
Algebraic partitioning:
Fully compact and (almost) tightly secure cryptography

Dennis Hofheinz∗

Karlsruhe Institute of Technology

Abstract. We describe a new technique for conducting “partitioning arguments”.
Partitioning arguments are a popular way to prove the security of a cryptographic
scheme. For instance, to prove the security of a signature scheme, a partitioning
argument could divide the set of messages into “signable” messages for which
a signature can be simulated during the proof, and “unsignable” ones for which
any signature would allow to solve a computational problem. During the security
proof, we would then hope that an adversary only requests signatures for signable
messages, and later forges a signature for an unsignable one.
In this work, we develop a new class of partitioning arguments from simple as-
sumptions. Unlike previous partitioning strategies, ours is based upon an alge-
braic property of the partitioned elements (e.g., the signed messages), and not on
their bit structure. This allows to perform the partitioning efficiently in a “hidden”
way, such that already a single “slot” for a partitioning operation in the scheme
can be used to implement many different partitionings sequentially, one after the
other. As a consequence, we can construct complex partitionings out of simple
basic (but algebraic) partitionings in a very space-efficient way.
As a demonstration of our technique, we provide the first signature and public-key
encryption schemes that achieve the following properties simultaneously: they are
(almost) tightly secure under a simple assumption, and they are fully compact (in
the sense that parameters, keys, and signatures, resp. ciphertexts only comprise a
constant number of group elements).

Keywords. Partitioning arguments, tight security proofs, digital signatures, pub-
lic-key encryption.

1 Introduction

Partitioning arguments. Many security reductions rely on a partitioning argument.
Informally, a partitioning argument divides the parts of a large system into those parts
that are under the control of the simulation, and those parts into which a computa-
tional challenge can be embedded. For instance, a partitioning argument for a signature
scheme could divide the set of message into “signable messages” (for which a signature
can be generated by the security reduction), and “unsignable messages” (for which any
signature would solve an underlying problem). During the security reduction, we hope
that an adversary only asks for the signatures of signable messages, but forges a signa-
ture for an unsignable one. Partitioning arguments are a popular means for proving the

∗Supported by DFG grants HO 4534/2-2, HO 4534/4-1. Dennis.Hofheinz@kit.edu

Dennis.Hofheinz@kit.edu

security of signature schemes (e.g., [35, 17, 38, 29]), identity-based encyption schemes
(e.g., [10, 9, 38, 14]), or tightly secure cryptosystems (e.g., [15, 6, 32]).

The complexity of bit-based partitioning. All of the above works (except for [17,
10], which use a programmable random oracle to implement a partitioning) partition
messages or identities according to their bit representation. For instance, in the signature
scheme from [29], messages are signable precisely if they do not start with a particular
bit prefix. This non-algebraic approach requires a certain preparation in the scheme
itself: already the scheme must establish certain distinctions of messages based on their
bit representation. For instance, the signature scheme of [38] uses a hash function of
the form H(M) = h0

∏
j hj,Mj

, where Mj are the bits of the signed message M , and
h0 and the hj,b are public group elements. This leads to comparatively large public
parameters or keys, in particular because all potential distinctions (based on the values
of the Mj) are already present in the scheme.

Our contribution. In this work, we develop an entirely different partitioning approach:
instead of partitioning based on the bit representation, we partition according to a sim-
ple algebraic predicate. Namely, we view a message M as above as a Zp-element, and
consider various Legendre symbols Lj =

(fj(M)
p

)
for different affine functions fj .

Taken together, sufficiently many Lj uniquely determine M , but the computation of
each Lj can be encoded as a series of Zp-operations.1 Intuitively, this algebraic prop-
erty allows to “internalize” and hide the computations of the Lj , e.g., by hiding the
fj inside a homomorphic commitment. As a consequence, only one “universal” parti-
tioning (according to a single Lj) needs to be performed in the scheme itself; in the
analysis, several simple partitionings can then be implemented sequentially, by varying
the fj .

Comparison with previous partitioning techniques. Compared to previous, bit-based
partitioning approaches, our new strategy has the advantage that it simultaneously leads
to compact schemes and to a tight security reduction. Previous partitioning strategies
were either based on more complex partitionings (such as [35, 9, 38, 29]) that lead to a
non-tight security reduction, or on a sequence of simple bit-based partitionings (such as
[15, 6, 32]) that lead to large public parameters or keys. In contrast, we support many
simple algebraic partitionings (and thus a tight security reduction), but we occupy only
one “partitioning slot” in the public parameters. This leads to tightly secure and very
compact applications, as we will detail next.

Applications. Specifically, we demonstrate the usefulness of our partitioning tech-
nique by describing the first (almost) tightly secure signature and PKE schemes that
are fully compact, in the sense that parameters, keys, and signatures (resp. ciphertexts)
only contain a constant number of group elements. Our security reduction loses only a
factor of O(k), where k is the security parameter. In particular, our security reduction
does not degrade in the number of users or signatures, resp. ciphertexts. The secu-
rity of our schemes is based upon the Decisional Diffie-Hellman (DDH) assumption in
both preimage groups of a pairing. (This assumption is also called “Symmetric Exter-

1Technically, we will not even need to explicitly compute Lj , but only prove that Lj = 1.
This is possible using a quadratic equation over Zp.

2

nal Diffie-Hellman” or SXDH.) Tables 1 and 2 give a more detailed comparison with
existing schemes.

In the following, we give more details on our techniques and results. To do so, we
start with a little background concerning our applications.

Tight security reductions. To argue for the security of a given cryptographic scheme
S, we usually employ a security reduction. That is, we try to argue that every hypo-
thetical adversary AS on S can be converted into an adversary AP on an allegedly
hard computational problem P . In that sense, the only way to break S is to solve P .
Of course, we are mostly interested in reductions to well-investigated problems P . Fur-
thermore, there are reasons to consider the tightness of the reduction: a tight reduction
guarantees thatAP ’s success εP in solving P (in a reasonable metric) is about the same
as AS’s success εS in attacking S.

To explain the impact of a (non-)tight reduction in more detail, consider a public-
key encryption (PKE) scheme S that is deployed in a many-user environment. In this
setting, an adversary AS on S may observe, say, nC ciphertexts generated for each of
the, say, nU users. Most known security reductions in this setting are non-tight, in the
sense that εP ≤ εS

nU ·nC
. As a consequence, keylength recommendations should also

take nU and nC into account; no “universal” keylength recommendation can be given
for such a scheme. This is particularly problematic in settings that grow significantly
beyond initial expectations.

Tightly secure encryption and signature schemes. The construction of tightly secure
cryptographic schemes appears to be a nontrivial task. For instance, although already
explicitly considered in 2000 [3], tightly secure PKE schemes have only been con-
structed very recently [28, 2, 15, 6, 32].2,3 Moreover, the schemes from [28, 2] have
rather large ciphertexts, and the schemes induced by [15, 6] and from [32] require large
parameters (but offer small keys and ciphertexts).

The situation for tightly secure signature schemes is somewhat brighter, but results
are still limited. There are efficient signature schemes that are tightly secure under “q-
type” [8, 16, 36] or interactive [21] assumptions, or in the random oracle model [24,
5, 30]. There are also more recent and somewhat less efficient schemes tightly secure
under simple4 assumptions [12, 28, 15, 6, 32] (see also [1, 2]). Some of these latter
schemes can even be converted into tightly secure PKE schemes; however, all of the
schemes [12, 28, 2, 15, 6, 32] suffer from asymptotically large parameters, keys, or
signatures (resp. ciphertexts).

2Actually, [15, 6] construct tightly secure identity-based encryption (IBE) schemes. However,
those IBE schemes can be viewed as tightly secure signature schemes (using Naor’s trick [11]),
and then converted into tightly secure PKE schemes using the transformation from [28]. In fact,
the PKE scheme of [32] can be viewed as a (modified and highly optimized) conversion of the
IBE scheme from [15].

3We note that earlier PKE schemes achieve at least a certain form of tight security under
“q-type” assumptions [22, 23, 27], or in the random oracle model [20, 13, 7].

4With a “simple” assumption, we mean one in which the adversary gets a challenge whose
size only depends on the security parameter, and is then supposed to output a unique solution
without further interaction. Examples of simple assumptions are DLOG, DDH, d-LIN, or RSA,
but not, say, Strong Diffie-Hellman [8] or q-ABDHE [22].

3

Scheme parameters verification key signature reduction loss assumption
BMS03 [12] 0 k + 3 k + 1 O(k) CDH

HJ12 [28] 2 28 8k + 22 O(1) DLIN
CW13 [15] 2d2(2n+ 1) d 4d O(k) d-LIN
BKP14 [6] d d2(2n+ 1) 2d+ 1 O(k) Dd-MDDH

LJYP14 [32] 0 O(d2n) 2d+ 1 O(k) d-LIN
This work 14 6 25 O(k) DDH

Table 1: Comparison of different (at least almost) tightly EUF-CMA secure signature schemes
from simple4 assumptions in pairing-friendly groups. The parameters, verification key, and
signature columns denote space complexity, measured in group elements. The reduction loss
column denotes the (multiplicative) loss of the security reduction to the respective assumption.
For the schemes from [15, 6], we assume the signature scheme induced by the presented IBE
scheme. Furthermore, n = Θ(k) denotes the bitlength of the signed message (if the signed
message is a bitstring and not a group element or an exponent). We note that [32] mention that
their scheme can be generalized to the d-LIN assumption (including 1-LIN=DDH). However,
since they only give explicit complexities for the arising signatures (identical to the ones from
[6]), we restrict to their DLIN-based scheme. Finally, we remark that all of these schemes (except
for [12]) imply tightly secure PKE schemes (cf. Table 2).

The scheme of Chen and Wee. Our technical ideas are best presented with our signa-
ture scheme. At a very high level, we follow the strategy of Chen and Wee [15] (see also
[6]), where we interpret their IBE scheme as a signature scheme using Naor’s trick [11].
In their scheme, signatures are of the form

σ =
(
h0, sigk ·

n∏
i=1

hi,Mi

)
, (1)

where sigk is the secret key, M = (Mi)
n
i=1 ∈ {0, 1}n is the bit representation of the

signed message, and h0, (hi,0, hi,1)ni=1 are group elements chosen from a joint public
distribution.5

During their proof of existential unforgeability (EUF-CMA security), Chen and
Wee gradually modify signatures generated by the security experiment for an adver-
sary A. This is done via a small hybrid argument over the bit indices of messages,
and thus yields a security proof that loses a factor of O(n). Concretely, in the i-th hy-
brid, generated signatures are of the form σ = (h0, sigkM1,...,Mi

·
∏n
j=1 hj,Mj

), where
sigkM1,...,Mi

= R(M1, . . . ,Mi) for a truly random function R. Similarly, a forged
message-signature pair (M∗, σ∗) from A is only considered valid if it is consistent
with sigkM∗1 ,...,M∗i (instead of sigk). In other words, in the i-th hybrid, the secret key
used in signatures depends on the first i bits of the signed message.

Thus, the difference between the (i − 1)-th and the i-th hybrid is an additional
dependency of used secret keys on the i-th message bit Mi. To progress from hybrid
i−1 to hybrid i, Chen and Wee first partition the message space in two halves (according

5We note that although their scheme can be viewed as a generalization of Waters signa-
tures [38], their analysis is entirely different. Also, we omit here certain subtleties regarding the
used distributions of group elements.

4

Scheme parameters public key ciphertext reduction loss assumption
HJ12 [28] O(1) O(1) O(k) O(1) DLIN

AKDNO13 [2] O(1) O(1) O(k) O(1) DLIN
CW13 [15] O(d2k) O(d) O(d) O(k) d-LIN
BKP14 [6] O(d) O(d2k) O(d) O(k) Dd-MDDH

LJYP14 [32] O(1) O(d2k) O(d) O(k) d-LIN
LJYP14 [32] 3 24k + 30 69 O(k) DLIN
This work 15 2 60 O(k) DDH

Table 2: Comparison of different (at least almost) tightly IND-CCA secure PKE schemes from
simple4 assumptions. As in Table 1, the parameters, public key, and ciphertext columns denote
space complexity, measured in group elements, and the reduction loss column denotes the (mul-
tiplicative) loss of the security reduction to the respective assumption. For the schemes from [15,
6], we assume the PKE scheme induced by the respective signature scheme when going through
the construction of [28]. We note that [32] only describe a symmetric-pairing version of their
scheme, so their DDH-based scheme is not explicit. However, we expect that their DDH-based
scheme has slightly more compact ciphertexts than ours.

to Mi). Then, using an elaborate argument, they consistently modify the secret keys
used for messages from one half, and thus essentially decouple those keys from the
keys used for messages from the other half. This creates an additional dependency on
Mi. After n = |M | such steps, each signature uses a different secret key (up to multiple
signatures of the same message). In particular, A gets no information about the secret
key sigkM∗1 ,...,M∗n used to verify its own forgery, and existential unforgeability follows.

We would like to highlight the partitioning character of their analysis: in their proof,
Chen and Wee introduce more and more dependencies of signatures on the correspond-
ing messages, and each such dependency is based upon a different partitioning of the
message space.6 Now observe that already regular signatures (as in (1)) feature distinc-
tions based on all bits of M . These distinctions provide the technical tool to introduce
dependencies in the security proof. However, as a consequence, rather complex joint
distributions need to be sampled during signature generation, which results in public
parameters of O(n) group elements.
Algebraic partitioning. In a nutshell, our main technical tool is a new way to partition
the message space of a signature scheme. We call this tool “algebraic partitioning.”
Concretely, a signature for a message M ∈ Zp in our scheme consists essentially of an
encryption of the secret key X , along with a consistency proof:

σ = (C = Enc(pk , X), π) . (2)

The corresponding encryption key pk is part of the verification key vk , and the consis-
tency proof π proves the following statement:

“Either C encrypts the secret key X , or f(M) ∈ Zp is a quadratic residue
(or both).”
6We note that a similar technique has also been used in the context of pseudorandom func-

tions [25, 33].

5

Here, p is the order of the underlying group, and f : Zp → Zp is an affine function
fixed (but hidden) in the verification key. Implicitly, this provides a single partitioning
of messages into those for which f(M) is a quadratic residue, and those for which
f(M) is not. However, since f is hidden, many partitionings can be induced (one after
the other) by varying f during a proof.

In fact, during the security proof, this partitioning will fulfill the same role as the
bit-based partitioning in the analysis of Chen and Wee. In particular, it will help to intro-
duce additional dependencies of the signature on the message. More specifically, in the
i-th hybrid of the security proof, C will not encrypt X , but a value XM that depends
on the i Legendre symbols

(fj(M)
p

)
for randomly chosen (but fixed) affine functions

f1, . . . , fi. Each new such dependency is introduced by first refreshing the affine func-
tion f hidden in vk , and then modifying all values encrypted in signatures whenever
possible (i.e., whenever f(M) is a quadratic residue).7 Observe that the single explicit
partitioning in regular signatures is used several times (for different fj) to introduce
many dependencies of signatures on messages in the proof. The remaining strategy can
then be implemented as in [15].

Our different strategy to partition the message space results in a very compact
scheme. Namely, since only one explicit partitioning step is performed in the scheme,
parameters, keys, and signatures comprise only a constant number of group elements.
Specifically, parameters, keys, and signatures contain 14, 6, and 25 group elements,
respectively. Besides, our scheme is compatible with Groth-Sahai proofs [26]. Hence,
when used in the construction of [28], we immediately get the first compact (in the
above sense) PKE scheme that is tightly IND-CCA secure under a simple assumption.8

Different perspective: our scheme as a MAC. So far our high-level discussion can
be equally used to justify a similar message authentication code (MAC), in which veri-
fication is non-public. Such a MAC can then be converted into a signature scheme, e.g.,
using the technique of Bellare and Goldwasser [4].9 One could hope that this yields a
more modular construction, possibly with a MAC as a simpler basic building block. (In
particular, this approach was suggested by a reviewer.)

In this work, we still present our idea directly in terms of a signature scheme. One
reason is that a MAC following the strategy described above would actually not be
significantly less complex than a full signature scheme. In particular, already a MAC
would require Groth-Sahai proofs. Moreover, a modular approach in the spirit of [4]

7This neglects a number of details. For instance, in the somewhat simplified scheme above,
π always ties the ciphertexts in signatures for quadratic non-residues f(M) to a single value
X . In our actual proof, we will thus simulate a part of π, such that the encrypted values can be
decoupled from the original secret key X .

8Actually, plugging our scheme directly into the construction of [28] yields an asymptotically
compact, but not very efficient scheme. Thus, we provide a more direct and efficient explicit PKE
construction with parameters, public keys, and ciphertexts comprised of 15, 2, and 60 group
elements, respectively.

9In a signature scheme derived using the conversion of Bellare and Goldwasser, the verifi-
cation key contains an encryption of the MAC secret key. A signature for a message M then
consists of a MAC tag τ forM , along with a non-interactive zero-knowledge proof that τ is valid
relative to the encrypted MAC key.

6

would require “algebraically compatible” building blocks (to allow for an efficient and
tightly secure overall scheme), and would seem to lead to a more complex presentation.
Open problems. Besides of course obtaining more efficient (and compact) schemes,
it would be interesting to apply similar ideas in the identity-based setting. Specifically,
currently there is no fully compact identity-based encryption (IBE) scheme whose secu-
rity can be tightly based on a standard assumption.10 However, it is not obvious how to
use algebraic partitioning in the identity-based setting. Specifically, it is not clear how
to “derive functionality” from valid signature proofs, in the following sense.

Namely, first note that IBE schemes can be interpreted as signature schemes, in a
sense noted by Naor (cf. [11]): IBE user secret keys for an identity M correspond to
signatures for messageM , and verification simply checks whether the alleged signature
works as a decryption key for identity M . It is natural to use the same interpretation to
try to “upgrade” a signature scheme to an IBE scheme. For this strategy, however, one
must find a way to make a signature σ act as a decryption trapdoor, and thus to “derive
functionality from σ” (as opposed to just check σ for validity). In common discrete-
log-based IBE schemes, this functionality property is achieved by the fact that a pairing
operation is used to pair IBE user secret keys with ciphertext elements. The result of
this pairing operation is then a common secret that is shared between encryptor and
decryptor.

Our strategy, however, crucially uses quadratic Zp-equations in signatures (to im-
plement the algebraic partitioning of messages). In particular, our signature scheme
uses a pairing operation already to implement these quadratic equations (even though
signatures in our scheme consist solely of group elements in the source group of the
pairing). As a consequence, the pairing operation cannot be used anymore to derive a
common secret shared with the encryptor. Hence, at least a straightforward way to turn
our signature scheme into an IBE scheme fails.11

Roadmap. After recalling some basic definitions, we present our signature scheme in
Section 3. In Section 4, we give a direct construction of a PKE scheme derived from our
signature scheme. In Section 5, we give more details on the exact Groth-Sahai equations
arising from the consistency proofs of signatures and ciphertexts. In Appendix A, we
provide additional illustrations for the proof of our signature scheme.
Acknowledgements. The author would like to thank Eike Kiltz, Julia Hesse, Willi
Geiselmann, and the anonymous reviewers for helpful feedback.

2 Preliminaries

Notation. Throughout the paper, k ∈ N denotes the security parameter. For n ∈ N, let
[n] := {1, . . . , n}. For a finite set S, we denote with s ← S the process of sampling s

10The schemes of [22, 23] are tightly secure and fully compact, but rely on a nonstandard (q-
type) assumption. On the other hand, IBE schemes obtained through the “dual systems” technique
(e.g., [37, 31]) are compact and secure under standard assumptions, but not known to be tightly
secure.

11We realize that this explanation is somewhat technical and may not seem very compelling.
We wish we had a better one.

7

uniformly from S. For a probabilistic algorithm A, we denote with y ← A(x;R) the
process of running A on input x and with randomness R, and assigning y the result. We
write y ← A(x) for y ← A(x;R) with uniformly chosen R, and we write A(x) = y
for the event that A(x;R) (for uniform R) outputs y. If A’s running time is polynomial
in k, then A is called probabilistic polynomial-time (PPT). A function f : N → R is
negligible if it vanishes faster than the inverse of any polynomial (i.e., if ∀c∃k0∀k ≥
k0 : |f(x)| ≤ 1/kc).
Collision-resistant hashing. A hash function generator is a PPT algorithm H that, on
input 1k, outputs (the description of) an efficiently computable function H : {0, 1}∗ →
{0, 1}k.

Definition 1 (Collision-resistance). We say that a hash function generator H outputs
collision-resistant functions H (or, when the reference to H is clear, that such an H is
collision-resistant), if

Advcr
H,A(k) = Pr

[
x 6= x′ ∧ H(x) = H(x′)

∣∣ H← H(1k), (x, x′)← A(1k,H)
]

is negligible for every PPT adversary A.

Signature schemes. A signature scheme SIG consists of four PPT algorithms SPars,
SGen,Sig,Ver. Parameter generation SPars(1k) outputs public parameters spp that
are shared among all users. Key generation SGen(spp) takes public parameters spp,
and outputs a verification key vk and a signing key sigk . The signature algorithm
Sig(spp, sigk ,M) takes public parameters spp, a signing key sigk , and a message M ,
and outputs a signature σ. Verification Ver(spp, vk ,M, σ) takes public parameters spp,
a verification key vk , a message M , and a potential signature σ, and outputs a verdict
b ∈ {0, 1}. For correctness, we require that 1 ← Ver(spp, vk ,M, σ) = 1 always and
for all M , all (vk , sigk) ← SGen(1k), and all σ ← Sig(spp, sigk ,M). For the sake
of readability, we will omit the public parameters spp from invocations of Sig and Ver
when the reference is clear.

Definition 2 (Multi-user (one-time) existential unforgeability). Let SIG be a signa-
ture scheme as above, and consider the following experiment for an adversary A:
1. A specifies (in unary) the number nU ∈ N of desired scheme instances.
2. The experiment then samples parameters spp ← SPars(1k) as well as nU keypairs

(vk (`), sigk (`))← SGen(spp).
3. A is invoked on input (1k, spp, (vk (`))nU

`=1), and gets access to signing oracles
Sig(sigk (`), ·) for all ` ∈ [nU]. Finally, A outputs an index `∗ ∈ [nU] and a po-
tential forgery (M∗, σ∗).

4. A wins iff Ver(vk (`∗),M∗, σ∗) = 1 and M∗ was not queried to Sig(sigk (`∗), ·).
Let Adveuf-mcma

SIG,A (k) denote the probability that A wins in the above experiment. We
say that SIG is existentially unforgeable under chosen-message attacks in the multi-
user setting (EUF-mCMA secure) iff Adveuf-mcma

SIG,A (k) is negligible for every PPT A. Let
Advot-euf-mcma

SIG,A (k) be the probability that A wins in the slightly modified experiment
in which only one Sig-query to each scheme instance ` is allowed. We say that SIG
is existentially unforgeable under one-time chosen-message attacks in the multi-user
setting (OT-EUF-mCMA secure) iff Advot-euf-mcma

SIG,A (k) is negligible for every PPT A.

8

Public-key encryption schemes. A public-key encryption (PKE) scheme PKE con-
sists of four PPT algorithms (EPars,EGen,Enc,Dec). The parameter generation al-
gorithm EPars(1k) outputs public parameters epp. Key generation EGen(epp) out-
puts a public key pk and a secret key sk . Encryption Enc(epp, pk ,M) takes param-
eters epp, a public key pk , and a message M , and outputs a ciphertext C. Decryp-
tion Dec(epp, sk , C) takes public parameters epp, a secret key sk , and a ciphertext
C, and outputs a message M . For correctness, we require Dec(epp, sk , C) = M
always and for all M , all epp ← EPars(1k), all (pk , sk) ← EGen(epp), and all
C ← Enc(epp, pk ,M). As with signatures, we usually omit the public parameters epp
from invocations of Enc and Dec.

Definition 3 (Multi-user, multi-challenge indistinguishability of ciphertexts). For a
public-key encryption scheme PKE and an adversaryA, consider the following security
experiment Expind-mcca

PKE,A(k):
1. A specifies (in unary) the number nU ∈ N of desired scheme instances.
2. The experiment samples parameters epp ← EPars(1k), and nU keypairs through

(pk (`), sk (`))← EGen(epp), and uniformly chooses a bit b← {0, 1}.
3. A is invoked on input (1k, epp, (pk (`))nU

`=1), and gets access to challenge oracles
O(`) and decryption oracles Dec(sk (`), ·) for all ` ∈ [nU]. Here, challenge oracle
O(`), on input two messages M0,M1, outputs an encryption C ← Enc(pk (`),Mb)
of Mb.

4. Finally, A outputs a bit b′, and the experiment outputs 1 iff b = b′.
A PPT adversaryA is valid if every pair (M0,M1) of messages submitted to anO(`) by
A satisfies |M0| = |M1|, and if A never submits any challenge ciphertext (previously
received from an O(`)) to the corresponding decryption oracle Dec(sk (`), ·). Let

Advind-mcca
PKE,A(k) = Pr

[
Expind-mcca

PKE,A(k) = 1
]
− 1/2.

We say that PKE has indistinguishable ciphertexts under chosen-ciphertext attacks in
the multi-user, multi-challenge setting (short: is IND-mCCA secure) iff Advind-mcca

PKE,A(k)

is negligible for all valid A. Let Advind-mcpa
PKE,A be defined similarly, except that A has

no access to any Dec oracles. PKE has indistinguishable ciphertexts under chosen-
plaintext attacks in the multi-user, multi-challenge setting (short: is IND-mCPA secure)
iff Advind-mcpa

PKE,A (k) is negligible for all valid A.

Quadratic residues and Legendre symbols. Let p be a prime. Then, QRp ⊆ Z∗p is
the set of quadratic residues modulo p, i.e., the set of all x ∈ Z∗p for which an r ∈ Z∗p
with r2 = x mod p exists. Given p and an x ∈ QRp, such an r can be computed
efficiently. For x ∈ Zp, we let

(
x
p

)
= x

p−1
2 mod p denote the Legendre of x modulo

p. We have
(
x
p

)
∈ {−1, 0, 1}, and in particular

(
x
p

)
= 1 ⇔ x ∈ QRp, as well as(

x
p

)
= 0 ⇔ x = 0, and

(
x
p

)
= −1 ⇔ x ∈ Z∗p \QRp.

Group and pairing generators. A group generator G is a PPT algorithm that, on input
1k, outputs the description of a group G, along with its (prime) order p, and a generator
g of G. A pairing generator P is a PPT algorithm that, on input 1k, outputs descriptions
of:

9

– three groups G, Ĝ,GT of the same prime order p, along with p, and generators g, ĝ
of G, Ĝ,

– a bilinear map e : G × Ĝ → GT that is non-degenerate in the sense of e(g, ĝ) 6=
1 ∈ GT .

Occasionally, it will also be useful to consider a pairing generator P as a group gener-
ator (that only outputs (G, p, g) or (Ĝ, p, ĝ)).

Assumption 1 (Decisional Diffie-Hellman). For a group generator G and an adver-
sary A, let Advddh

G,A(k) be the following difference:

Pr
[
A(1k,G, p, g, gx, gy, gxy) = 1

]
− Pr

[
A(1k,G, p, g, gx, gy, gz) = 1

]
.

Here, the probability is over (G, p, g)← G(1k) and uniformly chosen x, y, z ∈ Zp. We
say that the Decisional Diffie-Hellman (DDH) assumption holds with respect to G iff
Advddh

G,A is negligible for every PPT A. When the reference to G is clear, we also say
that the DDH assumption holds in G (and write Advddh

G,A). On occasion, we might also
say that the DDH assumption holds in groups G or Ĝ sampled by a pairing generator,
with the obvious meaning.

ElGamal encryption. The ElGamal encryption scheme PKEeg is defined as follows,
where we assume a suitable group generator G.
– EParseg(1

k) runs (G, p, g)← G(1k) and outputs epp = (G, p, g).
– EGeneg(epp) picks a uniform sk ← Zp, sets pk = gsk , and outputs (pk , sk).
– Enc(pk ,M), for M ∈ G, picks an R← Zp, and outputs C = (gR, pkR ·M).
– Dec(sk , C), for C = (C1, C2) ∈ G2, outputs M = C2/C

sk
1 .

The ElGamal scheme is tightly IND-mCPA secure under the DDH assumption in G.
Concretely, for every valid IND-mCPA adversary A, there is a DDH adversary B (of
roughly the same complexity as the IND-mCPA experiment withA) with Advddh

G,B(k) =

Advind-mcpa
PKEeg,A(k).

Groth-Sahai proofs. In a setting with a pairing generator, Groth-Sahai proofs [26]
provide a very versatile and efficient way to prove the satisfiability of very general
classes of equations over G and Ĝ. We will not need them in full generality, and the
next definition only captures a number of abstract properties of Groth-Sahai proofs we
will use. In particular, we will not formalize the exact classes of languages amenable
to Groth-Sahai proofs. (For the exact languages used in our application, however, we
give more details in Section 5.1.) Like [19, 18], we formalize Groth-Sahai proofs as
commit-and-prove systems:

Definition 4 (GS proofs [26]). The Groth-Sahai proof system for a given pairing gen-
erator P consists of the following PPT algorithms, where gpp denotes group parame-
ters sampled by P .
Common reference strings. HGen(gpp) and BGen(gpp) sample hiding, resp. bind-

ing common reference strings (CRSs) CRS.
Commitments. For a (hiding or binding) CRS CRS and a G-, Ĝ-, or Zp-element v,

the commitment algorithm Com(gpp,CRS, v;R) outputs a commitment C, where
R denotes the used random coins.

10

Proofs. Let CRS be a CRS, and let X be a system of equations. Each equation may
be over G, Ĝ, or Zp, and involve variables and constants. Let (vi)i be a variable
assignment that satisfies X , and let (Ri)i be a vector of random coins for Com.
Then Prove(gpp,CRS,X , (vi, Ri)i) outputs a proof π.

Verification. For a CRS CRS, a system X of equations, a commitment vector (Ci)i
to an assignment of the variables in X , and a proof π, the verification algorithm
Verify(gpp,CRS,X , (Ci)i, π) outputs a verdict b ∈ {0, 1}.

Simulation. For a hiding CRS generated as CRS ← HGen(gpp;RCRS), a system
X of equations, and a vector (Ri)i of commitment random coins, we have that
Sim(gpp, RCRS,X , (Ri)i) outputs a simulated proof π.

As with signatures and encryption, we usually omit the group parameters gpp on
invocations of Com,Prove,Verify,Sim when the reference is clear.

Theorem 1 (Properties of GS proofs [26]). The algorithms from Definition 4 satisfy
the following for all choices group parameters gpp ← P(1k) (unless noted otherwise):
Homomorphic commitments. For any (hiding or binding) CRS CRS, any two given

commitments Com(CRS, v;R) and Com(CRS, v′;R′) to G-elements v, v′ allow
to efficiently compute a commitment Com(CRS, v · v′;R · R′) to v · v′. (Note that
the corresponding random coins R · R′ can be efficiently computed from R and
R′.) The same holds for two commitments to Ĝ-elements, and two commitments to
Zp-elements (where the homomorphic operation on Zp-elements is addition).

Dual-mode commitments. Consider a commitmentC ← Com(CRS, v;R). If CRS is
binding, then C uniquely determines v, and if CRS is hiding, then the distribution
of C does not depend on v.

CRS indistinguishability. For every PPT adversary A, there are PPT adversaries A1

and A2 with∣∣Pr [A(1k,HGen(gpp)) = 1
]
− Pr

[
A(1k,BGen(gpp)) = 1

]∣∣
≤
∣∣∣Advddh

G,A1
(k)
∣∣∣+ ∣∣∣Advddh

Ĝ,A2
(k)
∣∣∣ ,

where the probability is over gpp ← P(1k), and the random coins of HGen, BGen,
and A.

Perfect completeness. For every (hiding or binding) CRS CRS, every system X of
equations, every satisfying assignment (vi)i ofX , and every possible vector (Ci)i of
commitments generated through Ci ← Com(CRS, vi;Ri), we have Verify(CRS,
X , (Ci)i,Prove(CRS,X , (vi, Ri)i)) = 1 with probability 1.

Perfect soundness. For every binding CRS CRS, every system X of equations that is
not satisfiable, and every (Ci)i and π, Verify(CRS,X , (Ci)i, π) = 0 always.

Perfect simulation. For every hiding CRS CRS← HGen(gpp;RCRS), and every sys-
tem X of equations that is satisfied by a variable assignment (vi)i, the following
two distributions are identical:(
(Ci)i, Prove(CRS,X , (vi, Ri)i)

)
for Ci ← Com(CRS, vi;Ri) and fresh Ri,(

(Ci)i, Sim(RCRS,X , (Ri)i)
)

for Ci ← Com(CRS, 1;Ri) and fresh Ri.

(The probability space consists of the Ri and the coins of Prove and Sim.)

11

Since simulation is perfect (in the sense above), it also holds for reused commitments
(i.e., when multiple adaptively chosen statements X that involve the same variables and
commitments are proven, see also [18]). Besides, perfect simulation directly implies
perfect witness-indistinguishability (under a hiding CRS): for any two vectors (vi)i and
(v′i)i of satisfying assignments of a given system X of equations, the corresponding
commitments and proofs ((Ci)i, π) and ((C ′i)i, π

′) are identically distributed. Again,
this holds even if the same commitments are used in several proofs for adaptively gen-
erated statements X .

3 The signature scheme

3.1 Scheme description

Setting and ingredients. We assume the following ingredients:
– A pairing generator P that outputs groups G = 〈g〉 and Ĝ = 〈ĝ〉 of prime order
p > 2k and an asymmetric pairing e : G×Ĝ→ GT . We make the DDH assumption
in both G and Ĝ.

– The ElGamal encryption scheme (given by algorithms EGeneg,Enceg,Deceg) over
G. (That is, we will useP in place of EParseg to generate the group G for ElGamal.)

– A Groth-Sahai proof system for P (see Definition 4), given by algorithms HGen,
BGen,Com,Prove,Verify,Sim.

Public parameters. SPars(1k) samples group parameters

gpp = (G, Ĝ,GT , p, g, ĝ, e)← P(1k)

and sets eppeg = (G, p, g). Then, SPars generates two binding Groth-Sahai CRSs and
two ElGamal keypairs:

CRS1 ← BGen(gpp) (pk0, sk0)← EGeneg(eppeg)

CRS2 ← BGen(gpp) (pk1, sk1)← EGeneg(eppeg).

The public parameters are then defined as

spp = (gpp,CRS1,CRS2, pk0, pk1).

Key generation. SGen(spp) first sets up the exponents

Z = X ← Z∗p and α = β = 0,

and commits to them using fresh random coins RZ , Rα, Rβ :

Cα ← Com(CRS1, α;Rα), Cβ ← Com(CRS1, β;Rβ),

CZ ← Com(CRS2, Z;RZ).

We will use that α, β define an affine function f : Zp → Zp through f(x) = α · x +
β mod p.

12

Verification and signing key are given by

vk = (CZ , Cα, Cβ) sigk = (X,RZ , Rα, Rβ).

Signature generation. Sig(sigk ,M), for M ∈ Zp, picks fresh random coins R and
encrypts

C0 = Enceg(pk0, g
Z0 ;R) C1 = Enceg(pk1, g

Z1 ;R)

for Z0 = Z1 = X ∈ Zp, using the same coins R in both encryptions for efficiency.
Then, Sig generates proofs π1 and π2 for the respective statements(

Z0 = Z1︸ ︷︷ ︸
S1

∨ f(M) ∈ QRp ∪ {0}︸ ︷︷ ︸
S2

)
and Z0 = Z︸ ︷︷ ︸

S3

. (3)

Here, Z0, Z1, Z, f refer to the values encrypted (resp. committed to) in C0, C1, CZ ,
(Cα, Cβ). Concretely, Sig generates a proof π1 for S1 ∨ S2 under CRS1, using as wit-
ness Z0 = Z1 = X and the encryption coins R. Also, Sig computes a proof π2 for S3
under CRS2, using as witnessX andRZ , R. We stress that π1 and π2 are independently
generated, with different (fresh) Groth-Sahai commitments to the respective witnesses.
We describe the exact Groth-Sahai equations for these proofs in Section 5.1, and give
some intuition on the meaning of the statements S1-S3 in Section 3.2 below.

The signature is then defined as

σ = (C0, C1, π1, π2).

Verification. Ver(spp, vk ,M, σ) outputs 1 if and only if both proofs π1 and π2 in σ
are valid with respect to M,C0, C1, CZ , Cα, Cβ .
Correctness. The completeness of Groth-Sahai proofs implies the correctness of SIG.
Efficiency. SIG has the following efficiency characteristics (cf. Section 5.1):
– The public parameters consist of 8 G- and 6 Ĝ-elements, plus the group parameters
gpp.

– Each verification key contains 2 G- and 4 Ĝ-elements.
– Each signing key contains 7 Zp-exponents.
– Each signature contains 11 G- and 14 Ĝ-elements.

3.2 Security analysis

More details on the role of π1 and π2 in signatures. Before we proceed to the proof,
we give some intuition on the proofs π1 and π2 published in signatures (and the state-
ments S1-S3):
– π1 proves that either C0 and C1 encrypt the same value or that the signed message

satisfies a special property S2 (or both). In the scheme, all messages are special in
this sense (because f(M) = 0 for all M). However, in the proof, we can adjust
f and, e.g., partition the set of messages into special and non-special ones in a
random and roughly balanced way. Intuitively, this provides a means to make the

13

double encryption (C0, C1) inconsistent (and subsequently change the encrypted
values) in signatures for special messages. At the same time, any valid adversarial
forgery on a non-special message (that does not satisfy S2) must carry a consistent
double encryption (C0, C1).

– In the scheme, π2 ties the plaintext encrypted in C0 to the master secret Z. In the
simulation, we will remove that connection by simulating π2. Specifically, recall
that π1 and π2 are independently generated, using independently generated Groth-
Sahai commitments to the respective witnesses. Thus, in the proof, we can simulate
π2 without witness (by choosing a hiding CRS2 and using Sim), while preserving
the soundness of π1 (assuming CRS1 is binding). This simulation of π2 will be
instrumental in changing the message encrypted in C0 (when the signed message is
special in the above sense).

Theorem 2 (Security of SIG). Under the DDH assumptions in G and Ĝ, the signature
scheme SIG from Section 3.1 is EUF-mCMA secure. Concretely, for every EUF-mCMA
adversary A on SIG, there exist DDH adversaries B and B′ (of roughly the same com-
plexity as the EUF-mCMA experiment with A and SIG) with

Adveuf-mcma
SIG,A (k) ≤ (8n+1) ·

∣∣Advddh
G,B(k)

∣∣+(4n+1) ·
∣∣Advddh

Ĝ,B′(k)
∣∣+O(n/2k) (4)

for n = 2dlog2(p)e + k, where p denotes the order of G and Ĝ, and k is the security
parameter.

Proof outline. The proof starts with a number of preparations for the core argument.
Our main goal during this phase will be to implement an additional and explicit check
of A’s forgery σ∗ = (C∗0 , C

∗
1 , π
∗
1 , π
∗
2) for Deceg(sk0, C

∗
0) = gX

∗
. (Note that in the

default key setup, this explicit check is redundant, since valid signatures must fulfill
statement S3 from (3).)

In the core argument (from Game 4 to Game 5, detailed in Lemma 1), we replace
the value X used in generated signatures and the additional forgery check with a value
H(M) that depends on the signed message. We start with a constant functionH(M) =
X (which corresponds to Game 4), and then introduce more and more dependencies
of H(M) on the Legendre symbols

(fj(M)
p

)
for independently and randomly selected

(invertible) affine functions fj .
Each such dependency is introduced as follows. We start by committing to (the

coefficients of) a new random function f∗ in Cα, Cβ . This change allows us to modify
the messages Z0, Z1 encrypted in generated signatures for allM with f∗(M) ∈ QRp∪
{0} (and only for thoseM), by proving S2 (and not S1) in signatures. We will also abort
if A’s forgery satisfies f∗(M∗) ∈ QRp ∪ {0}, and we will keep enforcing our forgery
check on C∗0 . Hence, from A’s point of view, an additional dependency on

(f∗(M)
p

)
is consistently introduced on all signatures. More importantly, this dependency is also
enforced during the additional forgery check.

After sufficiently many such dependencies are introduced (for several different f∗),
all signatures are consistently generated with (or checked for) Z0 = Z1 = R(M) for a
truly random function R. At this point, A has to predict a truly random function R on

14

a fresh input M∗ in order to produce a valid forgery. Hence, A’s forgery success must
be negligible.

Figs. 1 and 2 (on page 28 and page 29) give a more technical summary of the game
transitions of the proof (also taking into account the notation for the multi-user case).
The remainder of this section is devoted to a detailed proof.

Proof (Proof of Theorem 2). We proceed in games. Let out i denote the output of
Game i.

Game 1 is the original EUF-mCMA game with A and SIG. Of course,

Pr [out1 = 1] = Adveuf-mcma
SIG,A (k). (5)

In the following, we apply a superscript to variables to denote to which SIG instance
they belong. For instance, we denote with X(`) and sk

(`)
0 , sk

(`)
1 the respective values

from the `-th used SIG instance. Furthermore, we write X∗ for X(`∗) for the challenge
instance `∗ selected by A for his forgery, and similarly for sk∗0 and sk∗1.

Thus, in Game 2, we implement an additional “forgery check”. Concretely, we
only consider a forgery σ∗ = (C∗0 , C

∗
1 , π
∗
1 , π
∗
2) from A as valid if π∗1 and π∗2 are

valid and if Deceg(sk
∗
0, C

∗
0) = gX

∗
. (Otherwise, the game outputs 0.) This change is

purely conceptual: indeed, since CRS2 is binding, we can use the soundness of Groth-
Sahai proofs. Thus, any valid proof π∗2 guarantees that S3 (from (3)) holds, and so
Deceg(sk

∗
0, C

∗
0) = gX

∗
. We obtain

Pr [out2 = 1] = Pr [out1 = 1] . (6)

In Game 3, we generate both CRS1 and CRS2 as hiding CRSs, using HGen. The
CRS indistinguishability of Groth-Sahai proofs yields

Pr [out3 = 1]− Pr [out2 = 1] = Advddh
G,B3

(k) + Advddh
Ĝ,B′3

(k) (7)

for suitable DDH adversaries B3 and B′3. (Here, we use the re-randomizability of DDH
tuples. This enables a reduction that loses only a factor of 1 instead of 2.)

In Game 4, we simulate all proofs π2 in signatures generated for A, using the
Groth-Sahai simulator Sim (on input the random coins RCRS used to prepare CRS).
We also generate the corresponding commitments CZ in all verification keys as CZ ←
Com(CRS2, 1). We stress that all X(`) are still chosen randomly, and all signatures are
generated with encryptions C0, C1 of X(`). By the simulation property of Groth-Sahai
proofs (see Theorem 1 and the following comment concerning the reuse of commit-
ments), these changes do not affect A’s view:

Pr [out4 = 1] = Pr [out3 = 1] . (8)

In Game 5, we change the generation of signatures and the forgery check from
Game 2 as follows. To describe these changes, let R(`) : Zp → Z∗p (for all scheme
instances ` ∈ [nU]) be truly random functions. Our changes in Game 5 are then as
follows:

15

– All signatures generated forA contain encryptionsC0, C1 of exponents Z0 = Z1 =
R(`)(M) (encoded as gZ0 , gZ1) instead of Z0 = Z1 = X(`), whereM is the signed
message. As in Game 4, the corresponding proof π is generated using witnesses for
S1 and S3 from (3).

– Any forgery σ∗ = (C∗0 , C
∗
1 , π
∗
1 , π
∗
2) for a (fresh) message M∗ fromA is considered

valid only if π∗1 and π∗2 are valid and Deceg(sk
∗
0, C

∗
0) = R∗(M∗) holds. Otherwise,

the game outputs 0. (Again, we use the shorthand notation R∗ = R(`∗) for the
challenge instance `∗.)

In particular, the second change implies that

Pr [out5 = 1] ≤ 1/(p− 1) ≤ 1/2k, (9)

sinceR∗(M∗) is information-theoretically hidden from A.
Hence, it remains to relate Game 4 and Game 5:

Lemma 1. For n = 2dlog2(p)e+k and suitable DDH adversaries B5 and B′5, we have∣∣Pr [out5 = 1]−Pr [out4 = 1]
∣∣ ≤ 8n·

∣∣Advddh
G,B5

(k)
∣∣+4n·

∣∣Advddh
Ĝ,B′5

(k)
∣∣+O(n/2k).

(10)

Before we prove Lemma 1, we remark that putting together (5-10), we obtain (4),
which is sufficient to show Theorem 2.

Proof (of Lemma 1). We will consider a series of hybrid games between Game 4 and
Game 5. Concretely, Game 4.i (for i ≥ 0) is defined like Game 4, except for the fol-
lowing changes:
– We initially uniformly and independently choose i invertible affine functions fj :
Zp → Zp (for j ∈ [i]). The fj define a “partial fingerprint” function Li : Zp →
{−1, 0, 1}i through

Li(M) =

((
f1(M)

p

)
, . . . ,

(
fi(M)

p

))
. (11)

For every scheme instance ` ∈ [nU], let H(`)
i : Zp → Z∗p be the composition of

Li with a truly random function R(`)
i : {−1, 0, 1}i → Z∗p (so that H(`)

i (M) =

R(`)
i (Li(M))).

– Signatures for A contain encryptions C0, C1 of exponents Z0 = Z1 = H(`)
i (M).

– Any forgery σ∗ = (C∗0 , C
∗
1 , π
∗
1 , π
∗
2) for a (fresh) message M∗ fromA is considered

valid only if π∗1 and π∗2 are valid and Deceg(sk
∗
0, C

∗
0) = H

(`)
i (M∗).

Note that every H(`)
0 is a constant function that maps every input M to the same

random value. Hence, Game 4.0 is identical to Game 4:

Pr [out4.0 = 1] = Pr [out4 = 1] . (12)

Conversely, for large enough i and with high probability, the “fingerprint function” Li
becomes injective, so that all H(`)

i become independent truly random functions from
Zp to Z∗p:

16

Lemma 2. For n = 2dlog2(p)e+ k, the function Ln from (11) is injective, except with
probability 1/2k (over the choice of the invertible affine functions fj : Zp → Zp).

We postpone a proof of Lemma 2 for now.
Hence, the functionsH(`)

n = R(`)
n ◦Ln used in Game 4.n (for n = 2dlog2(p)e+ k)

are statistically close to truly random functionsR(`) (as used in Game 5):∣∣Pr [out4.n = 1]− Pr [out5 = 1]
∣∣ ≤ 1/2k. (13)

The algebraic partitioning step. Thus, we only need to show that there is no de-
tectable difference between Game 4.i and Game 4.(i+ 1) for any i. We do so using
a hybrid argument (i.e., a sequence of games) that interpolates between Game 4.i and
Game 4.(i+ 1). (See Fig. 2 for an overview.) In short, we first refresh the affine func-
tion f from Cα, Cβ to a fresh random (but invertible) affine function f∗. Next, we use
f∗ to implement a different treatment of signatures, depending on

(f(M)
p

)
. We detail

these steps in the following.
Concretely, Game 4.i.0 is identical to Game 4.i. Thus,

Pr [out4.i.0 = 1] = Pr [out4.i = 1] . (14)

Step 1: refresh f . In Game 4.i.1, we initially choose an invertible affine function
f∗ : Zp → Zp uniformly, and we abort (with output 0) if the message M∗ for which
A finally prepares a forgery satisfies f∗(M∗) ∈ QRp ∪ {0}. We stress that f∗ is not
(yet) committed to in any Cα, Cβ , and thus completely hidden fromA. Hence, an abort
occurs with probability p+1

2p = 1
2 + 1

2p , independently of A’s view, so

Pr [out4.i.1 = 1] =

(
1

2
− 1

2p

)
· Pr [out4.i.0 = 1] ≥ 1

2
· Pr [out4.i.0 = 1]− 1

2p
.

(15)
In Game 4.i.2, we commit to the coefficients f∗0 , f

∗
1 of f∗ from Game 4.i.1 in

Cα, Cβ for all verification keys (instead of the coefficients α = β = 0). Accordingly,
we generate all signatures for A by proving statement S2 (and not S1) from (3) when-
ever possible (i.e., upon all signature queries with f∗(M) ∈ QRp ∪ {0}). Since CRS1
is hiding, we can use the witness-indistinguishability of Groth-Sahai proofs to obtain

Pr [out4.i.2 = 1] = Pr [out4.i.1 = 1] . (16)

Step 2: use f∗ to decouple signatures. To describe our change in Game 4.i.3, recall
that in Game 4.i.2, functions H(`)

i is used to determine both the values Z0 = Z1 =

H(`)
i (M) encrypted in C0, C1 upon signature queries, and to implement the forgery

check. In Game 4.i.3, we use three such functions H(`)
i ,Z(`)

i ,Q(`)
i : Zp → Z∗p. Each

of these functions is defined like H(`)
i , for the same fingerprint function Li, but with

different (i.e., independently chosen) random functions R(`)
i . (In other words, we can

write H(`)
i = F ◦ Li, and Z(`)

i = F ′ ◦ Li, and Q(`)
i = F ′′ ◦ Li for independently

random functions F, F ′, F ′′ : {−1, 0, 1}i → Z∗p. Intuitively, thus, Z(`)
i and Q(`)

i are

“decoupled copies” ofH(`)
i .)

17

Our goal will be to use the functions H(`)
i ,Z(`)

i ,Q(`)
i for messages M satisfying

f∗(M) /∈ QRp, f∗(M) = 0, and f∗(M) ∈ QRp, respectively. (Hence the symbols

Z and Q.) This will be conceptually identical to using a single function H(`)
i+1 for all

messages of a given scheme instance `. At this point, however, we can only partially
implement this strategy, since we can only replace the messages encrypted in C1, but
not those from C0. (Indeed, sk∗0 is still required to implement the additional forgery
check in Game 4.i.3.)

Thus, in Game 4.i.3, for every scheme instance ` ∈ [nU], we use the respective
function H(`)

i to generate all ciphertexts C0, C1 in signatures (as in Game 4.i.2), with
the following exceptions:
– For signature queries with f∗(M) = 0, we encrypt Z1 = Z(`)

i (M) (instead of
Z1 = H(`)

i (M)) in the ciphertext C1 of the generated signature.
– For signature queries with f∗(M) ∈ QRp, we encrypt Z1 = Q(`)

i (M) in C1.
Note that for signatures with f∗(M) ∈ QRp ∪ {0}, the random coins used to generate
C1 (or C0) are not used as a witness in the process of constructing π. Furthermore, no
secret key sk

(`)
1 has to be known to the game. A reduction to the (tight) IND-mCPA

security of ElGamal yields

n−1∑
i=0

Pr [out4.i.3 = 1]− Pr [out4.i.2 = 1] = n ·Advddh
G,B4.i.3

(k) (17)

for a suitable DDH adversary B4.i.3. (We note that even though the random coins R of
C1 are not known explicitly to B4.i.3, a C0 with reused R can be constructed from sk

(`)
0

and a given gR.)
Our next step will be to replace the values encrypted inC0 in a similar way. To do so,

however, we need some preparations, since Game 4.i.3 still knows the secret keys sk (`)
0

(to finally implement the forgery check). Fortunately, however, we can alternatively
use the sk

(`)
1 to implement this check. (To see why this yields the same functionality,

recall that by our abort rule from Game 1, we may restrict to forgeries with f∗(M∗) /∈
QRp ∪ {0}. However, by (3), a valid forgery for such a message must contain C∗0 and
C∗1 that encrypt the same message.)

As a first step, in Game 4.i.4, we initially generate a binding CRS CRS1 (using
CRS1 ← BGen(gpp)). The CRS indistinguishability of Groth-Sahai proofs ensures
that

n−1∑
i=0

Pr [out4.i.4 = 1]− Pr [out4.i.3 = 1] = n ·
(
Advddh

G,B4.i.4
(k) + Advddh

Ĝ,B′4.i.4
(k)
)

(18)
for suitable DDH adversaries B4.i.4 and B′4.i.4.

Next, in Game 4.i.5, we implement the forgery check rule from Game 2 using sk∗1
(and not sk∗0). That is, when A submits a forgery σ∗ = (C∗0 , C

∗
1 , π
∗
1 , π
∗
2), we check if

Deceg(sk
∗
1, C

∗
1) = H∗i (M∗) holds (and reject the forgery if not). We may assume that

M∗ /∈ QRp∪{0} (since otherwise, we trivially abort anyway). But for suchM∗, a valid
forgery must fulfill S1 from (3), since at this point, CRS1 is binding. In other words, we

18

have Deceg(sk
∗
1, C

∗
1) = H∗i (M∗) if and only if Deceg(sk

∗
0, C

∗
0) = H∗i (M∗). Hence,

the change in Game 4.i.5 is purely conceptual, and we get:

Pr [out4.i.5 = 1] = Pr [out4.i.4 = 1] . (19)

Since we no longer use sk∗0 (or the random coins from any C1 generated upon a
signature query), we can continue with our strategy. Specifically, in Game 4.i.6, we
generate all ciphertexts C0, C1 in signatures as follows:
– For queries with f∗(M) /∈ QRp, we encrypt Z0 = Z1 = H(`)

i (M) in C0 and C1.

– For queries with f∗(M) = 0, we encrypt Z0 = Z1 = Z(`)
i (M) in C0 and C1.

– For queries with f∗(M) ∈ QRp, we encrypt Z0 = Z1 = Q(`)
i (M) in C0 and C1.

Observe that the only difference to Game 4.i.5 is that the messages Z0 encrypted in
ciphertexts C0 in signatures with f∗(M) ∈ QRp ∪ {0} are changed. For such encryp-
tions, neither secret key nor random coins are used by the game. Hence, a reduction to
the (tight) IND-mCPA security of ElGamal yields

n−1∑
i=0

Pr [out4.i.6 = 1]− Pr [out4.i.5 = 1] = n ·Advddh
G,B4.i.6

(k) (20)

for a suitable DDH adversary B4.i.6. (Again, a reuse of random coins between C0 and
C1 is possible since the secret key sk1 is known to B4.i.6 during the reduction.)
Step 3: clean up. Now in Game 4.i.6, we handle both signature queries and A’s
forgery with either H(`)

i , Z(`)
i , or Q(`)

i , depending on the Legendre symbol
(
M
p

)
of

M . This is equivalent to handling all messages with a single function H(`)
i+1 by the

definition of H(`)
i (see also (11)). Hence, we already “almost” implement the rules of

Game 4.(i+ 1), and we only need to clean up things a little.
Namely, in Game 4.i.7, we again implement the forgery check from Game 2 using

sk∗0 (and not sk∗1). With the same reasoning as in Game 5, we get:

Pr [out4.i.7 = 1] = Pr [out4.i.6 = 1] . (21)

Next, in Game 4.i.8, we again set up CRS1 as a hiding CRS (using HGen). Again,
CRS indistinguishability guarantees

n−1∑
i=0

Pr [out4.i.8 = 1]− Pr [out4.i.7 = 1] = n ·
(
Advddh

G,B4.i.8
(k) + Advddh

Ĝ,B′4.i.8
(k)
)

(22)
for suitable DDH adversaries B4.i.8 and B′4.i.8.

In Game 4.i.9, we again set up the commitments Cα, Cβ in all verification keys
as commitments to α = β = 0. Accordingly, we generate all signatures for A by
proving statement S1 from (3). (Note that this is possible again since all generated
pairs (C0, C1) do encrypt the same message.) By the witness-indistinguishability of
Groth-Sahai proofs,

Pr [out4.i.9 = 1] = Pr [out4.i.8 = 1] . (23)

19

Finally, in Game 4.i.10, we do not abort anymore. (That is, we take back the abort
rule from Game 1.) To see how this change affects the game’s output, we make a few
observations. First, note that in both Game 4.i.9 and Game 4.i.10, A’s view only de-
pends on the way f∗ partitions the set of messages depending on

(f∗(M)
p

)
, but not

on which messages M are mapped by f∗ to squares, and which to non-squares. (In-
deed, any partitioning of the M is invariant under multiplying f∗ with an invertible
non-square modulo p. However, multiplication with an invertible non-square inverts the
Legendre symbol of f∗(M).)

Thus, the probability for A to successfully forge a signature with
(f∗(M∗)

p

)
= 1 is

exactly the same as that to forge a signature with
(f∗(M∗)

p

)
= −1. Hence, if we cease

to abort upon f∗(M∗) ∈ QRp ∪ {0}, we at least double A’s success probability:

Pr [out4.i.10 = 1] ≥ 2 · Pr [out4.i.9 = 1] . (24)

At the same time, Game 4.i.10 is identical to Game 4.(i+ 1). (As argued, the use of
three functionsH(`)

i ,Z(`)
i ,Q(`)

i for each scheme instance ` is equivalent to the use of a
single function H(`)

i+1 in Game 4.(i+ 1). Furthermore, CRS1 is hiding, the Cα, Cβ are
set up as commitments to α = β = 0, and the signatures use proofs of statement S1.)
Thus,

Pr [out4.i.10 = 1] = Pr
[
out4.(i+1) = 1

]
. (25)

Collecting all differences of probabilities from (14-25), we obtain

∣∣∣Pr [out4.0 = 1]−Pr [out4.n = 1]
∣∣∣ ≤ ∣∣∣ n−1∑

i=0

Pr [out4.i = 1]−Pr
[
out4.(i+1) = 1

] ∣∣∣
≤ 8n ·

∣∣Advddh
G,B5

(k)
∣∣+ 4n ·

∣∣Advddh
Ĝ,B′5

(k)
∣∣+O(n/2k)

for DDH adversaries B5 and B′5 that combine all adversaries from the collected differ-
ences. Together with (12) and (13), we obtain (10).

It remains to prove Lemma 2:

Proof (of Lemma 2). For any distinct M0,M1 ∈ Zp and a uniformly chosen invertible

affine function f : Zp → Zp, we have Pr
[(

f(M0)
p

)
=
(
f(M1)
p

)]
≤ 1/2, since f is

pairwise independent. As all fj from (11) are chosen independently, we get

Pr [Ln(M0) = Ln(M1)] ≤ 1/2n

for any two distinctM0,M1. A union bound over all O(p2) such pairs (M0,M1) shows
the claim.

4 Compact and (almost) tightly secure public-key encryption

Our signature scheme SIG from Section 3 is “almost” automorphic (in the sense of
[1]). Namely, while its verification can be expressed as a system of equations that is

20

compatible with Groth-Sahai proofs, its messages are exponents (as opposed to group
elements). However, our scheme can still be used in the generic construction of [28].
This yields an (almost) tightly secure public-key encryption scheme with compact pa-
rameters, keys and ciphertexts. (Here, “compact” means “comprised of only a constant
number of group elements or exponents.”)

But although compact in the above sense, the resulting encryption scheme would
be rather inefficient (in particular since it would use nested Groth-Sahai proofs). Thus,
here we describe an optimized and more compact (almost) tightly secure public-key
encryption scheme PKE.

Setting and ingredients. The basis for our PKE construction is the signature scheme
SIG from Section 3, and we assume similar ingredients. In particular, we assume groups
G and Ĝ, along with the ElGamal encryption and Groth-Sahai proofs over G. Addition-
ally, we assume:
– An OT-EUF-mCMA secure signature scheme with message space Zp, given by al-

gorithms OPars,OGen,OSig,OVer. For concreteness, in all of the following, we
assume the one-time signature scheme TOTS from [28] in G. Its OT-EUF-mCMA
security can be tightly reduced to the discrete logarithm assumption in G (which is
implied by the DDH assumption in G).

– A generatorH of collision-resistant hash functions H : {0, 1}∗ → {0, 1}k. We will
interpret H-outputs as Zp-elements in the natural way. (Recall that p > 2k.)

All ingredients can be instantiated under the DDH assumptions in G and Ĝ.

Public parameters. EPars(1k) first proceeds like the parameter generation of SIG,
and samples group parameters gpp, a hiding Groth-Sahai CRS, and two ElGamal public
keys pk0, pk1. Then, EPars sets up exponents Z,α, β and ciphertexts

Cα ← Enceg(pk0, g
α;Rα), Cβ ← Enceg(pk0, g

β ;Rβ), CZ ← Enceg(pk0, g
Z ;RZ).

Note that here, we encrypt (and do not commit to) Z,α, β in order to be able to pro-
duce slightly more compact proofs involving Z,α, β later on. However, we note that
conceptually, we could have as well committed to Z,α, β as with SIG.

Finally, EPars chooses parameters opp ← OPars(1k) and a hash function H, and
outputs epp = (gpp,CRS, pk0, pk1, opp,H, Cα, Cβ , CZ).

Key generation. EGen(epp) samples two ElGamal keypairs (pk ′0, sk
′
0), (pk

′
1, sk

′
1)←

EGeneg(G, p, g), and outputs a public and a secret key as

pk = (pk ′0, pk
′
1) sk = (d, sk ′d)

for a uniformly chosen bit d← {0, 1}.
Encryption. Intuitively, encryption corresponds to a Naor-Yung style double encryp-
tion with consistency proof [34]. The consistency proof itself proceeds as in [28], and
essentially proves that either the double encryption is consistent, or a signature to a
fresh value is known. (A suitable fresh value will be hash of a freshly sampled verifi-
cation key of the one-time signature scheme.) Concretely, Enc(pk ,M), for M ∈ G,
chooses a one-time signature keypair (ovk , osk)← OGen(opp), and encrypts the val-

21

ues Z ′0 = Z ′1 =M ∈ G and Z0 = Z1 = 0 as

C ′0 = Enceg(pk
′
0, Z

′
0;R

′) C0 = Enceg(pk0, g
Z0 ;R)

C ′1 = Enceg(pk
′
1, Z

′
1;R

′) C1 = Enceg(pk1, g
Z1 ;R).

(Note that for efficiency and to simplify proofs involving these values, we reuse the
encryption random coins R′ and R.) Then, Enc generates a proof π (under CRS) of the
statement

Z ′0 = Z ′1 ∨
((
Z0 = Z1 ∨ f(H(ovk)) ∈ QRp∪{0}

)
∧
(
Z0 = Z ∨ Z = 0

))
. (26)

Enc will prove the left branch S1′ of the outer ∨ clause, using as witness the encryption
randomness R′. Hence, π essentially proves consistency of C ′0, C

′
1, or the same state-

ment as for a SIG-signature for H(ovk). (There are some slight differences compared
to a SIG-signature: first, we use only one CRS. Hence, we cannot simulate proofs for
substatement Z0 = Z during the proof. Instead, however, we can set Z = 0 to be able
to generate proofs for S3′ without knowledge of Z0. Second, because the random coins
used for Cα, Cβ , CZ are not known at encryption time, the proof of quadratic residuos-
ity becomes somewhat less efficient than the one in SIG’s signing algorithm. We refer
to Section 5.2 for more details on the exact proof equations.)

Finally, Enc signs σ ← OSig(osk ,H(C ′0, C
′
1, C0, C1, π)) and outputs the cipher-

text C = (C ′0, C
′
1, C0, C1, π, ovk , σ).

Decryption. Dec(sk , C) checks the validity of σ and π. If both σ and π are valid, Dec
outputs M ← Deceg(sk

′
d, C

′
d); otherwise, Dec outputs ⊥.

Efficiency. PKE has the following efficiency characteristics (cf. Section 5.2):
– The public parameters consist of 12G- and 3 Ĝ-elements, plus the group parameters
gpp, and a description of the hash function H.

– Each public key contains 2 G-elements.
– Each secret key contains one Zp-exponent and a bit.
– Each ciphertext contains 27 G- and 30 Ĝ-elements, and 3 Zp-exponents.

Theorem 3 (Security of PKE). Under the DDH assumptions in G and Ĝ, and assum-
ing that H is collision-resistant, the PKE scheme PKE described above is IND-mCCA
secure. Concretely, for every EUF-mCMA adversary A on SIG, there exist DDH ad-
versaries B and B′, and an adversary C on the collision-resistance of H (of roughly the
same complexity as the EUF-mCMA experiment with A and SIG) with

Adveuf-mcma
SIG,A (k) ≤ O(k)·

∣∣Advddh
G,B(k)

∣∣+O(k)·
∣∣Advddh

Ĝ,B′(k)
∣∣+Advcr

H,C(k)+O(k/2k).

(27)

Proof (Proof sketch). The proof combines the strategy from [28] with our concrete
signature scheme, and thus we outline only the main strategy. This strategy proceeds in
games, and modifies an IND-mCCA attack with adversary A as follows:
– First, the consistency proofs in all ciphertexts are prepared with different witnesses.

More specifically, instead of proving Z ′0 = Z ′1, we prove the right branch of (26).
(Note that this right branch corresponds to the validity of a SIG-signature for mes-
sage H(ovk).) Thanks to the witness-indistinguishability of Groth-Sahai proofs, this
change is not detectable by A.

22

– Next, all challenge ciphertexts generated for A are made inconsistent. (This is pos-
sible since the ciphertext consistency proofs are prepared from signature witnesses
now.) Concretely, recall that so far we have encrypted the respective challenge mes-
sage M∗b (for the secret bit b chosen by the IND-mCCA experiment) in both C ′0
and C ′1 of all challenge ciphertexts. Now we encrypt M∗b in C ′d and M∗1−b in C ′1−d,
where d is the bit chosen for the respective PKE instance i. Hence, we change the
encrypted message for all ElGamal instances whose secret key is not used. Since
only the secret keys sk ′d (but not the sk ′1−d) are used in the experiment, this game
modification can be justified with the (tight) security of ElGamal.

– We now reject all inconsistent (in the sense Deceg(sk
′
0, C

′
0) 6= Deceg(sk

′
1, C

′
1))

decryption queries fromA. At this point in the proof, we know both sk ′0 and sk ′1 for
all PKE-instances, and can thus recognize the first inconsistent (in the above sense)
decryption query with a valid consistency proof. Note that any such query implies a
valid SIG-signature for a message H(ovk). The security of the one-time signature
scheme guarantees that this message is fresh, so thatA has essentially forged a SIG-
signature. Any such forgery can be excluded with the same strategy as in the proof
of Theorem 2 (with the differences described above). This step entails the dominant
terms in (27) related to DDH reductions.

At this point, A gets no information about the IND-mCCA secret b anymore. Namely,
each challenge ciphertext contains ElGamal encryptions of both M∗0 and M∗1 , in an
order determined by d⊕ b, where d denotes which ElGamal secret key sk ′d the experi-
ment uses to decrypt for this instance. Now since inconsistent ciphertexts are rejected,
the game’s answer to A’s decryption queries does not depend on the any of the bits d.
Moreover, unless (any) d is known, also b is hidden. Hence,A’s view is now completely
independent of b, and thus A’s IND-mCCA success is zero.

5 Details on the exact Groth-Sahai equations in our schemes

5.1 The exact Groth-Sahai equations for the proofs in signatures

We now give details on the proofs π1 and π2 in signatures from SIG. Recall that π1 and
π2 shall prove the respective statements(

Z0 = Z1︸ ︷︷ ︸
S1

∨ f(M) ∈ QRp ∪ {0}︸ ︷︷ ︸
S2

)
and Z0 = Z︸ ︷︷ ︸

S3

. (28)

The statements S1-S3. We now discuss the three individual statements S1-S3 from
(28) in more detail. To this end, let us write the ElGamal ciphertexts C0, C1 from a
signature as

C0 = (A,B0) = (gR, pkR0 · gZ0) C1 = (A,B1) = (gR, pkR1 · gZ1).

(Of course, the reused value A = gR will only appear once in a signature.)
S1. The statement Z0 = Z1 holds if and only if (g, pk1/pk0, A,B1/B0) is a Diffie-

Hellman tuple. Thus, S1 is equivalent to the equations A = gR and B1/B0 =
(pk1/pk0)

R, with witness R.

23

S2. The statement f(M) ∈ QRp ∪ {0} is equivalent to the existence of an exponent
W ∈ Zp with f(M) =W 2 mod p. (Recall that a commitment to f(M) can be ho-
momorphically computed fromM and the commitments Cα, Cβ .) Hence, a witness
to S2 is given by (α, β,W).

S3. We can express Z0 = Z as an equation B0 = pkR0 · gZ with witness (R,Z).
All involved commitment random coins are additionally required to construct a valid
proof. Besides, so far we have neglected that in a setting with an asymmetric pairing,
not all combinations of, e.g., Zp-products can be directly expressed. (For instance, a
square W 2 needs to be rephrased as W · Ŵ , with an additional proof that W = Ŵ .)
Hence, in the rest of this section, we will decorate variables that correspond to a Ĝ-
commitment with a hat (e.g., Ŵ).

The equations for π1. Equations for the disjunction S1 ∨ S2 can be derived using
standard techniques. However, if we optimize a little, we obtain the following equations
for S1 ∨ S2:

AÛ = gV̂ (B1/B0)
Û = (pk1/pk0)

V̂ f̂(M) =W · Ŵ W = Ŵ + Û .

(For instance, if we want to prove S2, we can set Û = V̂ = 0 and W = Ŵ such that
f(M) = W 2.) The involved variables from the verification key are α̂ and β̂ (used to
homomorphically construct f̂(M)). The variables whose commitments are placed in
the signature are Û , V̂ ,W, Ŵ . All of these variables are committed to using CRS1.

The equations for π2. Similarly, we obtain the following equations for S3:

A = gŜ B0 = pk Ŝ0 · gZ .

The variables are Z (committed to in vk) and Ŝ (from σ), both committed to using
CRS2.

Remarks and efficiency summary. We emphasize that hence, the proofs π1 and π2
are independent (and in particular do not share commitments). Furthermore, thanks to
the composability of Groth-Sahai proofs, the commitments Cα, Cβ , CZ to α, β, Z that
are placed in the verification key can be directly (re-)used in proofs. Each commitment
occupies 2 group elements. In total, the equations above comprise 4 linear equations
over G, and 2 quadratic equations over Zp. Thus, π1 contains 4 · 2 + 2 · 1 + 2 · 4 = 18

group elements (12 of them from Ĝ), and π2 contains 1 · 2 + 2 · 1 = 4 group elements
(2 of them from Ĝ).

5.2 The exact Groth-Sahai equations for the proofs in ciphertexts

We now detail the proof π in ciphertexts from PKE. Recall that π shall prove the
statement

Z ′0 = Z ′1︸ ︷︷ ︸
S1′

∨
((
Z0 = Z1︸ ︷︷ ︸

S2′

∨ f(H(ovk)) ∈ QRp ∪ {0}︸ ︷︷ ︸
S3′

)
∧
(
Z0 = Z︸ ︷︷ ︸
S4′

∨ Z = 0︸ ︷︷ ︸
S5′

))
.

(29)

24

The variables in (29) refer to the messages encrypted in PKEeg-ciphertexts from the
public parameters and the PKE-ciphertext at hand. We make these PKEeg-ciphertexts
explicit as

C0 = Enceg(pk0, g
Z0 ;R) = (A,B0) C ′0 = Enceg(pk

′
0, g

Z′0 ;R′) = (A′, B′0)

C1 = Enceg(pk1, g
Z1 ;R) = (A,B1) C ′1 = Enceg(pk

′
1, g

Z′1 ;R′) = (A′, B′1)

CZ = Enceg(pk0, g
Z ;RZ) = (AZ , BZ).

Besides, a PKEeg-ciphertextCf = Enceg(pk0, g
f(H(ovk));Rf) = (Af , Bf) that deter-

mines the variable f(H(ovk)) can be homomorphically computed from the ciphertexts
Cα, Cβ , and H(ovk).
The statements S1′-S5′. Let us take a closer look at the individual statements S1′-S5′:
S1′, S2′. These statements can be formalized like statement S1 for SIG. For instance,

S1′ holds if and only if (g, pk ′1/pk
′
0, A

′, B′1/B
′
0) is a Diffie-Hellman tuple; a suit-

able witness is R′.
S4′, S5′. Similarly, S4′ holds precisely if (g, pk0, A/AZ , B0/BZ) is a Diffie-Hellman

tuple; a witness is R − RZ . (Statement S5′ can be formalized analogously, with a
witness RZ .)

S3′. As with SIG, S3′ holds if and only if there is a W ∈ Zp with f(H(ovk)) =
W 2 mod p. A suitable witness consists of W , and the encryption randomness Rf
of Cf .

A reformulation. The composed statement from (29) is equivalent to(
S1′ ∨ S2′ ∨ S3′

)
∧

(
S1′ ∨ S4′ ∨ S5′

)
.

By the above, the first sub-statement S1′ ∨ S2′ ∨ S3′ is implied by the equations

AÛ = gV̂ A′Û
′
= gV̂

′
A
Ûf

f = gV̂f

(B1/B0)
Û = (pk1/pk0)

V̂ (B′1/B
′
0)
Û ′ = (pk ′1/pk

′
0)
V̂ ′ B

Ûf

0 = pk
V̂f

0 · gF̂

F̂ =W · Ŵ W = Ŵ 1 = Û + Û ′ + Ûf
(30)

for new variables Û , V̂ , Û ′, V̂ ′, Ûf , V̂f , F̂ ,W, Ŵ . (We adopt the notation from Sec-
tion 5.1 to decorate variables in Ĝ with a hat.) Roughly, the last equation guarantees
that one of Û , Û ′, Ûf is nonzero, and in fact that Ûf = 1 once Û = Û ′ = 0. Further-
more, we have Û ′ 6= 0 ⇒ S1′, and Û 6= 0 ⇒ S2′, and Ûf 6= 0 ⇒ S3′. Finally, a
witness for (30) can be produced from either a witness for S1′, or for S2′, or for S3′.
(For instance, we can set Û ′ = V̂ ′ = 0 whenever a witness for S1′ is not available.)

Similarly, sub-statement S1′ ∨ S4′ ∨ S5′ yields additional equations

(A/AZ)
Û0 = gV̂0 AÛZ

Z = gV̂Z Û ′ + Û0 + ÛZ = 1

(B0/BZ)
Û0 = pk V̂0

0 BÛZ

Z = pk V̂Z
0

for new variables Û0, V̂0, ÛZ , V̂Z .

25

Summary. Summing up, π contains commitments to 13 variables (12 of them from
Ĝ), and proves 10 G-linear, 2 Zp-linear, and 3 quadratic equations over Zp. This yields
a proof of 13 · 2+ 10 · 1+ 3 · 4 = 48 group elements (30 of them from Ĝ) and 2 · 1 = 2
exponents from Zp.

References

[1] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako
Ohkubo. “Structure-Preserving Signatures and Commitments to Group Elements”. In:
Proc. CRYPTO 2010. Vol. 6223. Lecture Notes in Computer Science. Springer, 2010,
pp. 209–236.

[2] Masayuki Abe, Bernardo David, Markulf Kohlweiss, Ryo Nishimaki, and Miyako
Ohkubo. “Tagged One-Time Signatures: Tight Security and Optimal Tag Size”. In: Proc.
Public Key Cryptography 2013. Vol. 7778. Lecture Notes in Computer Science. Springer,
2013, pp. 312–331.

[3] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. “Public-Key Encryption in a
Multi-user Setting: Security Proofs and Improvements”. In: Proc. EUROCRYPT 2000.
Vol. 1807. Lecture Notes in Computer Science. Springer, 2000, pp. 259–274.

[4] Mihir Bellare and Shafi Goldwasser. “New Paradigms for Digital Signatures and Mes-
sage Authentication Based on Non-Interative Zero Knowledge Proofs”. In: Proc. CRYPTO
1989. Vol. 435. Lecture Notes in Computer Science. Springer, 1990, pp. 194–211.

[5] Daniel J. Bernstein. “Proving Tight Security for Rabin-Williams Signatures”. In: Proc.
EUROCRYPT 2008. Vol. 4965. Lecture Notes in Computer Science. Springer, 2008,
pp. 70–87.

[6] Olivier Blazy, Eike Kiltz, and Jiaxin Pan. “(Hierarchical) Identity-Based Encryption from
Affine Message Authentication”. In: Proc. CRYPTO (1) 2014. Vol. 8616. Lecture Notes in
Computer Science. Springer, 2014, pp. 408–425.

[7] Alexandra Boldyreva. “Strengthening Security of RSA-OAEP”. In: Proc. CT-RSA 2009.
Vol. 5473. Lecture Notes in Computer Science. Springer, 2009, pp. 399–413.

[8] Dan Boneh and Xavier Boyen. “Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles”. In: Proc. EUROCRYPT 2004. Vol. 3027. Lecture Notes in
Computer Science. Springer, 2004, pp. 223–238.

[9] Dan Boneh and Xavier Boyen. “Secure Identity Based Encryption Without Random Ora-
cles”. In: Proc. CRYPTO 2004. Vol. 3152. Lecture Notes in Computer Science. Springer,
2004, pp. 443–459.

[10] Dan Boneh and Matthew K. Franklin. “Identity-Based Encryption from the Weil Pairing”.
In: Proc. CRYPTO 2001. Vol. 2139. Lecture Notes in Computer Science. Springer, 2001,
pp. 213–229.

[11] Dan Boneh and Matthew K. Franklin. “Identity-Based Encryption from the Weil Pairing”.
In: SIAM J. Comput. 32.3 (2003), pp. 586–615.

[12] Dan Boneh, Ilya Mironov, and Victor Shoup. “A Secure Signature Scheme from Bilinear
Maps”. In: Proc. CT-RSA 2003. Vol. 2612. Lecture Notes in Computer Science. Springer,
2003, pp. 98–110.

[13] David Cash, Eike Kiltz, and Victor Shoup. “The Twin Diffie-Hellman Problem and Ap-
plications”. In: Proc. EUROCRYPT 2008. Vol. 4965. Lecture Notes in Computer Science.
Springer, 2008, pp. 127–145.

26

[14] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. “Bonsai Trees, or How to
Delegate a Lattice Basis”. In: Proc. EUROCRYPT 2010. Vol. 6110. Lecture Notes in Com-
puter Science. Springer, 2010, pp. 523–552.

[15] Jie Chen and Hoeteck Wee. “Fully, (Almost) Tightly Secure IBE and Dual System
Groups”. In: Proc. CRYPTO (2) 2013. Vol. 8043. Lecture Notes in Computer Science.
Springer, 2013, pp. 435–460.

[16] Benoît Chevallier-Mames and Marc Joye. “A Practical and Tightly Secure Signature
Scheme Without Hash Function”. In: Proc. CT-RSA 2007. Vol. 4377. Lecture Notes in
Computer Science. Springer, 2006, pp. 339–356.

[17] Jean-Sébastien Coron. “On the Exact Security of Full Domain Hash”. In: Proc. CRYPTO
2000. Vol. 1880. Lecture Notes in Computer Science. Springer, 2000, pp. 229–235.

[18] Alex Escala and Jens Groth. “Fine-Tuning Groth-Sahai Proofs”. In: Proc. Public Key
Cryptography 2014. Vol. 8383. Lecture Notes in Computer Science. Springer, 2014,
pp. 630–649.

[19] Georg Fuchsbauer. “Commuting Signatures and Verifiable Encryption”. In: Proc. EURO-
CRYPT 2011. Vol. 6632. Lecture Notes in Computer Science. Springer, 2011, pp. 224–
245.

[20] David Galindo, Sebastià Martín Molleví, Paz Morillo, and Jorge Luis Villar. “Easy Verifi-
able Primitives and Practical Public Key Cryptosystems”. In: Proc. ISC 2003. Vol. 2851.
Lecture Notes in Computer Science. Springer, 2003, pp. 69–83.

[21] Rosario Gennaro, Shai Halevi, and Tal Rabin. “Secure Hash-and-Sign Signatures Without
the Random Oracle”. In: Proc. EUROCRYPT 1999. Vol. 1592. Lecture Notes in Computer
Science. Springer, 1999, pp. 123–139.

[22] Craig Gentry. “Practical Identity-Based Encryption Without Random Oracles”. In: Proc.
EUROCRYPT 2006. Vol. 4004. Lecture Notes in Computer Science. Springer, 2006,
pp. 445–464.

[23] Craig Gentry and Shai Halevi. “Hierarchical Identity Based Encryption with Polynomi-
ally Many Levels”. In: Proc. TCC 2009. Vol. 5444. Lecture Notes in Computer Science.
Springer, 2009, pp. 437–456.

[24] Eu-Jin Goh, Stanislaw Jarecki, Jonathan Katz, and Nan Wang. “Efficient Signature
Schemes with Tight Reductions to the Diffie-Hellman Problems”. In: J. Cryptology 20.4
(2007), pp. 493–514.

[25] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “On the Cryptographic Applications
of Random Functions”. In: Proc. CRYPTO 1984. Vol. 196. Lecture Notes in Computer
Science. Springer, 1985, pp. 276–288.

[26] Jens Groth and Amit Sahai. “Efficient Noninteractive Proof Systems for Bilinear Groups”.
In: SIAM J. Comput. 41.5 (2012), pp. 1193–1232.

[27] Dennis Hofheinz. “All-But-Many Lossy Trapdoor Functions”. In: Proc. EUROCRYPT
2012. Vol. 7237. Lecture Notes in Computer Science. Springer, 2012, pp. 209–227.

[28] Dennis Hofheinz and Tibor Jager. “Tightly Secure Signatures and Public-Key Encryp-
tion”. In: Proc. CRYPTO 2012. Vol. 7417. Lecture Notes in Computer Science. Springer,
2012, pp. 590–607.

[29] Susan Hohenberger and Brent Waters. “Short and Stateless Signatures from the RSA
Assumption”. In: Proc. CRYPTO 2009. Vol. 5677. Lecture Notes in Computer Science.
Springer, 2009, pp. 654–670.

[30] Saqib A. Kakvi and Eike Kiltz. “Optimal Security Proofs for Full Domain Hash, Re-
visited”. In: Proc. EUROCRYPT 2012. Vol. 7237. Lecture Notes in Computer Science.
Springer, 2012, pp. 537–553.

27

[31] Allison B. Lewko and Brent Waters. “New Techniques for Dual System Encryption and
Fully Secure HIBE with Short Ciphertexts”. In: Proc. TCC 2010. Vol. 5978. Lecture Notes
in Computer Science. Springer, 2010, pp. 455–479.

[32] Benoît Libert, Marc Joye, Moti Yung, and Thomas Peters. “Concise Multi-challenge CCA-
Secure Encryption and Signatures with Almost Tight Security”. In: Proc. ASIACRYPT (2)
2014. Vol. 8874. Lecture Notes in Computer Science. Springer, 2014, pp. 1–21.

[33] Moni Naor and Omer Reingold. “Number-theoretic Constructions of Efficient Pseudo-
random Functions”. In: Proc. FOCS 1997. IEEE Computer Society, 1997, pp. 458–467.

[34] Moni Naor and Moti Yung. “Public-key Cryptosystems Provably Secure against Chosen
Ciphertext Attacks”. In: Proc. STOC 1990. ACM, 1990, pp. 427–437.

[35] Moni Naor and Moti Yung. “Universal One-Way Hash Functions and their Cryptographic
Applications”. In: Proc. STOC 1989. ACM, 1989, pp. 33–43.

[36] Sven Schäge. “Tight Proofs for Signature Schemes without Random Oracles”. In: Proc.
EUROCRYPT 2011. Vol. 6632. Lecture Notes in Computer Science. Springer, 2011,
pp. 189–206.

[37] Brent Waters. “Dual System Encryption: Realizing Fully Secure IBE and HIBE under
Simple Assumptions”. In: Proc. CRYPTO 2009. Vol. 5677. Lecture Notes in Computer
Science. Springer, 2009, pp. 619–636.

[38] Brent Waters. “Efficient Identity-Based Encryption Without Random Oracles”. In: Proc.
EUROCRYPT 2005. Vol. 3494. Lecture Notes in Computer Science. Springer, 2005,
pp. 114–127.

A Illustration of proof strategy for Theorem 2

In this section, we give a brief overview over the steps used to prove Theorem 2.

CRS2 Z π2 Z0 = Z1 forgery check remark
1 binding X(`) proof of S3 X(`) — EUF-mCMA
2 binding X(`) proof of S3 X(`) Deceg(sk

∗
0, C0) = X∗ GS soundness

3 hiding X(`) proof of S3 X(`) Deceg(sk
∗
0, C0) = X∗ GS CRS indist.

4 hiding 1 Sim-output X(`) Deceg(sk
∗
0, C0) = X∗ GS simulation

5 hiding 1 Sim-output R(`)(M) Deceg(sk
∗
0, C0) = R(`)(M∗) see Fig. 2

Fig. 1: Outline of the main proof, see Theorem 2. Boxes denote changes compared to the previ-
ous game. The first column denotes the game number, CRS2 denotes the setup of the Groth-Sahai
common reference string CRS2, andZ denotes the value committed to inCZ in verification keys.
Column π2 describes how proofs are prepared in signatures. Z0, Z are the messages encrypted in
C0, C1 in signatures generated for A. forgery check describes an additional check required for
a forgery to pass as valid (beyond being valid in the sense of Ver). The core of the proof is the
transition from Game 4 to Game 5 (with the previous transitions preparing the ground), see also
Fig. 2.

28

if
(f∗ (

M
)

p

) =
1

if
(f∗ (

M
)

p

) =
−
1

#
C
R
S
1

f
π
1

Z
0

Z
1

π
1

Z
0
=
Z

1
fo

rg
er

y
ch

ec
k

ab
or

tc
on

di
tio

n
re

m
ar

k
4
.i
.0

hi
di

ng
0

S
1
H

(`
)

i
(M

)
H

(`
)

i
(M

)
S
1
H

(`
)

i
(M

)
D
ec

e
g
(s
k
∗ 0
,C

∗ 0
)
=
H

(`
)

i
(M

∗
)

—
sa

m
e

as
4
.i

4
.i
.1

hi
di

ng
0

S
1
H

(`
)

i
(M

)
H

(`
)

i
(M

)
S
1
H

(`
)

i
(M

)
D
ec

e
g
(s
k
∗ 0
,C

∗ 0
)
=
H

(`
)

i
(M

∗
)

f
∗
(M

∗
)
∈
Q
R

p
∪
{0
}

lo
se

s
fa

ct
or
≈

2

4
.i
.2

hi
di

ng
f
∗

S
1
H

(`
)

i
(M

)
H

(`
)

i
(M

)
S
1
H

(`
)

i
(M

)
D
ec

e
g
(s
k
∗ 0
,C

∗ 0
)
=
H

(`
)

i
(M

∗
)

f
∗
(M

∗
)
∈
Q
R

p
∪
{0
}

G
S

w
itn

es
s-

in
d.

4
.i
.3

hi
di

ng
f
∗

S
2
H

(`
)

i
(M

)
Q

(`
)

i
(M

)
S
1
H

(`
)

i
(M

)
D
ec

e
g
(s
k
∗ 0
,C

∗ 0
)
=
H

(`
)

i
(M

∗
)

f
∗
(M

∗
)
∈
Q
R

p
∪
{0
}

E
lG

am
al

4
.i
.4

bi
nd

in
g

f
∗

S
2
H

(`
)

i
(M

)
Q

(`
)

i
(M

)
S
1
H

(`
)

i
(M

)
D
ec

e
g
(s
k
∗ 0
,C

∗ 0
)
=
H

(`
)

i
(M

∗
)

f
∗
(M

∗
)
∈
Q
R

p
∪
{0
}

G
S

C
R

S
in

di
st

.

4
.i
.5

bi
nd

in
g

f
∗

S
2
H

(`
)

i
(M

)
Q

(`
)

i
(M

)
S
1
H

(`
)

i
(M

)
D
ec

e
g
(
sk

∗ 1
,C

∗ 1
)
=
H

(`
)

i
(M

∗
)
f
∗
(M

∗
)
∈
Q
R

p
∪
{0
}

G
S

so
un

dn
es

s

4
.i
.6

bi
nd

in
g

f
∗

S
2
Q

(`
)

i
(M

)
Q

(`
)

i
(M

)
S
1
H

(`
)

i
(M

)
D
ec

e
g
(s
k
∗ 1
,C

∗ 1
)
=
H

(`
)

i
(M

∗
)

f
∗
(M

∗
)
∈
Q
R

p
∪
{0
}

E
lG

am
al

4
.i
.7

bi
nd

in
g

f
∗

S
2
Q

(`
)

i
(M

)
Q

(`
)

i
(M

)
S
1
H

(`
)

i
(M

)
D
ec

e
g
(
sk

∗ 0
,C

∗ 0
)
=
H

(`
)

i
(M

∗
)
f
∗
(M

∗
)
∈
Q
R

p
∪
{0
}

G
S

so
un

dn
es

s

4
.i
.8

hi
di

ng
f
∗

S
2
Q

(`
)

i
(M

)
Q

(`
)

i
(M

)
S
1
H

(`
)

i
(M

)
D
ec

e
g
(s
k
∗ 0
,C

∗ 0
)
=
H

(`
)

i
(M

∗
)

f
∗
(M

∗
)
∈
Q
R

p
∪
{0
}

G
S

C
R

S
in

di
st

.

4
.i
.9

hi
di

ng
0

S
1
Q

(`
)

i
(M

)
Q

(`
)

i
(M

)
S
1
H

(`
)

i
(M

)
D
ec

e
g
(s
k
∗ 0
,C

∗ 0
)
=
H

(`
)

i
(M

∗
)

f
∗
(M

∗
)
∈
Q
R

p
∪
{0
}

G
S

w
itn

es
s-

in
d.

4
.i
.1
0

hi
di

ng
0

S
1
Q

(`
)

i
(M

)
Q

(`
)

i
(M

)
S
1
H

(`
)

i
(M

)
D
ec

e
g
(s
k
∗ 0
,C

∗ 0
)
=
H

(`
)

i
(M

∗
)

—
ga

in
s

fa
ct

or
≈

2
sa

m
e

as
4
.(
i
+

1
)

Fi
g.

2:
Tr

an
si

tio
ns

be
tw

ee
n

tw
o

hy
br

id
s

G
am

e
4
.i

an
d

G
am

e
4
.(
i
+

1
)

th
at

in
tu

rn
in

te
rp

ol
at

e
be

tw
ee

n
G

am
e
4

an
d

G
am

e
5

of
th

e
m

ai
n

pr
oo

f.
A

ga
in

,
bo

xe
s

de
no

te
ch

an
ge

s
co

m
pa

re
d

to
th

e
pr

ev
io

us
ga

m
e.

T
he

no
ta

tio
n

fo
llo

w
s

Fi
g.

1:
#

de
no

te
s

th
e

ga
m

e
nu

m
be

r,
an

d
C
R
S
1

an
d
f

de
no

te
th

e
se

tu
p

of
th

es
e

va
lu

es
in

th
e

pu
bl

ic
pa

ra
m

et
er

s.
T

he
co

lu
m

n
π
1

de
sc

ri
be

s
w

hi
ch

su
b-

st
at

em
en

t(
i.e

.,
S
1

or
S
2

)t
he

pr
oo

fπ
1

ac
tu

al
ly

pr
ov

es
,a

nd
th

e
co

lu
m

ns
Z

0
,Z

1

de
sc

ri
be

ho
w

th
e

ga
m

e
pr

ep
ar

es
si

gn
at

ur
es

fo
r
A

.I
n

th
is

,w
e

di
st

in
gu

is
h

th
e

ca
se

s
w

he
re

th
e

L
eg

en
dr

e
sy

m
bo

l(f∗ (
M

)
p

) of
th

e
m

es
sa

ge
to

be
si

gn
ed

is

1
an

d
−
1

,r
es

pe
ct

iv
el

y.
(W

e
ne

gl
ec

tt
he

un
lik

el
y

ca
se

(f∗ (
M

)
p

) =
0

in
th

is
ov

er
vi

ew
.)

A
ls

o,
as

in
Fi

g.
1,

fo
rg

er
y

ch
ec

k
de

sc
ri

be
s

an
ad

di
tio

na
lc

he
ck

re
qu

ir
ed

fo
r

a
fo

rg
er

y
to

pa
ss

as
va

lid
.F

in
al

ly
,t

he
fu

nc
tio

ns
H

(`
)

i
ar

e
de

fin
ed

at
th

e
be

gi
nn

in
g

of
th

e
pr

oo
f

of
L

em
m

a
1.

(I
nt

ui
tiv

el
y,
H

(`
)

i
is

a
ra

nd
om

fu
nc

tio
n

th
at

ho
w

ev
er

do
es

no
td

ep
en

d
on

its
fu

ll
in

pu
tM

,b
ut

on
ly

on
i

va
lu

es
(f j(M

)

p

) fo
r

ra
nd

om
ly

ch
os

en
f j

.)
W

e
re

fe
r

to
L

em
m

a
1

fo
r

a
de

ta
ile

d
pr

oo
fa

nd
a

ju
st

ifi
ca

tio
n

fo
re

ac
h

ga
m

e
tr

an
si

tio
n.

29

	Algebraic partitioning:Fully compact and (almost) tightly secure cryptography
	Dennis Hofheinz

