Entropy of the Internal State of an FCSR in Galois Representation

Andrea Röck INRIA Paris - Rocquencourt, France

> Fast Software Encryption Lausanne, February 12, 2008

Outline

- \blacktriangleright [Entropy after one Iteration](#page-8-0)
- [Final Entropy](#page-10-0)
- **[Lower Bound](#page-15-0)**
- \blacktriangleright [Conclusion](#page-17-0)

Part 1 **FCSR**

Context

- **Feedback with Carry Shift Registers (FCSRs):**
	- Similar to LFSRs but instead of XORs they use additions with carry.
	- Introduced by [Goresky Klapper 93], [Marsaglia Zamand 91] and [Couture L'Ecuyer 94].
- Binary FCSRs in Galois architecture [Goresky Klapper 02].
- \blacktriangleright Used in the eSTREAM candidate F-FCSR [Arnault *et al.* 05].
- **Entropy** of inner state when **all values** for the initial states are allowed, $e.g$ first version of F-FSCR-8.

FCSRs

 \blacktriangleright The output of an FCSR is the 2-adic expansion of

 \overline{p} \overline{q} ≤ 0 .

 \blacktriangleright The output of an FCSR has the maximal period of $|q|-1$ if and only if 2 has order $|q| - 1$ modulo q.

FCSR in Galois architecture (1)

- \blacktriangleright n: Size of main register.
- ▶ $2^n > d \geq 2^{n-1}$: Integer which determines the feedback positions. Carry bit if $d_i = 1$.

 \blacktriangleright $(m(t), c(t))$: State at time t with

- $m(t) = \sum_{i=0}^{n-1} m_i(t) 2^i$: 2-adic expansion of the main register.
- $m(t) = \sum_{i=0}^{n-1} c_i(t) 2^i$. 2-adic expansion of the carry register, where $c_i(t) = 0$ for $d_i = 0$.
- **► In our case:** $q = 1 2d < 0$ and $p = m(0) + 2c(0) \leq |q|$.

FCSR in Galois architecture (2)

IDED Update function:

$$
m_{n-1}(t+1) = m_0(t),
$$

\n
$$
d_i = 1 : m_i(t+1) = (m_0(t) + c_i(t) + m_{i+1}(t)) \mod 2,
$$

\n
$$
c_i(t+1) = (m_0(t) + c_i(t) + m_{i+1}(t)) \div 2,
$$

\n
$$
d_i = 0 : m_i(t+1) = m_{i+1}(t).
$$

\blacktriangleright We have

- n bits in the main register and
- $\ell = HammingWeight(d) 1$ carry bits.
- Initial Entropy: $n + \ell$ bits.
- Entropy after one iteration: $H(1)$.
- Final Entropy: H^f .

Part 2 Entropy after one Iteration

Idea

- **Initial entropy:** $n + \ell$.
- Question: Entropy loss after one iteration?
- \blacktriangleright Method:
	- Counting the number of $(m(0), c(0))$'s which produce the same $(m(1), c(1))$.
	- Using the equations of the update function.
	- Only possible if there are positions i such that $d_i = 1$ and $m_{i+1}(0) + c_i(0) = 1.$
- \blacktriangleright Entropy after one iteration:

$$
H(1) = \sum_{j=0}^{\ell} 2^{n-j} {\ell \choose j} \frac{2^j}{2^{n+\ell}} \log_2 \left(\frac{2^{n+\ell}}{2^j} \right) = n + \frac{\ell}{2}.
$$

Part 3 Final Entropy

Final Entropy

- \triangleright Goal: Entropy when we reached the cycle.
- **Proposition [Arnault Berger Minier 08]:** Two states (m, c) and (m', c') are equivalent, *i.e.* $m + 2c = m' + 2c' = p$, if and only if they eventually converge to the same state after the same number of iterations.
- \blacktriangleright Idea: How many (m, c) 's create the same $p = m + 2c$?

Probability: $\frac{v(p)}{2p+q}$ $\frac{C(p)}{2^{n+\ell}}$, where $v(p) = \#\{(m, c)|m + 2c = p\}$ for all $0 \le p \le |q|.$

Final Entropy:

$$
H^f = \sum_{p=0}^{|q|} \frac{v(p)}{2^{n+\ell}} \log_2 \left(\frac{2^{n+\ell}}{v(p)}\right)
$$

Algorithm (1)

 \blacktriangleright Method: Get $v(p)$ by looking at bit per bit addition of m and $2c$.

Algorithm (2)

▶ 4 different Cases: $i = \lfloor \log_2(p) \rfloor$.

- Case 1: $1 < i < n$ and $d_{i-1} = 0$.
- Case 2: $1 < i < n$ and $d_{i-1} = 1$.
- Case 3: $i = n$ and $2^n \leq p \leq |q|$.
- Case 4: $0 \le p \le 1$ (" $i = 0$ ").

\blacktriangleright For each case:

- Which p 's are in this case.
- What is their value of $\frac{v(p)}{2^{n+\ell}} \log_2$ \overline{a} $2^{n+\ell}$ $v(p)$ ´ .

 \blacktriangleright Complexity: Works in O ¡ $n^{\small 2}$) if $S_1(k) = \sum_{x=1}^{2^k}$ $\frac{2^{\infty}}{x=2^{k-1}+1} x \log_2(x)$ and $S_2(k) = \sum_{x=1}^{2^k-1}$ $\int_{x=1}^{2^{\infty}-1}x\log_{2}(x)$ are known for $k\leq \ell$.

Approximation

 $S_1(k) = \sum_{x=1}^{k}$ $\frac{2^k}{x=2^{k-1}+1} x \log_2(x)$ and $S_2(k) = \sum_{x=1}^{2^k-1}$ $\frac{z^{\alpha}-1}{x=1}x\log_{2}(x)$ can be approximated by using

$$
\frac{1}{2} \Big(x \log_2(x) + (x+1) \log_2(x+1) \Big) \approx \int_x^{x+1} y \log_2(y) \, dy
$$

for large x .

Result for some arbitrary values of d .

Part 4 Lower Bound

Lower Bound of the Final Entropy

▶ Proof that final entropy is $\geq n$ for all FCSRs in Galois architecture by using previous algorithm.

Induction Base:

An FCSR has a final entropy larger than n if the feedback positions are all grouped together at the least significant position.

Induction Step:

If we move a feedback position one position to the left, the final entropy increases.

Part 5 **Conclusion**

Conclusion

- After one iteration, we loose already $\ell/2$ bits of entropy.
- \blacktriangleright We have presented an algorithm which computes the final state entropy of an Galois FCSR.
- \blacktriangleright The algorithm works in $O(n^2)$) if the values of the sums $\sum_{x=1}^{2^k}$ $\sum_{x=2^{k-1}+1}^{\infty} x \log_2(x)$ and $\sum_{r=1}^{\infty}$ $\frac{2^{n}-1}{x=1}x\log_{2}(x)$ are known. Otherwise we need $O(2^{\ell})$ steps to compute these sums.
- \blacktriangleright The approximation of the sum works very well for large k .
- \blacktriangleright The final entropy is larger than n bits.

