
Overview
Statistical model
Linear corrector

Non linear corrector
Systematic construction

Conclusion

Post-processing functions for a biased physical
random number generator

Patrick Lacharme

Université de Toulon,
Institut de Mathématique (Imath)

Fast Software Encryption 2008

1/27 Patrick Lacharme Post-processing functions for a biased physical random number generator



Overview
Statistical model
Linear corrector

Non linear corrector
Systematic construction

Conclusion

Overview

1 Statistical model

2 Linear corrector

3 Non linear corrector

4 Systematic construction

2/27 Patrick Lacharme Post-processing functions for a biased physical random number generator



Overview
Statistical model
Linear corrector

Non linear corrector
Systematic construction

Conclusion

Overview

1 Statistical model

2 Linear corrector

3 Non linear corrector

4 Systematic construction

3/27 Patrick Lacharme Post-processing functions for a biased physical random number generator



Overview
Statistical model
Linear corrector

Non linear corrector
Systematic construction

Conclusion

True random number generator

A true random number generator consists of two different
parts :

A physical non deterministic phenomenon produces a raw
binary sequence.

A deterministic function, called corrector, compress this
sequence in order to reduce statistical weakness.
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Statistical model for the raw sequence

The bias e is the deviation from 1/2 of the probability of
occurence of a bit xi :

e = |P(xi = 0)− 1/2| = |P(xi = 1)− 1/2| .

Hypothesis : the bits xi of the raw sequence are independents
and have a constant bias e.

A corrector is a function mapping a vector x of n bits to a vector
y of m bits, with compression rate m/n.
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Output biais of a Boolean function

Let e be the bias of the n input xi .

For a Boolean function f mapping Fn
2 to F2, the output

bias ∆f of f is

∆f (e) = |P(f (x) = 1)− 1/2| = |P(f (x) = 0)− 1/2| . (1)

For a vectorial function f mapping n bits to m bits, the
output bias of a linear combination of fi∑m

i=1 ui fi(x) = u.f (x) is :

∆u.f (e) = |P(u.f (x) = 1)− 1/2| = |P(u.f (x) = 0)− 1/2| .
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First formula of output bias of a Boolean function

From (1), the output bias ∆f (e) is a polynomial in e :

∆f (e) = −1
2

∑
x∈Fn

2

(
1
2
− e)n−wh(x)(

1
2

+ e)wh(x)(−1)f (x) (2)

= a0 + atet + at+1et+1 + . . .

Moreover, ∆f (e) have no constant term if and only if f is
balanced.

Construction of functions which maximalise the valuation t ?
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Three linear correctors

M. Dichtl (FSE’07) : Bad and Good ways of post-processing
biased physical random numbers.

Three linear correctors mapping 16 bits to 8 bits :
1 yi = xi + xi+1 mod 8 + xi+8 mod 2.
2 yi = xi + xi+1 mod 8 + xi+2 mod 8 + xi+8 mod 2.
3 yi = xi + xi+1 mod 8 + xi+2 mod 8 + xi+4 mod 8+xi+8 mod 2.

Same compression rate as xor corrector :

yi = x2i + x2i+1 mod 2 .
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Analysis of the bias

These correctors are designed to reduce the output bias.

Same hypothesis on input bias.

Approach : determine probability of every inputs and sum
up the probability of occurence leading the same output.

Results : bias of any output bytes is a polynomial in e and
the lowest power in e is respectly 3, 4 and 5.

Systematic construction of corrector with variable input sizes
and compression rates ?

9/27 Patrick Lacharme Post-processing functions for a biased physical random number generator



Overview
Statistical model
Linear corrector

Non linear corrector
Systematic construction

Conclusion

Overview

1 Statistical model

2 Linear corrector

3 Non linear corrector

4 Systematic construction

10/27 Patrick Lacharme Post-processing functions for a biased physical random number generator



Overview
Statistical model
Linear corrector

Non linear corrector
Systematic construction

Conclusion

Matricial representation of a linear corrector

1 A linear corrector f mapping Fn
2 to Fm

2 is defined by the
matricial product :

f (x) =

 h1,1 . . . h1,n
...
hm,1 . . . hm,n


 x1

...
xn

 =

 y1
...
ym

 ,

where H = (hi,j) is a binary matrix with m rows and n
collums.

2 A linear corrector is associated with a [n, m] linear code.
3 It corresponds to a syndrom calculation.
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Minimal distance and bias

Let f be the linear corrector represented by the matrix H
generating a [n, m, d ] linear code, and e/2 the input bias.

Theorem

The output bias ∆u.f (e) of u.f (x) is less or equal than ed/2.

Sketch of proof :

The bias of xi1 + . . . + xid mod 2 is ed/2.

Any linear combination of output bits is the sum of at least
d input bits, by definition of minimal distance of a linear
code.
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Implementation with cyclic codes

The syndrom calculation is realized by a polynomial division

n∑
i=0

miX
i mod

k∑
i=0

giX
i ,

which is efficiently implemented with a shift register.

m m m

g g g

r r r

0 n

0 1 k

0 1 k

1.
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Conclusion on linear corrector

Equivalence between minimal distance of a linear code and
valuation of the bias of linear combination of output bits.

For example, the three correctors of M. Dichtl correspond
respectly to generator matrix of [16,8,3], [16,8,4] and [16,8,5]
linear codes.

Moreover, all this part can be generalized with non constant
input bias using the d greatest input bias.

Non linear corrector can be better than linear corrector ?

14/27 Patrick Lacharme Post-processing functions for a biased physical random number generator



Overview
Statistical model
Linear corrector

Non linear corrector
Systematic construction

Conclusion

Overview

1 Statistical model

2 Linear corrector

3 Non linear corrector

4 Systematic construction

15/27 Patrick Lacharme Post-processing functions for a biased physical random number generator



Overview
Statistical model
Linear corrector

Non linear corrector
Systematic construction

Conclusion

Fourier and Walsh Transform

Definition

The Fourier transform of a function f with n variables is :

Ff (u) =
∑
x∈Fn

2

f (x)(−1)x .u.

The Walsh transform of a function f with n variables is :

f̂ (u) =
∑
x∈Fn

2

(−1)f (x)⊕x .u.
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Output bias with Walsh coefficients

Theorem

The output bias ∆φu(e) of φu(x) = u.f (x) is

∆φu(e) =
1

2n+1

∑
v∈Fn

2

(2e)wh(v)(−1)wh(v)+1φ̂u(v). (3)

Sketch of proof : From formula (2) of the bias, we analyse the
Fourier transform of the function

g(x) = (
1
2
− e)n−wh(x)(

1
2

+ e)wh(x) .
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Example (1)

Let f be the Boolean function defined by

f (x) = f (x1, x2, x3) = x2 + x3 + x1x2 + x2x3 mod 2 ,

where the truth table and the Walsh coefficients are

x f (x) f̂ (x)

000 0 0
001 1 4
010 1 0
100 0 -4
011 1 4
101 1 0
110 0 4
111 0 0
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Example (2)

The probability P(f (x) = 0) = 1
2 − e computed with formula (2) :

P(f (x) = 0) = (
1
2
−e)3+(

1
2
−e)2(

1
2
+e)+(

1
2
−e)(

1
2
+e)2+(

1
2
+e)3

=
1
2

+ 2e2 .

The output bias computed with formula (3), with u = 1, is

∆f (e) =
1

16
(f̂ (000) + 2ef̂ (001) + 2ef̂ (010) + 2ef̂ (100)

−4e2 f̂ (011)− 4e2 f̂ (101)− 4e2 f̂ (110) + 8e3 f̂ (111))

= −2e2 .
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Valuation of bias

Coefficients and valuation of ∆φu(e) are determined with
formula (3) :
For a Boolean function φu, we denote

Bw =
∑
v∈Fn

2
wh(v)=w

φ̂u(v).

Corollary

If φu is balanced, then the output bias ∆φu(e) is a polynomial of
valuation W, with W = min{w | Bw 6= 0}.

Systematic constructions of functions with high W ?
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Resilient functions

Definition ((n, m, t)-resilient functions)

A (n, m, t)-resilient function is a vectorial function from Fn
2 to Fm

2 ,
such that for all y ∈ Fm

2 and for any binary constant ci :

P(f (x) = y | xi1 = c1, . . . , xit = ct) = 2n−m ,

where all xi , with i /∈ {i1, . . . , it} are viewed as independent
binary random variables with probability 0.5.

Lemma (Xiao, Massey,1988)

A function f is t-resilient if and only if Walsh coefficients
f̂ (u) = 0, with 0 ≤ wh(u) ≤ t .

22/27 Patrick Lacharme Post-processing functions for a biased physical random number generator



Overview
Statistical model
Linear corrector

Non linear corrector
Systematic construction

Conclusion

A resilient corrector

Theorem

Let f be a (n, m, t)-resilient function. Then for all u 6= 0, the
output bias ∆u.f (e) is a polynomial with valuation greater than
t + 1.

Sketch of proof : By previous Lemma and formula (3),

∆φu(e) =
1

2n+1

∑
v∈Fn

2
wh(v)>t

(2e)wh(v)(−1)wh(v)+1φ̂u(v).
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Resilience and bias

Non linear corrector are sometimes better than linear
corrector : there exist a non linear (16,8,5) resilient function.

The bias of any linear combination of output bits is bounded in
linear and non linear case using resilience degree.

We want an upper bound on the bias of any output m-tuple y :∣∣P(f (x) = y)− 2−m
∣∣
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Bias of any output m-tuple

Theorem

∀y ∈ {0, 1}m
∣∣P(f (x) = y)− 2−m

∣∣ ≤ 2 max
u∈Fn

2

|∆φu(e)| .

Sketch of proof : Variant of a Theorem of Alon, Goldreich,
Hastad, Peralta, 1992 on biased sample space and almost
k-wise independent random variables.

If et+1 << 2−m, then the minimal entropy of the output is very
close to m.
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Example of linear corrector

Let C be a [255, 21, 111] BCH code and D the dual code of
C with parameters [255, 234, 6], with generator polynomial

H(X ) = X 21 + X 19 + X 14 + X 10 + X 7 + X 2 + 1.

The linear corrector f : F255
2 → F21

2 is implemented with a
shift register of length 21 with seven xor logic doors.

With an input bias of 0.25,

∀y ∈ F21
2

∣∣∣P(f (X ) = y)− 2−21
∣∣∣ ≤ 2−111.
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Conclusion

Linear codes and resilient functions give construction of
correctors reducing the bias with variable input sizes and
compression rates.

Constant input bias assumption can be removed in the linear
case.

Hardware implementation of post processing functions can be
realized on a small component.
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