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“Theory vs. practice” gap in cryptography
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Theoreticians have. . .

- liberal notion of efficiency
polynomial time

- provable security
based on hardness assumptions

Practitioners have. . .

- very efficient algorithms
near linear time

- heuristic security
resistance to known attacks



Common goal: random-looking functions

: n n indistinguishable from
{fK’{O’l} - {013 | K} truly random function

- theory: pseudorandom function (PRF)
[Goldreich-Goldwasser-Micali '84]

- practice:  block cipher / MAC
[Feistel '70s], [Simmons '80s]

- NOTE: block cipher “modes” 2 PRF



Common goal: random-looking functions

(f - {0,1F > {0,1)" | K}

indistinguishable from
truly random function

GAPS PRF Block cipher / MAC
best: |K|> n? typical: |[K|~n
efficiency e.g. factoring-based PRF e.g. Advanced Encryption
aorRnos b R
- based on PRG/OWF Substitution-permutation
methodology - “expensive” components network - \

e.g. iterated multiplication




Our contributions: bridging the gap

New candidate PRF based on SP-network
- more efficient than previous candidates
- application to Natural Proofs [Razborov-Rudich '97]
- security derived from “practical” analysis

Proof-of-concept theorem:
SP-network with random S-box = secure, inefficient PRF.

- analogous to [Luby-Rackoff '88] for Feistel networks
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SP-network: definition and security
New PRF candidates
SP-network with random S-box

Natural Proofs



The SP-network paradigm e
[Shannon '49, Feistel-Notz-Smith '75] ey,
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Linear and differential cryptanalysis
[Matsui '94] [Biham-Shamir '91]

Two general attacks against a block cipher C

- parameters of interest:

p,(0), p (O) < 29 = 290 security against LC/DC

- details:
p,(C) = max, E |Pr [{A x) = (B, C())] - %3

AB K

P, (C) = max, . Pr  [C (x)@ C (x®A) =B



LC/DC design principles

1. S-box resists LC/DC. 2. M has “branch number”

S(x) == x> satisfies Br(M) = m+1.
P.c /DC(S) < 202 [Nyberg '93] Br(M) := Qligm{wgt(x)+wgt(M(x))}

(0J[O/[O] MM [O][0][0][0O]
M : GF(2°)™ — GF(2°)™
HEEENENEBEB

Intuition: 142 = LC/DC security SSSSSSSS

S-box security 27 e memEm
propagates to m bundles i
(Z-Q(b))m — Z-Q(n) = = M- mE =
IIII.IIII
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New PRF candidates

SP-network with random S-box

Natural Proofs



New PRF: quasi-linear size

Theorem: 3 size-n-log®’n SPN with LC/DC security 22,
[M-Violal

Compare to best complexity PRF [Naor-Reingold '04]:
- security from factoring / discrete-log hardness

- size = Q(n?)



New PRF: quasi-linear size

Theorem: 3 size-n-log®’n SPN with LC/DC security 22
[M-Violal

| inpu |
EFFICIENCY (TTH ]
S-box: S(x) := x*2 ¢ r = O(log n)
-b=logn= S € size log®’n s -5 '\ rounds

Linear transformation

- Let G =[I|M] be m — 2m Reed-Solomon code.
- this gives max branch number ~ [Daemen '95]

- Such M is a Cauchy matrix. [Roth-Seroussi '85]

- We adapt [Gerasoulis '88] to do Cauchy mult. in size O(n-log’n).



New PRF: quasi-linear size

Theorem: 3 size-n-log®’n SPN with LC/DC security 22
[M-Violal

SECURITY
Theorem: If p . (S) < 2% and Br(M) = m+1,

_ ~(n-rm)
then r-round SPN has p . (SPN) < 2™,
[Kang-Hong-Lee-Yi-Park-Lim '01, M-Viola '12]
-r=b/2 = security= 2™? (n=mb)

-S(x) = x*? has P.coc DOUNds  [Nyberg ‘93]



New PRF: simple candidate

CoX) 1= (xe K’ °. K')

{0,1}

Theorem: C .. 2%"-fools parity tests on < 2*" outputs.
[M-Violal ’

- compare to [Even-Mansour '91]:
- replace EM's random f'n with S: simple attack
- also replace ® K with { , K'): fools parity tests

- also computable in quasi-linear size
[Gao-von zur Gathen-Panario-Shoup '00]
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SP-network with random S-box

Natural Proofs



SP-network with random S-box

Theorem: If SP-network has: 1. random S-box
IM-Violal 2. max-branch-number M,
then: g-query distinguishing advantage < (rmq)? - 2.

- when b = w(log n), security = n"

- similar bound as Luby-Rackoff

- we exploit structure to bound collision probabilities



SP-network with random S-box

- Fix queries Xpp oons X € {0,1}".

- Pr [3 collision in any 2 final-round S-boxes]
< poly(m,q) - 2.
- uses M invertible, all entries # 0
- non-trivial for X#X, same S-box

- No collisions = output is uniform.
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Natural Proofs



Natural Proofs [razborov-Rudich '97]

- CKT = any complexity class (e.g. circuits of size n?)

- Observation: Most lower bounds against CKT distinguish
CKT truth tables from random truth tables.

- Implication: If CKT can compute 2™-secure PRF,
most techniques can't prove CKT lower bounds.

- Gap: best PRF: size Q(n?) [Naor-Reingold '04]

best lower bound: size O(n) [Blum '84]



Natural Proofs [razborov-Rudich '97]

- CKT = any complexity class (e.g. circuits of size n?)

- Observation: Most lower bounds against CKT distinguish
CKT truth tables from random truth tables.

- Implication: If CKT can compute 2™-secure PRF,
most techniques can't prove CKT lower bounds.

- We narrow the gap in 3 models (if our PRF 2™-secure).
- Boolean circuits of size n-log®®(n)

- TCP circuits of size O(n'*¢) for any € > 0 [Allender-Koucky '10]

- time-O(n?) 1-tape Turing machines



Conclusion

SPN structure underexplored for PRF
- lends itself to efficient circuits
- combinatorial hardness, vs. algebraic for complexity PRF

- we give evidence that SPNs are plausible PRF candidates
- we provide asymptotic analysis of SPN structure

Future directions

- simplest, most efficient possible PRF?

- linear-size circuits
- branching programs
- communication protocols

- analyze our PRF candidates against other attacks
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