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Setting

Blockcipher construction

pseudorandom function −→ pseudorandom permutation

Most current methods rely on either:

Feistel networks, or

SP networks

New method: Swap-or-not shuffle. Stronger provable-security
results.



Contribution: Swap-or-not

I A new method to construct a blockcipher

I A proof that it works, and with much better bounds than with
Feistel



Security of Swap-or-not : Numerical Examples

Domain size # rounds AdvCCA # queries

64-bit strings 264 1200 < 10−10 263

social security numbers 109 340 < 10−10 108

credit card numbers 1016 500 < 10−10 1015



Flexible domain

Our cipher works directly on nonbinary domains such as credit card
numbers and social security numbers.



The Problem

PRF −→ PRP

Luby, Rackoff 88
Patarin 90, 03, 10
Maurer 92
Maurer, Pietrzak 03
M, Rogaway, Stegers 09



Proven upper bounds for enciphering n-bit strings:

method # rounds # queries

Balanced Feistel 3 q ≈ 2n/4 Luby, Rackoff

r q ≈ 2n/2−1/r Maurer, Pietrzak

6 q ≈ 2n/2 Patarin

Thorp shuffle O(n) q ≈ 2(1−ε)n M, Rogaway, Stegers
Swap-or-not O(n) q ≈ (1− ε)2n today’s talk



Format-preserving Encryption

Finite set M of messages.

Eg M = {social security numbers}
M = {credit card numbers}

Want PRP π :M→M.

It’s not clear how to do this using AES.



Format-preserving Encryption

Bounds on balanced Feistel give security up to roughly
√
|M|

queries.

Problem. M = {social security numbers}

|M| = 109√
|M| ≈ 32, 000 not too big

Swap-or-not provides a practical solution to FPE on domains of
troublesome size.



Enciphering scheme ←→ Card shuffle
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messages encodings

Oblivious shuffle (Naor): you can follow the trajectory of one card
without attending to the others.



Swap-or-not shuffle
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Kt induces a random
matching.

(Pictured is the case
Kt = 100.)

At step t, choose Kt uniformly at random from {0, 1}n. Pair each
x with Kt ⊕ x. For each pair, flip a coin. If the coin lands heads,
swap the cards at those locations.
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Alternative view

function EKF (x) //swap-or-not
for t← 1 to r do

x̂← max(x,Kt ⊕ x)
b← Ft(x̂)

if b = 1 then x← Kt ⊕ x
return x

Cipher E encrypts x ∈ {0, 1}n using a key
KF naming K1, . . . ,Kr ∈ {0, 1}n and round
functions F1, . . . , Fr : {0, 1}n → {0, 1}.

Decryption: same, except run from r down to 1.

Why this works: Each round is its own inverse. To reverse the
effect of the final round, run it again. Then run the next-to-last
round, and so on.



Alternative view

Note that π(x) is of the form x⊕
∑

i∈Sx
Ki.

But this is not linear. Sx is adaptively constructed.



Quantifying the advantage of an adversary

Random permutation π.

Adversary A queries π and π−1, then outputs a bit b. His
advantage is P(b = 1)−Pu(b = 1).

Advcca(q) = maximum advantage when A is limited to q queries

Advncpa(q) = maximum advantage when A is limited to q

nonadaptive queries of π

Theorem (Maurer, Pietrzak, Renner 2007)

If F and G are blockciphers on the same message space, then, for
any q,

Advcca
F◦G−1(q) ≤ Advncpa

F (q) +Advncpa
G (q).



Quantitative bound

Theorem
For r rounds of swap-or-not on {0, 1}n,

Advcca(q) ≤ 22+3n/2

r + 4

(
q + 2n

2n+1

)r/4+1

.

If q ≤ (1− ε)2n then the advantage is small after O(n) rounds.
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Proof sketch

By MPR07, we may assume a non-adaptive adversary who queries
only π. For simplicity, suppose the queries are π(0), . . . , π(q − 1).

Game: Do r swap-or-not shuffles. Now turn over the cards labeled
0, 1, 2, . . . (reveal π(0), π(1), . . . ).

Before each step, the adversary pays $1. If he guesses the next
card’s location correctly, he wins $k if k cards were face down.

Claim: If expected net winnings ≈ 0, then the adversary has small
advantage.



It remains to show that the expected winnings are small. This is
true even if when we turn over a card we reveal its whole trajectory!
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Let wi(t) be the expected net winnings if the adversary guesses i.

Note: the adversary can expect to win maxiwi(t).

Let W (t) =
∑

iwi(t)
2.

Claim: If q ≤ (1− ε)2n then

E (W (t+ 1)) ≤ (1− ε/2)E(W (t)).



Say an covered card is good if it is matched to another covered
card.
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Recall that W (t) =
∑

iwi(t)
2.

Good cards are expected to contribute 1
2w

2
i (t) to W (t+ 1).

Not good cards contribute w2
i (t) to W (t+ 1). It follows that

E (W (t+ 1) |Wt) = P(good)12W (t) +P(not good)W (t)

=
(
1− 1

2P(good)
)
W (t)

≤ (1− ε/2)W (t),

since P(good) ≥ ε.



Using swap-or-not to make confusion/diffusion ciphers

Example: Specify Ft by an n-bit string Lt and let Ft(x̂) = Lt� x̂
be the inner product of Lt and x̂.

function EKL(x) //inner product realization
for t← 1 to r do

x̂← max(x,Kt ⊕ x)
b← Lt�x̂
if b = 1 then x← Kt ⊕ x

return x

Cipher E encrypts x ∈ {0, 1}n using a key KL
that specifies K1, . . . ,Kr, L1, . . . , Lr ∈ {0, 1}n.

We don’t know how many rounds to suggest.



More general domain

If the domain is a finite, abelian group (G,+), the cipher is the
same as before, except

I Choose Kt uniformly at random from G.

I Pair x with Kt − x.

function EKF (x) //generalized domain
for t← 1 to r do

x̂← max(x,Kt − x)
b← Ft(x̂)

if b = 1 then x← Kt − x
return x

Cipher E encrypts x ∈ G using a key KF
naming K1, . . . ,Kr ∈ G and round functions
F1, . . . , Fr : G→ {0, 1}.


