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Our work: What is it?

An(other) MPC protocol:

Active security

Dishonest majority

Computational security

Universally composable

Previous work (examples):

Early construction [CLOS02]

“MPC in the Head” approach [IKOS07, IPS08]

Preprocessing model [DO10, BDOZ11, NNOB12]
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Notation

[BDOZ11]: (BeDOZa)

“Semi-Homomorphic Encryption and Multiparty Computation”

SPDZ: (SPeeDZ) ← This talk!

“Multiparty Computation from Somewhat Homomorphic Encryption”
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SPDZ Old Techniques – The Preprocessing Model

2-phases approach

Preprocessing =⇒ Online

Shared randomness generation
(public key crypto required)

=⇒ Evaluation of f
using preprocessed data

Features:

Preprocessing: independent of f

Online phase: very fast – no PKE!
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1 Online

2 Preprocessing
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Digression on [BDOZ11]’s Online Phase

Computation: on additive secret sharing

Secret x = x1 + · · ·+ xn, xi −→ Pi

Security: information theoretic MACs on shares

MACj(xi )

##GG
GG

GG
GG

GG
= αj

i

))SSSSSSSSSSSSSSSSSSSSS · xi

uukkkkkkkkkkkkkkkkkkkkk + βjx ,i

����
��

��
�

Pi Pj

[x ] :=
(
xi ,

(
MACj(xi )

)n
j=1,j 6=i

,
((
αi
j , β

i
x ,j

))n
j=1,j 6=i

)
i=1,...,n

Damg̊ard, Pastro, Smart, Zakarias (-.-) SPDZ August 22, 2012 6 / 19



Computation with Secret Sharing and MACs

How to compute [x + y ] from [x ] and [y ]?

Very easy! Pi : xi + yi , MACj(xi ) + MACj(yi ), βix ,j + βiy ,j

How to compute [x · y ] from [x ] and [y ]?

Using [Bea91]: easy if players have a “multiplicative triple” [a], [b], [a · b]:

1 Compute [x + a], [y + b] (easy).

2 Reconstruct ε = x + a, δ = y + b (and MAC-checking)

3 Compute
[z ] = [a · b]− ε · [b]− δ · [a] + ε · δ.

[z ] equals [x · y ]:

z = a · b − ε · b − δ · a + ε · δ
= a · b − (x + a) · b − (y + b) · a + (x + a) · (y + b) = x · y
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Summary on the Online Phase

Computation

Linear secret sharing and MACs → [x + y ]: locally add
Multiplicative triples → [x · y ]: add and reconstruct

Security

Secret sharing inputs → privacy
MACs (on shares) → authenticity

Data needed per secret

One secret → n shares → n MACs (and keys) per share →
→ O(n2) field elements per secret.
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Lowering the amount of data needed?

The Catch

In [BDOZ11], MACs on shares to authenticate secret.

Why not MACs on secret to authenticate secret?

Assuming [α] (one single value for all secrets),

〈x〉 := (x1, . . . , xn, γ(x)1, . . . , γ(x)n) (xi , γ(x)i )→ Pi

x1, . . . , xn : additive secret sharing of x
γ(x)1, . . . , γ(x)n : additive secret sharing of γ(x) = α · x (MAC on x)

Data needed per secret

One secret → n shares + n shares of a MAC →
→ O(n) field elements per secret.
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Does it really work?

Setup

MAC Keys in [·]: privately held, different secret → different key
MAC Keys in 〈·〉: [α], unique for all secrets!

Problem

Pi needs α to check a MAC → Pi can later forge MACs!
→ Gate-by-gate check = insecure

Solution

Compute the whole circuit with no checks

Commit to MACs

Open [α]

Check MACs
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Online – the Numbers
Notation:

n: # players

mf : # multiplications in the circuit C to compute

|C |: Circuit size

[BDOZ11] SPDZ

Preprocessed data
needed

Θ(mf · n2) O(mf · n)

Complexity
(field mults)

Ω(|C | · n2) O(|C | · n + n3)

Amo. timing
(64bit prime field)

7.7ms 0.05ms

Note

Preproc. data needed: Optimal up to constant factor.
Complexity: Optimal up to poly-log factors.
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1 Online

2 Preprocessing
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High Level Idea

Generate a = a1 + · · ·+ an, b = b1 + · · ·+ bn

Generate and broadcast encryptions Enc(ai ), Enc(bi )

Compute an encryption Enc(c), where c = a · b
Distribute ci to Pi , where c = c1 + · · ·+ cn

Problems

Does Pi know the plaintext contained in Enc(ai ), Enc(bi )?
How to compute Enc(c)?

Solutions

First problem: a ZK-Proof.
Second problem: a very expensive ZK-Proof. . . or?
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The Right Encryption Scheme

The Problem:The Nicest Solution

Given fresh Enc(a1), . . . ,Enc(an), Enc(b1), . . . ,Enc(bn), compute:

Enc(a)←
∑
i

Enc(ai ), Enc(b)←
∑
i

Enc(bi )

Enc(c)← Enc(a) · Enc(b).

Where a1 + · · ·+ an = a, b1 + · · ·+ bn = b, c = a · b

Fresh: a ciphertext computed via the encryption algorithm.

Damg̊ard, Pastro, Smart, Zakarias (-.-) SPDZ August 22, 2012 14 / 19



The Right Encryption Scheme

The Nicest Solution:The Problem

Given fresh Enc(a1), . . . ,Enc(an), Enc(b1), . . . ,Enc(bn), compute:

Enc(a)←
∑
i

Enc(ai ), Enc(b)←
∑
i

Enc(bi )

Enc(c)← Enc(a) · Enc(b).

Where a1 + · · ·+ an = a, b1 + · · ·+ bn = b, c = a · b

Fresh: a ciphertext computed via the encryption algorithm.

Damg̊ard, Pastro, Smart, Zakarias (-.-) SPDZ August 22, 2012 15 / 19



Our Abstract Scheme

Somewhat Homomorphic Encryption Scheme

An encryption scheme (KeyGen,Enc,Dec) such that:

Dec(C ′(Enc(m1), . . . ,Enc(mn))) = C (m1, . . . ,mn),

where C is an arithmetic circuit in a specific set S .

In our case: S = circuits of mult depth one.
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Our Concrete Scheme

A variant of Brakerski Vaikuntanathan [BV11] (based on Ring-LWE)

Features of our variant

computation of circuits of multiplicative depth 1 on ciphertexts,

distributed decryption,

specialized for parallel operations on multiple data (SIMD).
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Preprocessing – The Numbers

Notation:

u: security parameter

κ: size of encryption

[BDOZ11] SPDZ

Encryption Type Semi-Homomorphic SHE, mult. depth 1

ZKPoPK
amortized complexity

O(κ+ u) bits O(κ+ u) bits

Correct Mult.
amortized complexity

O(κ · u) bits 0

Offline benchmark
(2-party, sec=80bits)

2-4sec 0.008sec
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Summary

SPDZ

Active security, dishonest majority, preprocessing model

Online phase:
I Linear amount of data needed
I Essentially linear communication complexity

Preprocessing:
I Rational use of SHE
I Fewer ZK protocols, compared to [BDOZ11]
I Very practical

http://eprint.iacr.org/2011/535.pdf

Thanks
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