Entropy of the Internal State of an FCSR in Galois Representation

Andrea Röck INRIA Paris - Rocquencourt, France

> Fast Software Encryption Lausanne, February 12, 2008

Outline

- Entropy after one Iteration
- Final Entropy
- Lower Bound
- Conclusion

Part 1 FCSR

Context

- Feedback with Carry Shift Registers (FCSRs):
 - Similar to LFSRs but instead of XORs they use additions with carry.
 - Introduced by [Goresky Klapper 93], [Marsaglia Zamand 91] and [Couture L'Ecuyer 94].
- ▶ Binary FCSRs in Galois architecture [Goresky Klapper 02].
- ▶ Used in the eSTREAM candidate F-FCSR [Arnault et al. 05].
- Entropy of inner state when all values for the initial states are allowed, e.g first version of F-FSCR-8.

FCSRs

► The output of an FCSR is the 2-adic expansion of

 $\frac{p}{q} \le 0.$

▶ The output of an FCSR has the maximal period of |q| - 1 if and only if 2 has order |q| - 1 modulo q.

FCSR in Galois architecture (1)

- ▶ *n*: Size of main register.
- ▶ 2ⁿ > d ≥ 2ⁿ⁻¹: Integer which determines the feedback positions. Carry bit if d_i = 1.

▶ (m(t), c(t)): State at time t with

- $m(t) = \sum_{i=0}^{n-1} m_i(t) 2^i$: 2-adic expansion of the main register.
- $c(t) = \sum_{i=0}^{n-1} c_i(t) 2^i$: 2-adic expansion of the carry register, where $c_i(t) = 0$ for $d_i = 0$.
- ▶ In our case: q = 1 2d < 0 and $p = m(0) + 2c(0) \le |q|$.

FCSR in Galois architecture (2)

Update function:

$$m_{n-1}(t+1) = m_0(t),$$

$$d_i = 1: m_i(t+1) = (m_0(t) + c_i(t) + m_{i+1}(t)) \mod 2,$$

$$c_i(t+1) = (m_0(t) + c_i(t) + m_{i+1}(t)) \div 2,$$

$$d_i = 0: m_i(t+1) = m_{i+1}(t).$$

We have

- \bullet n bits in the main register and
- $\ell = HammingWeight(d) 1$ carry bits.
- lnitial Entropy: $n + \ell$ bits.
- Entropy after one iteration: H(1).
- Final Entropy: H^f .

Part 2 Entropy after one Iteration

Idea

- lnitial entropy: $n + \ell$.
- Question: Entropy loss after one iteration?
- Method:
 - Counting the number of (m(0), c(0))'s which produce the same (m(1), c(1)).
 - Using the equations of the update function.
 - Only possible if there are positions i such that $d_i = 1$ and $m_{i+1}(0) + c_i(0) = 1$.
- **Entropy** after one iteration:

$$H(1) = \sum_{j=0}^{\ell} 2^{n-j} {\ell \choose j} \frac{2^j}{2^{n+\ell}} \log_2\left(\frac{2^{n+\ell}}{2^j}\right) = n + \frac{\ell}{2}.$$

Part 3 Final Entropy

Final Entropy

- **Goal:** Entropy when we reached the cycle.
- ▶ Proposition [Arnault Berger Minier 08]: Two states (m, c) and (m', c') are equivalent, *i.e.* m + 2c = m' + 2c' = p, if and only if they eventually converge to the same state after the same number of iterations.
- ▶ Idea: How many (m, c)'s create the same p = m + 2c?

▶ Probability: $\frac{v(p)}{2^{n+\ell}}$, where $v(p) = \#\{(m,c)|m+2c=p\}$ for all $0 \le p \le |q|$.

Final Entropy:

$$H^{f} = \sum_{p=0}^{|q|} \frac{v(p)}{2^{n+\ell}} \log_2\left(\frac{2^{n+\ell}}{v(p)}\right)$$

Algorithm (1)

Method: Get v(p) by looking at bit per bit addition of m and 2c.

Algorithm (2)

▶ 4 different Cases: $i = \lfloor \log_2(p) \rfloor$.

- Case 1: 1 < i < n and $d_{i-1} = 0$.
- Case 2: 1 < i < n and $d_{i-1} = 1$.
- Case 3: i = n and $2^n \le p \le |q|$.
- Case 4: $0 \le p \le 1$ ("i = 0").

For each case:

- Which p's are in this case.
- What is their value of $\frac{v(p)}{2^{n+\ell}}\log_2\left(\frac{2^{n+\ell}}{v(p)}\right)$.

• Complexity: Works in $O(n^2)$ if $S_1(k) = \sum_{x=2^{k-1}+1}^{2^k} x \log_2(x)$ and $S_2(k) = \sum_{x=1}^{2^k-1} x \log_2(x)$ are known for $k \le \ell$.

Approximation

▶ $S_1(k) = \sum_{x=2^{k-1}+1}^{2^k} x \log_2(x)$ and $S_2(k) = \sum_{x=1}^{2^k-1} x \log_2(x)$ can be approximated by using

$$\frac{1}{2} \Big(x \log_2(x) + (x+1) \log_2(x+1) \Big) \approx \int_x^{x+1} y \log_2(y) \, dy$$

for large x.

 \blacktriangleright Result for some arbitrary values of d.

n	d	ℓ	H^{f}	lb H^f	ub H^f	lb H^f , $k>5$	ub H^f , $k > 5$
8	0xAE	4	8.3039849	8.283642	8.3146356	8.3039849	8.3039849
16	0xA45E	7	16.270332	16.237686	16.287598	16.270332	16.270332
24	0xA59B4E	12	24.273305	24.241851	24.289814	24.273304	24.273305
32	0xA54B7C5E	17		32.241192	32.289476	32.272834	32.272834

Part 4 Lower Bound

Lower Bound of the Final Entropy

Induction Base:

An FCSR has a final entropy larger than n if the feedback positions are all grouped together at the least significant position.

Induction Step:

If we move a feedback position one position to the left, the final entropy increases.

Part 5 Conclusion

Conclusion

- After one iteration, we loose already $\ell/2$ bits of entropy.
- We have presented an algorithm which computes the final state entropy of an Galois FCSR.
- ► The algorithm works in O(n²) if the values of the sums ∑^{2^k}_{x=2^{k-1}+1} x log₂(x) and ∑^{2^k-1}_{x=1} x log₂(x) are known. Otherwise we need O(2^ℓ) steps to compute these sums.
- \blacktriangleright The approximation of the sum works very well for large k.
- \blacktriangleright The final entropy is larger than n bits.

