Multiparty Computation from Somewhat Homomorphic Encryption

Ivan Damgård¹ Valerio Pastro¹ Nigel Smart² Sarah Zakarias¹

¹Aarhus University

²Bristol University

August 22, 2012

Our work: What is it?

An(other) MPC protocol:

- Active security
- Dishonest majority
- Computational security
- Universally composable

Previous work (examples):

- Early construction [CLOS02]
- "MPC in the Head" approach [IKOS07, IPS08]
- Preprocessing model [DO10, BDOZ11, NNOB12]

Notation

[BDOZ11]: (BeDOZa)

"Semi-Homomorphic Encryption and Multiparty Computation"

3

Notation

[BDOZ11]: (BeDOZa)

"Semi-Homomorphic Encryption and Multiparty Computation"

SPDZ: (SPeeDZ) ← This talk! "Multiparty Computation from Somewhat Homomorphic Encryption" SPDZ Old Techniques - The Preprocessing Model

SPDZ Old Techniques - The Preprocessing Model

Features:

- Preprocessing: independent of f
- Online phase: very fast no PKE!

• • = • •

Damgård, Pastro, Smart, Zakarias (-.-)

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Digression on [BDOZ11]'s Online Phase

Computation: on additive secret sharing

Secret
$$x = x_1 + \cdots + x_n$$
, $x_i \longrightarrow P_i$

Security: information theoretic MACs on shares

Computation with Secret Sharing and MACs

How to compute [x + y] from [x] and [y]? Very easy! $P_i : x_i + y_i$, $MAC^j(x_i) + MAC^j(y_i)$, $\beta^i_{x,i} + \beta^i_{y,i}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Computation with Secret Sharing and MACs

How to compute [x + y] from [x] and [y]? Very easy! $P_i : x_i + y_i$, $MAC^j(x_i) + MAC^j(y_i)$, $\beta_{x,j}^i + \beta_{y,j}^i$

How to compute $[x \cdot y]$ from [x] and [y]?

Using [Bea91]: easy if players have a "multiplicative triple" $[a], [b], [a \cdot b]$:

- Compute [x + a], [y + b] (easy).
- **2** Reconstruct $\varepsilon = x + a, \delta = y + b$ (and MAC-checking)

Ompute

$$[z] = [a \cdot b] - \varepsilon \cdot [b] - \delta \cdot [a] + \varepsilon \cdot \delta.$$

[z] equals $[x \cdot y]$:

$$z = a \cdot b - \varepsilon \cdot b - \delta \cdot a + \varepsilon \cdot \delta$$

= $a \cdot b - (x + a) \cdot b - (y + b) \cdot a + (x + a) \cdot (y + b) = x \cdot y$

イロト イポト イヨト イヨト

Summary on the Online Phase

Computation

$\begin{array}{rcl} \mbox{Linear secret sharing and MACs} & \to & [x+y]: \mbox{ locally add} \\ & \mbox{Multiplicative triples} & \to & [x\cdot y]: \mbox{ add reconstruct} \end{array}$

3

- 4 同 6 4 日 6 4 日 6

Summary on the Online Phase

Computation

 $\begin{array}{rcl} \mbox{Linear secret sharing and MACs} & \to & [x+y]: \mbox{ locally add} \\ & \mbox{Multiplicative triples} & \to & [x\cdot y]: \mbox{ add reconstruct} \end{array}$

Security

 $\begin{array}{rcl} \mbox{Secret sharing inputs} & \rightarrow & \mbox{privacy} \\ \mbox{MACs (on shares)} & \rightarrow & \mbox{authenticity} \end{array}$

Summary on the Online Phase

Computation

Linear secret sharing and MACs $\rightarrow [x + y]$: locally add Multiplicative triples $\rightarrow [x \cdot y]$: add and reconstruct

Security

 $\begin{array}{rcl} \mbox{Secret sharing inputs} & \to & \mbox{privacy} \\ \mbox{MACs (on shares)} & \to & \mbox{authenticity} \end{array}$

Data needed per secret

One secret $\rightarrow n$ shares $\rightarrow n$ MACs (and keys) per share $\rightarrow O(n^2)$ field elements per secret.

Lowering the amount of data needed?

(日) (周) (三) (三)

Lowering the amount of data needed?

The Catch			
In [BDOZ11], MACs on	shares	to authenticate	secret.
Why not MACs on	secret	to authenticate	secret?

-

3

Image: A mathematical states and a mathem

-

Lowering the amount of data needed?

The Catch

In [BDOZ11], MACs on	shares	to authenticate	secret.
Why not MACs on	secret	to authenticate	secret?

Assuming $[\alpha]$ (one single value for all secrets),

$$\langle x \rangle := (x_1, \ldots, x_n, \gamma(x)_1, \ldots, \gamma(x)_n) \qquad (x_i, \gamma(x)_i) \to P_i$$

 x_1, \ldots, x_n : additive secret sharing of x $\gamma(x)_1, \ldots, \gamma(x)_n$: additive secret sharing of $\gamma(x) = \alpha \cdot x$ (MAC on x)

Data needed per secret

One secret \rightarrow *n* shares + *n* shares of a MAC \rightarrow \rightarrow *O*(*n*) field elements per secret.

Does it really work?

Setup

MAC Keys in [·]: privately held, different secret \rightarrow different key MAC Keys in $\langle \cdot \rangle$: [α], unique for all secrets!

3

(人間) トイヨト イヨト

Does it really work?

Setup

MAC Keys in [·]: privately held, different secret \rightarrow different key MAC Keys in $\langle \cdot \rangle$: [α], unique for all secrets!

Problem

 P_i needs α to check a MAC $\rightarrow P_i$ can later forge MACs!

 \rightarrow Gate-by-gate check = insecure

Does it really work?

Setup

MAC Keys in [·]: privately held, different secret \rightarrow different key MAC Keys in $\langle \cdot \rangle$: [α], unique for all secrets!

Problem

 P_i needs α to check a MAC $\rightarrow P_i$ can later forge MACs!

 \rightarrow Gate-by-gate check = insecure

Solution

- Compute the whole circuit with no checks
- Commit to MACs
- Open $[\alpha]$
- Check MACs

< 回 > < 三 > < 三 >

Online - the Numbers

Notation:

- *n*: # players
- m_f : # multiplications in the circuit C to compute
- |C|: Circuit size

	[BDOZ11]	SPDZ
Preprocessed data needed	$\Theta(m_f \cdot n^2)$	$O(m_f \cdot n)$
Complexity (field mults)	$\Omega(C \cdot n^2)$	$O(C \cdot n + n^3)$
Amo. timing (64bit prime field)	7.7ms	0.05ms

Note

Preproc. data needed: Optimal up to constant factor. Complexity: Optimal up to poly-log factors.

Damgård, Pastro, Smart, Zakarias (-.-)

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

High Level Idea

- Generate $a = a_1 + \cdots + a_n$, $b = b_1 + \cdots + b_n$
- Generate and broadcast encryptions $Enc(a_i)$, $Enc(b_i)$
- Compute an encryption Enc(c), where $c = a \cdot b$
- Distribute c_i to P_i , where $c = c_1 + \cdots + c_n$

- 31

→ Ξ →

High Level Idea

- Generate $a = a_1 + \cdots + a_n$, $b = b_1 + \cdots + b_n$
- Generate and broadcast encryptions $Enc(a_i)$, $Enc(b_i)$
- Compute an encryption Enc(c), where $c = a \cdot b$
- Distribute c_i to P_i , where $c = c_1 + \cdots + c_n$

Problems

Does P_i know the plaintext contained in $Enc(a_i)$, $Enc(b_i)$? How to compute Enc(c)?

(人間) トイヨト イヨト

High Level Idea

- Generate $a = a_1 + \cdots + a_n$, $b = b_1 + \cdots + b_n$
- Generate and broadcast encryptions Enc(a_i), Enc(b_i)
- Compute an encryption Enc(c), where $c = a \cdot b$
- Distribute c_i to P_i , where $c = c_1 + \cdots + c_n$

Problems

Does P_i know the plaintext contained in $Enc(a_i)$, $Enc(b_i)$? How to compute Enc(c)?

Solutions

```
First problem: a ZK-Proof.
Second problem: a very expensive ZK-Proof...or?
```

- 4 同 6 4 日 6 4 日 6

The Right Encryption Scheme

The Problem:

Given fresh $Enc(a_1), \ldots, Enc(a_n), Enc(b_1), \ldots, Enc(b_n)$, compute:

Enc(a) Enc(b)

Enc(c)

Where $a_1 + \cdots + a_n = a$, $b_1 + \cdots + b_n = b$, $c = a \cdot b$ Fresh: a ciphertext computed via the encryption algorithm.

- 3

(日) (周) (三) (三)

The Right Encryption Scheme

The Nicest Solution:

Given fresh $Enc(a_1), \ldots, Enc(a_n), Enc(b_1), \ldots, Enc(b_n)$, compute:

$$\operatorname{Enc}(a) \leftarrow \sum_{i} \operatorname{Enc}(a_{i}), \qquad \operatorname{Enc}(b) \leftarrow \sum_{i} \operatorname{Enc}(b_{i})$$

 $\operatorname{Enc}(c) \leftarrow \operatorname{Enc}(a) \cdot \operatorname{Enc}(b).$

Where $a_1 + \cdots + a_n = a$, $b_1 + \cdots + b_n = b$, $c = a \cdot b$ Fresh: a ciphertext computed via the encryption algorithm.

- 3

(日) (周) (三) (三)

Our Abstract Scheme

Somewhat Homomorphic Encryption Scheme An encryption scheme (KeyGen, Enc, Dec) such that: $Dec(C'(Enc(m_1), \dots, Enc(m_n))) = C(m_1, \dots, m_n),$ where C is an arithmetic circuit in a specific set S.

In our case: S = circuits of mult depth one.

・ 同 ト ・ ヨ ト ・ ヨ ト

A variant of Brakerski Vaikuntanathan [BV11] (based on Ring-LWE)

Features of our variant

- computation of circuits of multiplicative depth 1 on ciphertexts,
- distributed decryption,
- specialized for parallel operations on multiple data (SIMD).

Preprocessing – The Numbers

Notation:

- u: security parameter
- κ : size of encryption

	[BDOZ11]	SPDZ
Encryption Type	Semi-Homomorphic	SHE, mult. depth 1
ZKPoPK amortized complexity	$O(\kappa+u)$ bits	$O(\kappa+u)$ bits
Correct Mult. amortized complexity	$O(\kappa \cdot u)$ bits	0
Offline benchmark (2-party, sec=80bits)	2-4sec	0.008sec

47 ▶

Summary

SPDZ

- Active security, dishonest majority, preprocessing model
- Online phase:
 - Linear amount of data needed
 - Essentially linear communication complexity
- Preprocessing:
 - Rational use of SHE
 - Fewer ZK protocols, compared to [BDOZ11]
 - Very practical

http://eprint.iacr.org/2011/535.pdf

A D A D A D A

Summary

SPDZ

- Active security, dishonest majority, preprocessing model
- Online phase:
 - Linear amount of data needed
 - Essentially linear communication complexity
- Preprocessing:
 - Rational use of SHE
 - Fewer ZK protocols, compared to [BDOZ11]
 - Very practical

http://eprint.iacr.org/2011/535.pdf

THANKS

A D A D A D A

Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias.
 Semi-homomorphic encryption and multiparty computation.
 In EUROCRYPT, pages 169–188, 2011.

Donald Beaver.

Efficient multiparty protocols using circuit randomization.

In Joan Feigenbaum, editor, *CRYPTO*, volume 576 of *Lecture Notes in Computer Science*, pages 420–432. Springer, 1991.

Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-lwe and security for key dependent messages.

In Phillip Rogaway, editor, *CRYPTO*, volume 6841 of *Lecture Notes in Computer Science*, pages 505–524. Springer, 2011.

Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party and multi-party secure computation.

In STOC, pages 494–503, 2002.

Ivan Damgård and Claudio Orlandi.

Multiparty computation for dishonest majority: From passive to active security at low cost.

In CRYPTO, pages 558–576, 2010.

Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multiparty computation. In David S. Johnson and Uriel Feige, editors, *STOC*, pages 21–30. ACM, 2007.

 Yuval Ishai, Manoj Prabhakaran, and Amit Sahai.
 Founding cryptography on oblivious transfer - efficiently.
 In David Wagner, editor, CRYPTO, volume 5157 of Lecture Notes in Computer Science, pages 572–591. Springer, 2008.

Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra.

A new approach to practical active-secure two-party computation. In Reihaneh Safavi-Naini and Ran Canetti, editors, *CRYPTO*, volume 7417 of *Lecture Notes in Computer Science*, pages 681–700. Springer, 2012.

< ロト < 同ト < ヨト < ヨト