree O(1) graded encoding model unconditionally. This includes
one-round 3-party key-agreement [Jou00], identity based encryption [BF03], etc.

Intuition behind the proof. Our main tool in proving Theorem 1.2 is the following lemma
which is implicit in the recent work of the authors [Pas15, MMN15]. Even though the focus
of [Pas15, MMN15] is on virtual black-box obfuscation, the very same construction presented in
[Pas15, MMN15] for the case of VBB imply the following theorem for iO.

Theorem 1.3 (Implicit in [Pas15, MMN15]). The existence of iO in any of the idealized models of:
random trapdoor permutation oracle, generic group model for finite abelian groups, or the degree-
O(1) graded encoding model for finite rings, implies 1/10-approximate iO in the plain model.

We then show that the existence of (1/6)-approximate iO and any one-way functions imply the
existence of “approximately correct” and “approximately secure” public-key encryption schemes.
In order to prove this we employ a construction of Sahai and Waters [SW14] showed that iO and
OWF imply PKE. Here we show that the very same construction, when instantiated using ap-
proximate iO, leads to “approximately correct” and “approximately secure” public-key encryption.
Finally we use a result of Holenstein [Hol06] who showed how to amplify any approximately-correct
and approximately-secure PKE into a full fledged (semantically secure) PKE for sufficiently if he
approximations are good enough! See Section 4 for the formal and detailed proof.

Remark 1.4. Our proof Theorem 1.1 relies on perfect completeness of iO. Theorem 1.2 below hold
even if with negligible probability over the obfuscator’s randomness the obfuscated circuit does not
compute the same function. list of primitives separated. Extending Theorem 1.1 to allow negligible
error over the randomness of the obfuscator remains an interesting open questions.
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Previous work on hardness of black-box constructions. Theorem 1.2 has the same spirit
as the result by Impagliazzo and Rudich [IR89] who showed any semi-black-box construction of
key agreement from one-way functions would implies P 6= NP. Therefore, the fact that we are far
from proving P 6= NP implies that we as far from basing key agreements on one-way functions in a
black-box way.4 Similarly, our Theorem 1.2 shows that as long as we are not able to base public-key
encryption on one-way functions, we cannot base iO on a variety of strong primitives even through
a semi-black-box way. Other results of the same flavor exist in connection with program checkers
[BK95] for NP. Mahmoody and Xiao [MX10] showed that any construction of one-way functions
based on worst-case hardness of NP implies program checkers for NP whose existence is one of
the long standing open questions in complexity theory.

Falsifiability of iO. An intrusting open question assumption complexity of iO is whether iO
could be based on any “falsifiable” assumption [Nao03]. A falsifiable assumption is one with an
efficient challenger security game. The question is raised since an adversary attacking an iO scheme
starts with proposing two equivalent circuits and and efficient challenger has no direct way to verify
this. Since our primitives used in Theorems above are falsifiable, a separation of iO from falsifiable
assumptions would imply our results for the case of polynomially secure primitives. However,
constructions of iO based on exponentially secure falsifiable assumptions are indeed known [PST14].
Therefore, our results are interesting even if one can prove that iO cannot be based on falsifiable
assumptions. Moreover, the known lower bounds against falsifiable assumptions [Pas11, GW11] are
proved only for black-box proofs of security in which the adversary is used in a black-box way. Our
Theorem 1.2 holds even for semi-black-box constructions in which the security reduction could use
the adversary in a non-black-box manner.

2 Preliminaries

For circuits C,D, by C ≡ D we denote that they compute the same function. By |C| we denote the
size of the bit representation of C. By a partial oracle f we denote an oracle that is only defined for
a subset of possible queries. For random variables X,Y , by X ≈ Y we denote the fact that X and
Y are distributed identically. We call a function ε(n) negligible if ε(n) < 1/p(n) for all polynomial
p(·) and sufficiently large n. We call ρ(n) overwhelming, if 1− ρ(n) is negligible.

2.1 Black-Box Constructions

Definition 2.1. [Fully black-box constructions [RTV04]] A fully black-box construction of a prim-
itive Q from a primitive P consists of two PPT algorithms (Q,S) as follows:

1. Implementation: For any oracle P that implements P, QP implements Q.

2. Security reduction: for any oracle P implementing P and for any (computationally un-
bounded) oracle adversary A successfully breaking the security of QP , it holds that SP,A

breaks the security of P .

4Formalizing semi-black-box constructions interpreting the result of [IR89] in this context is due to [RTV04].
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Primitives with stronger hardness. The above definition is for polynomially secure primitives.
When the used primitive P is s-secure for a more quantitative bound s(n)� poly(n), the security
reduction S could potentially run in longer running time as well so long as it holds that: when P,A
are polynomial time, the total running time of the composed algorithm SP,A is also small enough
to be considered a legal attack against the implementation P of P.

In the following more relaxed form of constructions, the security reduction can depend arbitrarily
on the adversary but it still treats the implementation of the used primitive in a black-box way.

Definition 2.2. [Semi-black-box constructions [RTV04]] A semi-black-box construction of a prim-
itive Q from a primitive P is defined similarly to the fully black-box Definition of 2.1 with the
following difference in the security reduction:

• For any oracle P implementing P and any efficient oracle-aided adversary AP who breaks the
security of QP it holds that SP (A) breaks the security of P . Note that since A’s description
is efficient it could indeed be given to S in a non-black-box way.

Remark 2.3. The work of Reingold et al. [RTV04] also defines a “∀∃” variant of the semi-black-
box constructions in which SP can arbitrarily depend on AP (rather than depending on it in a
unified way). In this work we work with the basic default variant that we also find more natural.

Efficiency of adversary. We used the term efficient in an unspecified way so that it could be
applied to complexity classes beyond polynomial time. For example, using a quasi-polynomially
secure primitive P to construct a polynomially secure primitive Q would require a security primitive
that is more relaxed and could lead to a quasi-polynomial (as opposed to polynomial) time attack
against P using any polynomial-time attacker against QP .

2.2 Indistinguishability Obfuscation

Definition 2.4 ([BGI+01]). A PPT algorithm O is an indistinguishability obfuscator (iO) if the
following two hold:

• Correctness: For every circuit C, it holds that Prr[Or(C) ≡ C] = 1.

• Soundness: For every PPT adversary A there exists a negligible function α(·) such that for
every pair of equivalent circuits C1 ≡ C2 with the same size |C1| = |C2| = n it holds that:

Pr
r,s

[As(C1, C2, B) = b : b← {0, 1}, B = Or(Cb)] ≤ 1/2 + α(n)

where the probability is over the random seeds of the obfuscator O, adversary A and the
random bit b.

Definition 2.5. [Approximate iO] A PPT O is called an ε-approximate iO if it satisfies the same
soundness condition and the following modified correctness condition.

• Approximate correctness: Prr,x[Or(C)(x) 6= C(x)] = ε(|C|) where the probability is over the
randomness of the obfuscator as well as the randomly selected input.

Definition 2.6. [Fully and semi-black-box constructions of iO] A fully black-box construction of
iO from primitive P consists of two oracle algorithms (O,S) such that
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• Implementation (correctness): For every oracle P implementing P, and every circuit C, and
every randomness r for O it holds that B = OP

r (C) is an oracle-aided circuit B such that
BP ≡ C.

• Soundness: For any oracle P implementing P, any ε ≥ 1/poly(n) and any oracle adversary

A who ε-breaks OP , it holds that SP,A,11/ε(n)
breaks the security of P .

We say that A ε-breaks OP if for an infinite number of pairs of equivalent circuits C0 ≡ C1

of equal lengths n it holds that

Pr
r,s

[As(C1, C2, B) : b← {0, 1}, B = OP
r (Cb)] ≥ 1/2 + ε(n)

where the probability is over the random seeds of the obfuscator O, adversary A and the
random bit b.

A semi-black-box construction of iO from P is defined similarly, with its soundness defined
along the line of Definition 2.2. Namely, we require that for any efficient adversary A who ε-breaks
OP , there is also an efficient adversary breaking the security of P .

2.3 Generic/Idealized Models

Definition 2.7 (Random Oracle Model). In the random oracle model, all parties have access to a
randomized oracle f such that for each input x, the answer f(x) is uniformly (and independently
of the rest of the oracle) distributed over {0, 1}|x|.

Definition 2.8 (Generic Group Model [Sho97]). Let (G,�) be any group of size N and let S be
any set of size at least N . The generic group oracle I[G 7→ S] (or simply I) is as follows. At first
an injective random function σ : G 7→ S is chosen, and two type of queries are answered as follows.

• Labeling Queries. Given g ∈ G oracle returns σ(g).

• Addition Queries. Given y1, y2, if there exists x1, x2 such that σ(x1) = y1 and σ(x2) = y2,
it returns σ(x1 � x2). Otherwise it returns ⊥.

Definition 2.9 (Degree-d Ideal Graded Encoding Model). The oracleMd
R = (enc, zero) is stateful

and is parameterized by a ring R and a degree d and works in two phases. For each l the oracle
enc(·, l) is a random injective function from the ring R to the set of labels S.

1. Initialization phase: In this phase the oracle answers enc(v, l) queries and for each query it
stores (v, l, h) in a list LO.

2. Zero testing phase: Suppose p(·) is a polynomial whose coefficients are explicitly represented
in R and its monomials are represented with labels h1, . . . , hm obtained through enc(·, ·) oracle
in phase 1. Given any such query p(·) the oracle answers as follows:

(a) If any hi is not in LO (i.e., it is not obtained in phase 1) return false.

(b) If the degree of p(·) is more than d then return false.

(c) Let (vi, li, hi) ∈ LO. If p(v1, . . . , vm) = 0 return true; otherwise return false.
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Generic Algorithms. A generic algorithm in the generic group model (resp. graded encoding
model) is an algorithm in which no label s is used in an addition (resp. zero testing) query unless
it is previously obtained through the oracle itself. In this work we only use sparse encodings in
which |S|/|G| = nω(1) (resp. |S|/|R| = nω(1) in the graded encoding model) where n is the security
parameter. Therefore, the execution of poly-time algorithms in this model will be statistically close
to being generic.

Definition 2.10 (Primitives in Idealized Models). We say a primitive P exists relative to the
randomized oracle (or idealized model) I if there is an oracle-aided algorithm P such that:

1. Completeness: For every instantiation I of I, it holds that P I implements P correctly.

2. Security: Let A be an oracle-aided adversary AI where the complexity of A is bounded by
the specified complexity of the attacks for primitive P. For example if P is polynomially
secure (resp., quasi-polynomially secure), then A runs in in polynomial time (resp., quasi-
polynomial time). For every such oracle aided A, with measure one over the sampling of the

idealized oracle I
$←I, it holds that A does not break the security of P I .

We call P a black-box construction of P relative to I if the security property holds also in a
“black-box” way defined as follows:

• Let A be an oracle-aided adversary AI where the query complexity of A is bounded by the
specified complexity of the attacks for primitive P. For example if P is polynomially secure
(resp., quasi-polynomially secure), then A only asks a polynomial (resp., quasi-polynomial)
number of queries.

For every such oracle aided A, with measure one over the sampling of the idealized oracle

I
$←I, it holds that A does not break the security of P I .

In the definition above, we only require the scheme to be secure after the adversary is fixed.
This is along the line of the way the random oracle model is used in cryptography [BR93], and
lets us easily derive certain primitives in idealized models. For example it is easy to see that a
random trapdoor permutation, with measure one, is a secure TDP against any fixed adversary
of polynomial query complexity. Therefore, TDPs exist in the idealized model of random TDP
in a black-box way. In fact stronger results are proved in the literature for other primitives.
Impagliazzo and Rudich [IR89] and Gennaro and Trevisan [GT00] showed that one-way functions
exist relative to the idealized model of random oracle, even if we sample the oracle first and then
go over enumerating possible attacks. Chung et al. [CLMP13] proved a similar result for collision
resistant hash functions.

The following lemma could be verified by inspection.

Lemma 2.11. If there is a semi-black-box construction of Q from P then:

1. If P exists relative to idealized model I, Q exists relative to I as well.

2. If in addition the construction of P from I is black-box, then a black-box construction of Q
relative to I exists as well.

Proof. Let Q be the semi-black-box construction of Q from P. Let P be the implementation of P
relative to I. It is easy to see that QP is an implementation of Q relative to I. Now we prove the
security properties for both parts of Lemma 2.11.
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1. Let A be any successful oracle-aided attacker against the implementation of QP in the ide-

alized model I. Then by non-zero measure over the choice of I
$← I it holds that A breaks

the security of QP I
. For any such I, the security reduction SI(A) also breaks the security of

P I . This means that the attacker S(A) = B breaks the security of P I with with non-zero

measure over the sampled oracle I
$← I. This contradicts the assumption that P is securely

realized in I.

2. A similar proof holds for the black-box constructions in idealized models. The only modifi-
cation is that now we use B = SA (rather than S(A)).

3 Separating iO from Random Oracle Based Primitives

In this section we the following formalization of Theorem 1.1.

Theorem 3.1 (Theorem 1.1 formalized). If NP 6= co-NP then there is no fully black-box con-
struction of iO from any primitive P that exits relative to a random oracle in a black-box way. This
includes exponentially secure one-way functions and collision-resistant hash functions.

To prove Theorem 3.1 we will first prove a useful lemma (see Lemma 3.2) which, roughly
speaking, asserts that for any pair of circuits C1, C2, either an attacker can guess which one is
obfuscated in the random oracle model with a probability close to one, or that there is a way to
obfuscate them into the same output circuit B. The latter could be used as a witness that C1 and
C2 compute the same function, assuming that the obfuscation is an iO.

Lemma 3.2 (Distinguish or Witness). Let O be an oracle aided polynomial-time randomized algo-
rithm that takes circuits as input and for every length-preserving oracle f it holds that

Pr
r

[Of
r (C) 6≡ C] = 0.

In other words, O always outputs circuits with the same input/output functionality of the input
circuit C. Then, at least one of the following holds:

1. There is an infinite sequence of circuits (C1
0 , C

1
1 ), . . . , (Ci

0, C
i
1), . . . such that |Ci

0| = |Ci
1| for

all i, and there exists a (computationally unbounded) poly(n)-query A such that the following
holds for all i:

Pr
r,s,f

[Af
s (B) = b : b

$←{0, 1}, B = Of
r (Ci

b)] ≥ 1− 1/n2

where n is the bit size of the circuits: |Ci
0| = |Ci

1| = n.

2. NP = co-NP.

We will first prove Theorem 3.1 using Lemma 3.2 and then we will prove Lemma 3.2.

Proof of Theorem 3.1. In what follows we will always assume NP 6= co-NP. We will describe the
proof for one-way functions, but it can be verified that the very same proof holds for any primitive
that holds relative to random oracles in a black-box way (see Definition 2.10).

8



Suppose (O,S) is a fully black-box construction of iO from one-way functions. We use a random
oracle f to implement the one-way function required by O. By Lemma 3.2 and the assumption
that NP 6= co-NP we know that there is a computationally unbounded attacker A and an infinite
sequence of equivalent and same-size circuits (C1

0 , C
1
1 ), . . . , (Ci

0, C
i
1), . . . such that A breaks the

security of iO over the challenge circuits (Ci
0, C

i
1) of length |Ci

0| = n = |Ci
1| by guessing which one

of them is being obfuscated by probability ≥ 1 − 1/n2. Let ε = 1/4. By an averaging argument,
with probability at least 1−O(1/n2) over the choice of oracle f , it holds that the probability that A
correctly guesses which one of (Ci

0, C
i
1) is being obfuscated is at least 1/2 + ε. Since the summation∑

i 1/i2 = O(1) converges, by Borel-Cantelli lemma, for measure one of the random oracles f it
holds that A ε-breaks the implemented iO Of .

Now that A is a “legal” adversary, by definition of fully black-box iO, the security reduction
Sf,A shall break the one-way property of f . Algorithms A and S are both poly(n)-query attackers,
and so the combination BSA also asks only a polynomial number of queries to f and succeeds in
breaking the one-wayness of f for nonzero measure of samples for f .

The existence of such B, however, is impossible since a random oracle f , with measure one, is
secure against attackers who ask only a polynomial number of queries [IR89, GT00].5

Now we prove Lemma 3.2.
To prove Lemma 3.2 we will use the following lemma from [MP12].

Lemma 3.3 ([MP12]). Suppose S is an oracle-aided PPT algorithm using a random oracle f that
takes as input b ∈ {0, 1}, randomness r, and common input z ∈ {0, 1}n where n is the security

parameter and outputs Sf
r (z, b). For any δ = δ(n) ≤ 1/100, there is computationally unbounded

oracle-aided algorithm R such that for all z ∈ {0, 1}n at least one of the following holds.

1. Either: when f is the random oracle, R(z) asks poly(n/δ) queries and correctly guesses the
random bit b that S(z) commits to with probability ≥ 1− δ(n). Namely:

Pr
f,r

[Rf (z, c) = b : b
$←{0, 1}, c = Sf

r (z, b)] ≥ 1− δ(n).

2. Or: there is a partial oracle f ′ of size poly(n) and two random seeds r0, r1 and a message c

such that Sf ′
r0 (z, 0) = c = Sf ′

r1 (z, 1). In other words, there is a message c that could be opened
into both b = 0 and b = 1 using random seeds r0, r1 and the queries asked by S during these
two possible executions are all inside the partial function f ′.

Remark 3.4. Mahmoody and Pass [MP12] proved a more general lemma ruling out (even “some-
where binding”) non-interactive commitment schemes in the random oracle. Lemma 3.3 is a special
case of their result which is still sufficient for us. In the setting of [MP12] the security parameter is
given to the parties in the form of 1n, but their proof handles parties who in addition receive some
z ∈ {0, 1} and the parties’ behavior could also depend on the given z. For the sake of completeness,
we have provided a self contained sketch of the proof of Lemma 3.3 in Section A.

5The works of [IR89, GT00] work with polynomial time Turing machines or circuits, however their goal is to fix
the random oracle f before enumerating the attackers. However, if the attacker is fixed before the sampling of f , the
proofs of [IR89, GT00] imply the one-wayness of f with measure one even if the fixed attacker is computationally
unbounded.
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Proof of Lemma 3.2. Consider the set of circuit pairs that are equivalent and of the same size:
C = {(C0, C1) | C0 ≡ C1 ∧ |C0| = |C1|}. We apply Lemma 3.3 for δ = 1/n2 as follows. Use
(C0, C1) = z ∈ C as the common input give to both parties. Let S be a sender strategy that, given
input bit b, obfuscates Cb and sends out the obfuscated circuit B.

By Lemma 3.3 for each (C0, C1) = z ∈ C either of the following holds:

1. Af ((C0, C1), B) can guess the random b in the random oracle model correctly with probability
at least 1− 1/n2.

2. There is a partial oracle f ′ of polynomial size and two random strings r0, r1 such that

Of ′
rb (Cb) = B for both b ∈ {0, 1}.

Note that if C0 6≡ C1 then Case (2) cannot happen as no such (f ′, r0, r1) can exist by perfect
completeness of iO. Therefore, if Case (2) happens, the existence of (f ′, r0, r1) serves as an efficiently
verifiable proof that C0 ≡ C0.

Now let Ca be the subset of C for which Case (1) holds. There are two possibilities

1. Ca is not finite. If this happens then we have shown that Case 1 of the lemma holds.

2. If Ca is finite, then for all (except a finite number) of (C0, C1) ∈ C we can efficiently prove that
C0, C1 are equivalent circuits. This would give a proof system for proving the equivalency of
two given circuits, but this problem is co-NP-complete. Thus, co-NP = NP.

4 Hardness of Semi-Black-Box Constructions of iO

In this section, we prove Theorem 1.2. We will first show that approximate iO is still powerful
enough to base public-key cryptography on privet-key cryptography. We will use this result and
results of [Pas15, MMN15] to derive Theorem 1.2.

Theorem 4.1. The existence of (1/6)-approximate iO and any one-way functions imply the exis-
tence of semantically secure public-key encryption schemes.

We first prove Theorem 1.2 using Theorems 1.3 and 4.1.

Proof of Theorem 1.2 using Theorems 1.3 and 4.1 . Let P be any such primitive with implemen-
tation P relative to the idealized model I, and suppose O is any such semi-black-box construction
of iO from P. By Lemma 2.11, we conclude that O′ = OP is a construction of iO in the idealized
model I. This, together with Theorem 1.3 imply that there is a (1/6)-approximate iO in the plain
model. Finally, by Theorem 4.1 and the existence of (1/6)-approximate iO implies that we can
construct semantically secure public-key encryption from one-way functions.

4.1 Proving Theorem 4.1

In this section we prove that (1/6)-approximate iO and one-way functions imply semantically
secure public-key encryption. Therefore, any provably secure construction of (1/6)-approximate
iO would enable us to take any one-way functions and construct a secure public-key encryption
scheme from it. In the terminology of [Imp95] it means that Cryptomania collapses to Minicrypt
if (1/6)-approximate iO exists.
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Intuition. Sahai and Waters [SW14] showed that iO and OWF imply PKE. Here we show that the
very same construction, when instantiated using approximate iO, leads to “approximately correct”
and “approximately secure” public-key encryption. Then, using a result of [Hol06] we amplify the
soundness and correctness to get a full fledged semantically secure public key encryption scheme.

Definition 4.2 (Approximate correctness and security for PKE). We call a public-key bit-encryption
scheme (Gen,Enc,Dec) for message space {0, 1} ε(n)-correct if

Pr[Decdk(Encek(b)) = b : (ek, dk)← Gen(1n), b← {0, 1}] ≥ 1− ε(n)

where the probability is over the randomness of the key generation, encryption, decryption, and
the bit b. We call (Gen,Enc,Dec) δ(n)-secure if for any PPT adversary A, it holds that

Pr[A(pk,Encpk(b)) = b] ≤ 1/2 + δ(n)

where the probability is over the randomness of generation, encryption, the adversary, and bit b.

Holenstein [Hol06] showed how to amplify any ε-correct and ε-secure PKE into a full fledged
(semantically secure) PKE for sufficiently small ε.

Theorem 4.3 (Implied by Corollary 7.8 in [Hol06]). Suppose (Gen,Enc,Dec) is ε-correct and
δ-secure for constants ε, δ such that (1− 2ε)2 > 2δ. Then there exists a semantically secure PKE.

Theorem 4.4 below asserts that approximate iO and one-way functions imply approximately
correct and approximately secure PKE.

Theorem 4.4 (Approximate iO + OWF⇒ Approximate PKE). If ε-approximate iO and one-way
functions exist, then there is an ε-correct and (ε+negl(n))-secure public-key bit encryption scheme.

We first prove Theorem 4.1 using Theorem 4.4 and then will prove 4.4.

Proof of Theorem 4.1. Because (1 − 2 · 1/6)2 > 2 · 1/6, Theorem 4.1 follows immediately from
Theorem 4.3 and the following Theorem 4.4 using ε = 1/6.

In the rest of this section we prove Theorem 4.4.

Proof of Theorem 4.4. We show that the very same construction of PKE from iO and OWF pre-
sented by Sahai and Waters [SW14], when instantiated with an ε-approximate iO, has the demanded
properties of Theorem 4.4.

Properties of the construction of [SW14]. We first describe the abstract properties of the
construction of [SW14] (for PKE using iO and OWFs) and its security proof that we need to know.

• Construction/correctness:

1. The key generation process generates a circuit C and publishes O(C) = B as public key
where O is an iO scheme.

2. The encryption simply runs B on (r, b) where r is the encryption randomness and b is
the bit to be encrypted.

3. The scheme has completeness 1.
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• Security: [SW14] proves the security of the construction above by showing that no PPT
algorithm can distinguish between the following two random variables X0, X1 defined as:

– Xb ≈ (Os(C), C(r, b)) ≈ (B,C(r, b)) where s is the randomness for O. When clear from
the context we drop the randomness s and simply write O(C) denoting it as a random
variable over the randomness of O.

It can be verified by inspection that the proof of [SW14] for indistinguishability of X0 and X1

does not rely on completeness of the obfuscation O and only relies on its indistinguishability
(when applied to circuits with the same functions). We will rely on this feature of the proof
of [SW14]in our analysis below.

Below we analyze the correctness and security of the construction of [SW14] when O is an
ε-approximate iO.

Correctness. By the definition of ε-approximate iO and ε-correct bit encryption, and the fact
that the [SW14] construction has perfect completeness whenO is iO, it follows that the completeness
of the new scheme (when b is also chosen at random) is at leas 1− ε. Thus the scheme is ε-correct.

Security. First recall that for the basic construction of [SW14] using (perfect) iO, no PPT at-
tacker A can guess b with probability better than 1/2 + negl(n) when b is chosen at random and
A is given a sample from the random variable Xb (for random b). As we mentioned above, the
proof of this statement does not rely on the correctness of the used iO and only relies on its
indistinguishability.

Now we want to bound the distinguishing advantage of PPT adversaries between the following
random variables Y0, Y1:

• Yb ≈ (B,B(r, b)) ≈ (Os(C), Os(C)(r, b)) where s is the randomness of the obfuscator O.

The difference between Yb’s andXb’s stems from the fact that the public-keyB = O(C) no longer
computes the same exact function as the circuit C as the obfuscation only guarantees approximate
correctness. We reduce the analysis of the new scheme to the original analysis of [SW14].

By the analysis of [SW14] we already know that if any PPT A is given a sample from Xb for a
random b it has at most 1/2+negl(n) chance of correctly guessing b. Also note that the distributions
Xb and Yb for a random b are ε-close due to the ε-correctness of the obfuscation. More formally,
the distributions Xb and Yb could be defined over the same sampling space using: random seeds
of key generation, obfuscation, encryption, and bit b. This way with probability ≥ 1 − ε (and by
the ε-approximate correctness of the obfuscation) the actual sampled values of Xb and Yb will be
equal, and this implies that they are ε-close. As a result, when we switch the distribution of the
challenge given to the adversary and give a sample of Yb (for random b) instead of a sample from
Xb, the adversary’s chance of guessing b correctly can increase at most by ε and reach at most
1/2 + negl +ε. Therefore, the new scheme is (ε+ negl)-secure according to Definition 4.2.
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A Omitted Proofs

For sake of completeness we sketch the proof of Lemma 3.3.

Proof Sketch of Lemma 3.3. Let ε be a parameter to be chosen later. Let R be an attacker who

maintains a list of “learned” oracle queries L and, given c sent by the sender for b
$← {0, 1} and

common input z, it adaptively asks the lexicographically first oracle query x 6∈ L that has at least ε
chance of being asked by sender S conditioned on the knowledge of (L, z). After asking such x from
f , A adds (x, f(x)) to L. As long as such query x exists, R asks them. It was shown in [BMG07]
that this learning algorithm asks, on average, at most m/ε number of queries where m = poly(|z|)
is the number of queries asked by the sender. So as long as ε = poly(n/δ) this learning algorithm
is efficient.

Now, let L be the final learned set by R. If conditioned on L it holds that both of b = 0 and
b = 1 have at least ρ probability of being used by S, then by conditioning on the distribution of the
sender’s view on b = 0 or b = 1 all the unlearned queries remain at most ε/ρ = σ-heavy. Now it is
easy to see that if we sample a random view for S conditioned on L, b = 0 and L, b = 1 and call
them V0 and V1, the probability that queries of V0 and V1 collide out of L is at most m ·σ ≤ m ·ε/ρ.
For ρ > m · ε this probability is less than one, which means that if ρ > m · ε, then there exists a
consistent pair of views for S that he can use to output c for both cases of b = 0 and b = 1. This
means that Case 2 happens.

Now let us assume that Case 2 does not happen. It means that for all executions of the algorithm
A, when A is done with learning the ε heavy queries, the probability of either of b = 1 or b = 0
conditioned on L is at most ε. This means that A can guess b correctly with probability 1− ε.

If we can choose ρ = O(m/ε) and ε = δ in the argument above (assuming that Case 2 does not
happen) we get an attacker A that asks O(m · ε/ε) = O(m) queries. We can alternatively choose
smaller ρ and cut A’s execution after it asks O(m/δ) number of queries and use ε = δ/10. By
an application of the Markov inequality A will ask more than 100(m/δ) number of queries with
probability at most ε, and so A will ask at most O(m/δ) number of queries and will guess b correctly
with probability at least 2ε < δ.
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