

On The Distribution of Linear Biases: Three Instructive Examples

Mohamed Ahmed Abdelraheem¹, Martin Ågren², Peter Beelen¹, and Gregor Leander¹

¹ Technical University of Denmark

² Lund University, Sweden

120820 / Santa Barbara

Outline

[Introduction](#page-2-0)

2 [The Problem](#page-9-0)

3 [The Examples](#page-16-0)

The CUBE [Cipher](#page-17-0) PRESENT [with identical round-keys](#page-22-0) PRINTCIPHER[, Invariant Subspaces, and Eigenvectors](#page-27-0)

[Conclusion](#page-38-0)

Outline

1 [Introduction](#page-2-0)

[The Problem](#page-9-0)

6 [The Examples](#page-16-0)

The CUBE [Cipher](#page-17-0) PRESENT [with identical round-keys](#page-22-0) PRINTCIPHER[, Invariant Subspaces, and Eigenvectors](#page-27-0)

4 [Conclusion](#page-38-0)

We are analyzing/constructing/breaking block ciphers...

Fix the (unknown) key and consider the permutation

 $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$.

Linear Approximation

Given

$$
F:\mathbb{F}_2^n\to\mathbb{F}_2^n,
$$

a linear approximation is an equation like

$$
\langle \alpha, \mathbf{x} \rangle = \langle \beta, \mathbf{F}(\mathbf{x}) \rangle.
$$

(Input mask α , output mask β .)

Linear Approximation

Given

$$
F:\mathbb{F}_2^n\to\mathbb{F}_2^n,
$$

a linear approximation is an equation like

$$
\langle \alpha, \mathbf{x} \rangle = \langle \beta, F(\mathbf{x}) \rangle.
$$

(Input mask α , output mask β .)

The bias $\epsilon_F (\alpha, \beta)$:

$$
\mathsf{Pr}\left[\langle\boldsymbol{\alpha},\mathbf{x}\rangle=\langle\boldsymbol{\beta},\boldsymbol{\mathit{F}}(\mathbf{x})\rangle\right]=\frac{1}{2}+\epsilon_{\boldsymbol{\mathit{F}}}(\boldsymbol{\alpha},\boldsymbol{\beta})
$$

The correlation $c_F(\alpha, \beta)$:

$$
c_F(\alpha,\beta)=2\epsilon_F(\alpha,\beta)
$$

Linear Approximation of a Composite Function

$$
\mathbf{x} \quad \xrightarrow{\qquad} \begin{array}{c|c|c|c|c|c|c} \hline \begin{array}{c|c|c} & \hline \begin{array}{c} F_1 \\ \hline \end{array} & \mathbf{0}_1 \end{array} & \begin{array}{c|c|c} \hline \begin{array}{c} F_2 \\ \hline \end{array} & \cdots & \begin{array}{c} F_r \\ \hline & \mathbf{0}_r \end{array} & \mathbf{0}_r \end{array} & \begin{array}{c} F(\mathbf{x}) \end{array} \end{array}
$$

A linear trail θ is a collection of all intermediate masks

$$
\boldsymbol{\theta}=(\boldsymbol{\theta}_0=\boldsymbol{\alpha},\ldots,\boldsymbol{\theta}_r=\boldsymbol{\beta}).
$$

Linear Approximation of a Composite Function

$$
\mathbf{x} \quad \xrightarrow{\qquad} \begin{array}{c|c|c|c|c|c|c} \hline \begin{array}{c|c|c} & \hline \begin{array}{c} F_1 \\ \hline \end{array} & \mathbf{0}_1 \end{array} & \begin{array}{c|c|c} \hline \begin{array}{c} F_r \\ \hline \end{array} & \mathbf{0}_r \end{array} & \begin{array}{c} F_r \\ \hline \end{array} & \mathbf{0}_r \end{array}
$$

A linear trail θ is a collection of all intermediate masks

$$
\boldsymbol{\theta}=(\boldsymbol{\theta}_0=\boldsymbol{\alpha},\ldots,\boldsymbol{\theta}_r=\boldsymbol{\beta}).
$$

The correlation of a trail is

$$
C_{\boldsymbol{\theta}} = \prod_i c_{F_i}(\boldsymbol{\theta}_i, \boldsymbol{\theta}_{i+1}).
$$

Theorem

$$
c_{\digamma}(\alpha,\beta)=\sum_{\theta\colon \theta_0=\alpha,\theta_r=\beta} \zeta_{\theta}.
$$

Linear Approximation of a Composite Function

A linear trail θ is a collection of all intermediate masks

$$
\boldsymbol{\theta}=(\boldsymbol{\theta}_0=\boldsymbol{\alpha},\ldots,\boldsymbol{\theta}_r=\boldsymbol{\beta}).
$$

The correlation of a trail is

$$
\mathcal{C}_{\boldsymbol{\theta}}=(-1)^{\langle\boldsymbol{\theta},\boldsymbol{k}\rangle}\prod_{i}c_{\mathsf{F}_i}(\boldsymbol{\theta}_i,\boldsymbol{\theta}_{i+1}).
$$

Theorem (Linear Hull)

$$
c_{\digamma}(\alpha,\beta)=\sum_{\theta:\;\theta_0=\alpha,\theta_r=\beta}(-1)^{\langle\theta,\textsf{k}\rangle}C_{\theta}.
$$

Outline

1 [Introduction](#page-2-0)

2 [The Problem](#page-9-0)

6 [The Examples](#page-16-0) The CUBE [Cipher](#page-17-0) PRESENT [with identical round-keys](#page-22-0) PRINTCIPHER[, Invariant Subspaces, and Eigenvectors](#page-27-0)

4 [Conclusion](#page-38-0)

We can: bound the correlation of single linear trails.

We cannot: bound the correlation of a linear approximation.

Because: Many linear trails interact in a key dependent way.

Each key gives a different correlation. We need to understand the distribution.

II: Model the situation – make assumptions. (Possible assumption: Different trails are independent.)

II: Model the situation – make assumptions. (Possible assumption: Different trails are independent.)

III: Perform experiments to validate the model/assumptions.

II: Model the situation – make assumptions. (Possible assumption: Different trails are independent.)

III: Perform experiments to validate the model/assumptions.

Todo: Develop a sound framework. Why has it not been done before?

- \blacktriangleright it's difficult
- \triangleright we didn't try very hard

Three interesting examples of what can happen.

- \triangleright Counterexample to earlier "theorem".
- \triangleright Give an idea what you can/cannot hope to prove.
- \triangleright Serve as inspiration for future work.

Outline

1 [Introduction](#page-2-0)

[The Problem](#page-9-0)

3 [The Examples](#page-16-0)

The CUBE [Cipher](#page-17-0) PRESENT [with identical round-keys](#page-22-0) PRINTCIPHER[, Invariant Subspaces, and Eigenvectors](#page-27-0)

4 [Conclusion](#page-38-0)

Consider an n-bit block cipher and assume

- \blacktriangleright independent round keys,
- \triangleright (exponentially in *n*) many non-zero trails,
- \blacktriangleright all with the same absolute correlation.

If we pick a key, what bias do we get?

Theorem (Daemen and Rijmen, ePrint 2005/212)

The bias distribution tends to a normal distribution as $n \to \infty$.

Normal Distribution?

The CUBE Cipher

- independent round keys, \checkmark
- **Exponentially in n) many non-zero trails,** \checkmark
- \blacktriangleright all with the same absolute correlation, \checkmark
- \blacktriangleright toy cipher.

Normal Distribution?

CUBE cipher vs. the normal distribution.

Only 5 values $-$ for any $n!$

Common analysis: Assume independent round keys and hope that the key-scheduling does not influence the distribution.

Two counter-examples:

- \triangleright PRESENT with identical round-keys
- \blacktriangleright PRINTCIPHER

PRESENT

- \triangleright many linear trails with one active Sbox per round
- \blacktriangleright distribution is close to normal

PRESENT

Distribution for 17 rounds of PRESENT.

PRESENT with Identical Round-Keys

Modification:

- \blacktriangleright identical round-keys
- \blacktriangleright round constants

PRESENT With Identical Round-Keys

Identical vs. original round-keys.

- \triangleright PRESENT-const is not secure.
- **I** SPONGENT does not have the PRESENT Sbox.
- \blacktriangleright More rounds help.

PRINTcipher, Invariant Subspaces, and Eigenvectors

Last year at CRYPTO: invariant subspaces:

Let $U \subseteq \mathbb{F}_2^n$ be a subspace and $d \in \mathbb{F}_2^n$. Assume a weak key. $F_k(U+d) = U+d$.

PRINTcipher, Invariant Subspaces, and Eigenvectors

Last year at CRYPTO: invariant subspaces:

Let $U \subseteq \mathbb{F}_2^n$ be a subspace and $d \in \mathbb{F}_2^n$. Assume a weak key. $F_k(U+d) = U+d$.

$$
\Downarrow
$$

F(U+d) = U + d.

Linear Biases in PRINTcipher

Linear Biases in PRINTcipher

Linear Biases in PRINTcipher

Correlation matrix $C = (c_F(\alpha, \beta))_{\alpha, \beta}$.

Theorem

Invariant subspace \Rightarrow A sub-matrix (A) of the correlation matrix has an eigenvector with a special \pm -structure and eigenvalue 1.

The matrix has a nonzero limit. We have trail-clustering!

The Matrix Power Limit

The eigenvector is

const
$$
\cdot
$$
 (+1 +1 -1 -1 +1 +1 -1 ...).

The eigenvector is

$$
\text{const}\cdot\left(\begin{array}{cccccc}+1&+1&-1&-1&+1&+1&-1&\dots\end{array}\right),
$$

so

The eigenvector is

$$
\text{const}\cdot\left(\begin{array}{cccccc}+1&+1&-1&-1&+1&+1&-1&\dots\end{array}\right),
$$

so

Indeed, experimentally, $c_F(\alpha, \beta) \approx \pm 2^{-16}$ (PRINTCIPHER-48).

Theorem

Invariant subspace \Rightarrow A sub-matrix of the correlation matrix has an eigenvector with a special \pm -structure and eigenvalue 1.

Actually,

Theorem

Invariant subspac $\xi \Leftrightarrow A$ sub-matrix of the correlation matrix has an eigenvector with a special \pm -structure and eigenvalue 1.

Outline

1 [Introduction](#page-2-0)

[The Problem](#page-9-0)

6 [The Examples](#page-16-0)

The CUBE [Cipher](#page-17-0) PRESENT [with identical round-keys](#page-22-0) PRINTCIPHER[, Invariant Subspaces, and Eigenvectors](#page-27-0)

4 [Conclusion](#page-38-0)

Conclusion

 \triangleright Assessing security against linear cryptanalysis is tricky.

 \triangleright An old "theorem" is not entirely correct — new attempts have to somehow deal with Cube.

 \triangleright Assessing security against linear cryptanalysis is tricky.

- \triangleright An old "theorem" is not entirely correct $-$ new attempts have to somehow deal with $\text{C} \text{UBE}$.
- \triangleright With identical round-keys, bad things can happen in various ways (PRESENT-const, PRINTcipher).
- \triangleright With key-schedules, how can we know these things don't happen (even for just a few keys)?

