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Hash functions at FSE

FSE 08: LAKE

FSE 07: Grindahl
→ broken (AC 07)

FSE 06: FORK-256
→ broken (FSE 07)

FSE 05: SMASH
→ broken (SAC 05)
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DESIGN OF LAKE
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Overview

I Family = LAKE-256 + LAKE-512 + truncated variants

I HAIFA as iterated mode

I Built-in randomized hashing

Key ideas

I Local “wide-pipe” in the compression function

I Multiple levels of feedforward

I Highly modular structure
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HAIFA

≈ Merkle-Damg̊ard with salt and dithering [Biham-Dunkelman 06]

I Effective initial value is

H0 = C (digest bitsize, IV , 0, 0)

I Compression function computes

Hi = C (Hi−1,Mi , salt,#bits hashed so far)

I Padding is

1‖0 . . . 0‖message bitsize‖digest bitsize

Side advantages over MD

I Prevents from fixed-point-based attacks

I Makes “herding attacks” harder
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LAKE’s compression function

Input: 8-word chain value H, 16-word message block M,
4-word salt S , 2-word index t.
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I saltstate stretches the chain value to 16 words

I processmessage transforms the state bijectively

I feedforward shrinks back with dependence on H, S and t
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The saltstate function

Initialization of the 16-word local chain value L.

input H0 . . .H7, S0 . . . S3, t0t1

1. for i = 0, . . . , 7 do
Li ← Hi

2. L8 ← g(H0, S0 ⊕ t0,C8, 0)
3. L9 ← g(H1, S1 ⊕ t1,C9, 0)
4. for i = 10, . . . , 15 do

Li ← g(Hi ,Si ,Ci , 0)

output L0 . . . L15

I Injective mapping

I Uses 32-bit constants C8, . . . ,C15
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The processmessage function

Message-dependent bijective transform of L.

input L0 . . . L15, M0 . . .M15, σ

1. F ← L
2. for i = 0, . . . , 15 do

Li ← f(Li−1, Li ,Mσ(i),Ci )
3. for i = 0, . . . , 15 do

Li ← g(Li−1, Li ,Fi , Li+1)

output L = L0 . . . L15

I 8 rounds in LAKE-256, 10 rounds in LAKE-512

I Uses a permutation σ and constants C0, . . . ,C15
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The feedforward function

Compression of the final L to the new global chain value.

input L0 . . . L15, H0 . . .H7, S = S0 . . . S3, t0t1

1. H0 ← f(L0, L8, S0 ⊕ t0,H0)
2. H1 ← f(L1, L9, S1 ⊕ t1,H1)
3. for i = 2, . . . , 7 do

Hi ← f(Li , Li+8, Si ,Hi )

output H0 . . .H7

I 14 words are fedforward

I Parallelizable into 8 branches
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The f function

For LAKE-256:

f(a, b, c, d) =
[
a + (b ∨ C0)

]
+

([
c + (a ∧ C1)

]
≫ 7

)
+

([
b + (c ⊕ d)

]
≫ 13

)

I Used in the round function and for global feedforward

I Fast and constant-time operators

I Fast diffusion of changes accross words

I Double input of a, b, c limits absorption by ∨ and ∧
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The g function

For LAKE-256:

g(a, b, c , d) =
[
(a + b) ≫ 1

]
⊕ (c + d)

I Used in the round function for local feedforward

I Very fast, parallelizable

I Basic diffusion of changes

I 1-bit rotation breaks up the byte structure; faster than
multibit rotation on some CPU’s
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Parameters choice

I Bitsizes of digest/message to suit standard API’s

I Conservative round numbers (8, 10)

I 128-bit salt (resp. 256) seems sufficient

I 64-bit index (resp. 128) seems sufficient
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SECURITY COUNTERMEASURES
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Against side-channel attacks

To prevent from:

I Timing attacks

I Power attacks

Countermeasures:

I No S-boxes (risk of cache attacks)

I Constant-time operators (+,⊕,∨,∧,≫ k)

I Constant-distance rotations

I No (input-dependent) branchings

I No (input-dependent) loads/stores’ addresses
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Against conventional attacks

I Wide-pipe makes local collisions impossible

I Feedforwards: inversion resistance and complex structure

I Modular structure facilitates analysis

I No trivial fixed-points

Obstacles to differential analysis

I No shift register, to complicate “perturb-and-correct”

I Linear approximations of f and g made difficult

I High number of message inputs: 128 vs. 64 in SHA-256

I Flow dependence
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Attacking LAKE

Best attacks known:

I One-round collisions with distinct salts or IV’s

I One-round low-weight differential

I Two-round statistical distinguisher

Conjectured:

I LAKE-256 and LAKE-512 preimage and collision resistant

I Salt-indexed function families pseudorandom, unpredictable
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Attacking LAKE

Multiple attack scenarios:

I Chosen/fixed salt/IV attacks,

I Compression function with free index

I Fixed-points/collisions for processmessage

Consider simplified versions:

I Reduce the number of rounds

I Replace f by g

I Change rotation distances

I Use constant constants C0 = · · · = C15

I Use only the trivial permutation
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PERFORMANCE
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Algorithmic complexities

LAKE-256 vs. SHA-256

Arithmetic operations:

I 1908 vs. 2232 in total

I 952 vs. 600 integer additions

I 276 vs. 640 XOR’s

I 136 vs. 320 AND’s

I 136 vs. 0 OR’s

I 408 vs. 576 rotations

I 0 vs. 96 shifts
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Memory

LAKE-256 vs. SHA-256

Memory (bytes):

I 64 vs. 256 for constants

I 128 vs. 224 for local variables
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Benchmarks

LAKE-256 vs. SHA-256

“Moderately” optimized C code for both, gcc 4.1.2, Linux 2.6.19

Estimates of the median cycle count for the compression function:

I Athlon 800 MHz: 2700 vs. 3000 (42 vs. 50 cycles/byte)

I Pentium 4 1500 MHz: 3600 vs. 4000 (56 vs. 63 cycles/byte)

I Pentium 4 2400 MHz: 3300 vs. 3900 (52 vs. 61 cycles/byte)
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QUESTIONS
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FAQ

Will you submit LAKE to NIST?
→ We may submit something based on.

What about hardware efficiency?
→ Implementation is in progress.

Why an explicit salt when exist generic methods (IV, RMX)?
→ To avoid weak home-brewed modes and encourage the use of
randomized hashing.

Where can I get a source code of LAKE?
→ Email me.
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