Multiparty Computation from Somewhat Homomorphic Encryption

Ivan Damgård¹ Valerio Pastro¹ Nigel Smart² Sarah Zakarias¹

¹ Aarhus University

²Bristol University

August 22, 2012

 200

Our work: What is it?

An(other) MPC protocol:

- Active security
- Dishonest majority
- **Computational security**
- Universally composable

Previous work (examples):

- Early construction [\[CLOS02\]](#page-31-0)
- "MPC in the Head" approach [\[IKOS07,](#page-32-1) [IPS08\]](#page-32-2)
- Preprocessing model [\[DO10,](#page-31-1) [BDOZ11,](#page-31-2) [NNOB12\]](#page-32-3)

 Ω

Notation

[\[BDOZ11\]](#page-31-2): (BeDOZa)

"Semi-Homomorphic Encryption and Multiparty Computation"

4 日下

画

→ 伊 * + 君 * + 君

 QQ

Notation

[\[BDOZ11\]](#page-31-2): (BeDOZa)

"Semi-Homomorphic Encryption and Multiparty Computation"

 $SPDZ: (SPeeDZ) \leftarrow$ This talk! "Multiparty Computation from Somewhat Homomorphic Encryption"

 QQ

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB}

4 0 8

SPDZ Old Techniques – The Preprocessing Model

4 0 8

 Ω

SPDZ Old Techniques – The Preprocessing Model

Features:

- Preprocessing: independent of f
- Online phase: very fast no PKE!

 200

Damgård, Pastro, Smart, Zakarias (-.-) [SPDZ](#page-0-0) SPDZ August 22, 2012 5 / 19

一番

 2990

イロト イ部 トイヨ トイヨト

Digression on [\[BDOZ11\]](#page-31-2)'s Online Phase

Computation: on additive secret sharing

$$
Secret x = x_1 + \cdots + x_n, \qquad x_i \longrightarrow P_i
$$

Security: information theoretic MACs on shares

 200

Computation with Secret Sharing and MACs

How to compute $[x + y]$ from $[x]$ and $[y]$?

Very easy! $P_i: x_i + y_i$, MAC $^j(x_i)$ + MAC $^j(y_i)$, β_i^j $x_{i,j}^{i} + \beta_{y,j}^{i}$

 $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$

4 0 8

 QQ

Computation with Secret Sharing and MACs

How to compute $[x + y]$ from [x] and [y]? Very easy! P_i : $x_i + y_i$, MAC $^j(x_i)$ + MAC $^j(y_i)$, $\beta^i_{x,j} + \beta^i_{y,j}$

How to compute $[x \cdot y]$ from $[x]$ and $[y]$?

Using [\[Bea91\]](#page-31-3): easy if players have a "multiplicative triple" $[a]$, $[b]$, $[a \cdot b]$:

- **1** Compute $[x + a]$, $[y + b]$ (easy).
- **2** Reconstruct $\varepsilon = x + a$, $\delta = y + b$ (and MAC-checking)

3 Compute

$$
[z] = [a \cdot b] - \varepsilon \cdot [b] - \delta \cdot [a] + \varepsilon \cdot \delta.
$$

[z] equals $[x \cdot y]$:

$$
z = a \cdot b - \varepsilon \cdot b - \delta \cdot a + \varepsilon \cdot \delta
$$

= $a \cdot b - (x + a) \cdot b - (y + b) \cdot a + (x + a) \cdot (y + b) = x \cdot y$

 \equiv

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Summary on the Online Phase

Computation

Linear secret sharing and MACs \rightarrow $[x + y]$: locally add Multiplicative triples \rightarrow $[x \cdot y]$: add and reconstruct

K 御 ▶ K 君 ▶ K 君 ▶

4 0 8

 Ω

Summary on the Online Phase

Computation

Linear secret sharing and MACs \rightarrow $[x + y]$: locally add Multiplicative triples \rightarrow $[x \cdot y]$: add and reconstruct

Security

Secret sharing inputs \rightarrow privacy MACs (on shares) \rightarrow authenticity

KOD KARD KED KED B YOUR

Summary on the Online Phase

Computation

Linear secret sharing and MACs \rightarrow $[x + y]$: locally add Multiplicative triples \rightarrow $[x \cdot y]$: add and reconstruct

Security

Secret sharing inputs \rightarrow privacy MACs (on shares) \rightarrow authenticity

Data needed per secret

One secret \rightarrow n shares \rightarrow n MACs (and keys) per share \rightarrow \rightarrow $O(n^2)$ field elements per secret.

KOD KARD KED KED B YOUR

Lowering the amount of data needed?

The Catch In [\[BDOZ11\]](#page-31-2), MACs on shares to authenticate secret.

母 ト イヨ ト イヨ ト

4 0 8

一面

 Ω

Lowering the amount of data needed?

正々 メラメ

4 ロ ▶ 4 母 ▶ 4

D.

 299

Lowering the amount of data needed?

The Catch

Assuming $[\alpha]$ (one single value for all secrets),

$$
\langle x \rangle := (x_1, \ldots, x_n, \quad \gamma(x)_1, \ldots, \gamma(x)_n) \qquad (x_i, \gamma(x)_i) \to P_i
$$

 x_1, \ldots, x_n : additive secret sharing of x $\gamma(x)_1, \ldots, \gamma(x)_n$: additive secret sharing of $\gamma(x) = \alpha \cdot x$ (MAC on x)

Data needed per secret

One secret \rightarrow n shares + n shares of a MAC \rightarrow \rightarrow O(n) field elements per secret.

 QQQ

イロト イ押ト イヨト イヨト

Does it really work?

Setup

MAC Keys in [·]: privately held, different secret \rightarrow different key MAC Keys in $\langle \cdot \rangle$: [α], unique for all secrets!

画

 QQ

∢ 何 ▶ . ∢ ヨ ▶ . ∢ ヨ

4 0 8

Does it really work?

Setup

MAC Keys in [·]: privately held, different secret \rightarrow different key MAC Keys in $\langle \cdot \rangle$: [α], unique for all secrets!

Problem

- P_i needs α to check a MAC \rightarrow P_i can later forge MACs!
- \rightarrow Gate-by-gate check = insecure

 QQQ

母 > ィヨ > ィ

Does it really work?

Setup

MAC Keys in $[\cdot]$: privately held, different secret \rightarrow different key MAC Keys in $\langle \cdot \rangle$: [α], unique for all secrets!

Problem

 P_i needs α to check a MAC \rightarrow P_i can later forge MACs!

 \rightarrow Gate-by-gate check = insecure

Solution

- **Compute the whole circuit with no checks**
- Commit to MACs
- Open $[\alpha]$
- **o** Check MACs

ミメスミメ

 200

Online – the Numbers

Notation:

- *n*: $#$ players
- m_f : $\#$ multiplications in the circuit C to compute
- \bullet $|C|$: Circuit size

Note

Preproc. data needed: Optimal up to constant factor. Complexity: Optimal up to poly-log factors.

Damgård, Pastro, Smart, Zakarias (-.-) [SPDZ](#page-0-0) SPDZ August 22, 2012 11 / 19

Damgård, Pastro, Smart, Zakarias (-.-) [SPDZ](#page-0-0) August 22, 2012 12 / 19

画

 2990

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

High Level Idea

- Generate $a = a_1 + \cdots + a_n$, $b = b_1 + \cdots + b_n$
- Generate and broadcast encryptions $Enc(a_i)$, $Enc(b_i)$
- Compute an encryption $Enc(c)$, where $c = a \cdot b$
- Distribute c_i to P_i , where $c = c_1 + \cdots + c_n$

 \equiv \cap α

ラメ メラメ

4 0 8

 \leftarrow \leftarrow \leftarrow \leftarrow

High Level Idea

- Generate $a = a_1 + \cdots + a_n$, $b = b_1 + \cdots + b_n$
- Generate and broadcast encryptions $Enc(a_i)$, $Enc(b_i)$
- Compute an encryption $Enc(c)$, where $c = a \cdot b$
- Distribute c_i to P_i , where $c = c_1 + \cdots + c_n$

Problems

Does P_i know the plaintext contained in $Enc(a_i)$, $Enc(b_i)$? How to compute $Enc(c)$?

÷

 QQ

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

4 0 8

High Level Idea

- Generate $a = a_1 + \cdots + a_n$, $b = b_1 + \cdots + b_n$
- Generate and broadcast encryptions $Enc(a_i)$, $Enc(b_i)$
- Compute an encryption $Enc(c)$, where $c = a \cdot b$
- Distribute c_i to P_i , where $c = c_1 + \cdots + c_n$

Problems

Does P_i know the plaintext contained in $Enc(a_i)$, $Enc(b_i)$? How to compute $Enc(c)$?

Solutions

```
First problem: a ZK-Proof.
Second problem: a very expensive ZK-Proof. . . or?
```
画

 QQ

 $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$

The Right Encryption Scheme

The Problem:

Given fresh $Enc(a_1), \ldots, Enc(a_n)$, $Enc(b_1), \ldots, Enc(b_n)$, compute:

 $Enc(a)$ $Enc(b)$

$Enc(c)$

Where $a_1 + \cdots + a_n = a$, $b_1 + \cdots + b_n = b$, $c = a \cdot b$

Fresh: a ciphertext computed via the encryption algorithm.

 $=$ Ω

イロト イ押ト イヨト イヨト

The Right Encryption Scheme

The Nicest Solution:

Given fresh $Enc(a_1), \ldots, Enc(a_n)$, $Enc(b_1), \ldots, Enc(b_n)$, compute:

Enc(*a*)
$$
\leftarrow \sum_i Enc(a_i)
$$
, Enc(*b*) $\leftarrow \sum_i Enc(b_i)$
Enc(*c*) $\leftarrow Enc(a) \cdot Enc(b)$.

Where $a_1 + \cdots + a_n = a$, $b_1 + \cdots + b_n = b$, $c = a \cdot b$

Fresh: a ciphertext computed via the encryption algorithm.

- 30

 Ω

イロト イ母 トイヨ トイヨト

Our Abstract Scheme

Somewhat Homomorphic Encryption Scheme An encryption scheme (KeyGen, Enc, Dec) such that: Dec($C'(\textsf{Enc}(m_1), \ldots, \textsf{Enc}(m_n))) = C(m_1, \ldots, m_n),$

where C is an arithmetic circuit in a specific set S.

In our case: $S =$ circuits of mult depth one.

 QQQ

A variant of Brakerski Vaikuntanathan [\[BV11\]](#page-31-4) (based on Ring-LWE)

Features of our variant

- computation of circuits of multiplicative depth 1 on ciphertexts,
- distributed decryption,
- specialized for parallel operations on multiple data (SIMD).

 200

Preprocessing – The Numbers

Notation:

- \bullet u : security parameter
- \bullet κ : size of encryption

4.0.3

画

 \sim

 \rightarrow

 QQ

Summary

SPDZ

- Active security, dishonest majority, preprocessing model
- Online phase:
	- ^I Linear amount of data needed
	- \triangleright Essentially linear communication complexity
- Preprocessing:
	- Rational use of SHE
	- Fewer ZK protocols, compared to $[BDOZ11]$
	- Very practical

<http://eprint.iacr.org/2011/535.pdf>

 Ω

The South

4 0 8

Summary

SPDZ

- Active security, dishonest majority, preprocessing model
- Online phase:
	- ^I Linear amount of data needed
	- \triangleright Essentially linear communication complexity
- Preprocessing:
	- Rational use of SHE
	- Fewer ZK protocols, compared to $[BDOZ11]$
	- Very practical

<http://eprint.iacr.org/2011/535.pdf>

Thanks

 Ω

The South

4 D F

Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic encryption and multiparty computation. In EUROCRYPT, pages 169–188, 2011.

Donald Beaver.

Efficient multiparty protocols using circuit randomization.

In Joan Feigenbaum, editor, CRYPTO, volume 576 of Lecture Notes in Computer Science, pages 420–432. Springer, 1991.

Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-lwe and security for key dependent messages.

In Phillip Rogaway, editor, CRYPTO, volume 6841 of Lecture Notes in Computer Science, pages 505–524. Springer, 2011.

Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party and multi-party secure computation.

In STOC, pages 494–503, 2002.

Ivan Damgård and Claudio Orlandi.

 QQ

イロト イ母 トイヨ トイヨト

Multiparty computation for dishonest majority: From passive to active security at low cost.

In CRYPTO, pages 558–576, 2010.

譶

Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multiparty computation. In David S. Johnson and Uriel Feige, editors, STOC, pages 21–30. ACM, 2007.

Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer - efficiently. In David Wagner, editor, CRYPTO, volume 5157 of Lecture Notes in Computer Science, pages 572–591. Springer, 2008.

Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A new approach to practical active-secure two-party computation. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 681–700. Springer, 2012.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$