An enciphering scheme based on a card shuffle

Ben Morris Mathematics, UC Davis

Joint work with Viet Tung Hoang (Computer Science, UC Davis) and Phil Rogaway (Computer Science, UC Davis).

Setting

Blockcipher construction

pseudorandom function \longrightarrow pseudorandom permutation

Most current methods rely on either:

Feistel networks, or SP networks

New method: Swap-or-not shuffle. Stronger provable-security results.

Contribution: Swap-or-not

- A new method to construct a blockcipher
- A proof that it works, and with much better bounds than with Feistel

Security of Swap-or-not : Numerical Examples

Domain	size	# rounds	$\mathrm{Adv}^{\mathrm{CCA}}$	# queries
64-bit strings	2^{64}	1200	$< 10^{-10}$	2^{63}
social security numbers	10^{9}	340	$< 10^{-10}$	10^{8}
credit card numbers	10^{16}	500	$< 10^{-10}$	10^{15}

Our cipher works directly on nonbinary domains such as credit card numbers and social security numbers.

The Problem

 $\mathsf{PRF} \longrightarrow \mathsf{PRP}$

Luby, Rackoff 88 Patarin 90, 03, 10 Maurer 92 Maurer, Pietrzak 03 M, Rogaway, Stegers 09 Proven upper bounds for enciphering n-bit strings:

method	# rounds	# queries	
Balanced Feistel	3	$q \approx 2^{n/4}$	Luby, Rackoff
	r	$q \approx 2^{n/2 - 1/r}$	Maurer, Pietrzak
	6	$q pprox 2^{n/2}$	Patarin
Thorp shuffle	O(n)	$q \approx 2^{(1-\epsilon)n}$	M, Rogaway, Stegers
Swap-or-not	O(n)	$q \approx (1-\epsilon)2^n$	today's talk

Format-preserving Encryption

Finite set \mathcal{M} of messages.

Want PRP $\pi : \mathcal{M} \to \mathcal{M}$.

It's not clear how to do this using AES.

Format-preserving Encryption

Bounds on balanced Feistel give security up to roughly $\sqrt{|\mathcal{M}|}$ queries.

Problem. $\mathcal{M} = \{\text{social security numbers}\}$

$$\begin{split} |\mathcal{M}| &= 10^9 \\ \sqrt{|\mathcal{M}|} \approx 32,000 \qquad \text{not too big} \end{split}$$

Swap-or-not provides a practical solution to FPE on domains of troublesome size.

Enciphering scheme \longleftrightarrow Card shuffle

messages

encodings

Oblivious shuffle (Naor): you can follow the trajectory of one card without attending to the others.

Swap-or-not shuffle

At step t, choose K_t uniformly at random from $\{0,1\}^n$. Pair each x with $K_t \oplus x$. For each pair, flip a coin. If the coin lands heads, swap the cards at those locations.

Swap-or-not shuffle

At step t, choose K_t uniformly at random from $\{0,1\}^n$. Pair each x with $K_t \oplus x$. For each pair, flip a coin. If the coin lands heads, swap the cards at those locations.

Alternative view

```
\widehat{x} \leftarrow \max(x, K_t \oplus x)
       b \leftarrow F_t(\widehat{x})
       if b = 1 then x \leftarrow K_t \oplus x
return x
Cipher E encrypts x \in \{0,1\}^n using a key KF naming K_1, \ldots, K_r \in \{0,1\}^n and round functions F_1, \ldots, F_r : \{0,1\}^n \to \{0,1\}.
```

Decryption: same, except run from r down to 1.

Why this works: Each round is its own inverse. To reverse the effect of the final round, run it again. Then run the next-to-last round, and so on.

Alternative view

Note that $\pi(x)$ is of the form $x \oplus \sum_{i \in S_x} K_i$.

But this is not linear. S_x is adaptively constructed.

Quantifying the advantage of an adversary

Random permutation π .

Adversary A queries π and π^{-1} , then outputs a bit b. His advantage is $\mathbf{P}(b=1) - \mathbf{P}_u(b=1)$.

Theorem (Maurer, Pietrzak, Renner 2007) If F and G are blockciphers on the same message space, then, for any q,

$$\mathbf{Adv}_{F \circ G^{-1}}^{\operatorname{cca}}(q) \leq \mathbf{Adv}_F^{\operatorname{ncpa}}(q) + \mathbf{Adv}_G^{\operatorname{ncpa}}(q).$$

Quantitative bound

Theorem For r rounds of swap-or-not on $\{0,1\}^n$,

$$\mathbf{Adv}^{\mathrm{cca}}(q) \le \frac{2^{2+3n/2}}{r+4} \left(\frac{q+2^n}{2^{n+1}}\right)^{r/4+1}$$

•

If $q \leq (1-\epsilon)2^n$ then the advantage is small after O(n) rounds.

Feistel, Thorp, Swap-or-Not on $\mathcal{M} = \{0,1\}^{64}$

Proof sketch

By MPR07, we may assume a non-adaptive adversary who queries only π . For simplicity, suppose the queries are $\pi(0), \ldots, \pi(q-1)$.

Game: Do r swap-or-not shuffles. Now turn over the cards labeled $0, 1, 2, \ldots$ (reveal $\pi(0), \pi(1), \ldots$).

Before each step, the adversary pays 1. If he guesses the next card's location correctly, he wins k if k cards were face down.

Claim: If expected net winnings ≈ 0 , then the adversary has small advantage.

It remains to show that the expected winnings are small. This is true even if when we turn over a card we reveal its whole trajectory!

Let $w_i(t)$ be the expected net winnings if the adversary guesses *i*.

Note: the adversary can expect to win $\max_i w_i(t)$.

Let $W(t) = \sum_i w_i(t)^2$.

Claim: If $q \leq (1-\epsilon)2^n$ then

 $\mathbf{E}\left(W(t+1)\right) \le (1-\epsilon/2)\mathbf{E}(W(t)).$

Say an covered card is *good* if it is matched to another covered card.

Not good:

Good:

$$\overline{w}^2 + \overline{w}^2 = \frac{1}{2}(w_i^2 + w_j^2) + w_i w_j$$

$$\bigwedge_{\text{cross terms}}$$
 are 0 on the average

Recall that $W(t) = \sum_i w_i(t)^2$.

Good cards are expected to contribute $\frac{1}{2}w_i^2(t)$ to W(t+1). Not good cards contribute $w_i^2(t)$ to W(t+1). It follows that

$$\begin{aligned} \mathbf{E} \left(W(t+1) \mid W_t \right) &= \mathbf{P}(\mathsf{good}) \frac{1}{2} W(t) + \mathbf{P}(\mathsf{not} \; \mathsf{good}) W(t) \\ &= \left(1 - \frac{1}{2} \mathbf{P}(\mathsf{good}) \right) W(t) \\ &\leq (1 - \epsilon/2) W(t), \end{aligned}$$

since $\mathbf{P}(\mathsf{good}) \geq \epsilon$.

Using swap-or-not to make confusion/diffusion ciphers

Example: Specify F_t by an *n*-bit string L_t and let $F_t(\hat{x}) = L_t \odot \hat{x}$ be the inner product of L_t and \hat{x} .

function $E_{KL}(x)$ //inner product realization for $t \leftarrow 1$ to r do $\widehat{x} \leftarrow \max(x, K_t \oplus x)$ $b \leftarrow L_t \odot \hat{x}$ if b = 1 then $x \leftarrow K_t \oplus x$ return x Cipher E encrypts $x \in \{0,1\}^n$ using a key KL that specifies $K_1, \ldots, K_r, L_1, \ldots, L_r \in \{0,1\}^n$.

We don't know how many rounds to suggest.

More general domain

If the domain is a finite, abelian group (G, +), the cipher is the same as before, except

- Choose K_t uniformly at random from G.
- Pair x with $K_t x$.

```
function E_{KF}(x) //generalized domain for t \leftarrow 1 to r do
     t \leftarrow 1 \text{ to } r \text{ do}
\widehat{x} \leftarrow \max(x, K_t - x)
       b \leftarrow F_t(\widehat{x})
     if b = 1 then x \leftarrow K_t - x
return x
Cipher E encrypts x \in G using a key KF
naming K_1, \ldots, K_r \in G and round functions F_1, \ldots, F_r : G \to \{0, 1\}.
```