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I Privacy: Inputs are kept private.

I Practical: Runs in reasonable time for reasonable size circuits.
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Motivation for this Work

I Solving real-world problems. E.g. computing outcome of
auctions [BCD+09].

I Lack of diversity in practical 2PC. In fact all previous practical
approaches uses Yao's Garbled Circuits technique.
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Our approach

Building blocks

I Passive-secure 2PC: The protocol of [GMW87] heavily utilizing
Oblivious Transfer (OT).

I Information theoretic MACs: To ensure active security.

I OT-extension: A huge amount of OT at low amortized cost
from the passive-secure protocol of [IKNP03].
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Our Results

I New OT-extension technique with active security:

I Only a factor 2 slower than the passive-secure protocol of
[IKNP03]. (No asymptotic improvement).

I Implements ∼ 500.000 OT/sec pr. core (vs. ∼ 1000 OT/sec
without extension).

I New practical 2PC protocol:

I UC secure against an active and static adversary in the
Random Oracle model.

I Implements 20.000 gates/sec (online ∼ 1.000.000 gates/sec).
I Faster than all implementations based on Garbled Circuits

. . . except for [KsS12].
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The Preprocessing model

Preprocessing:

I Prepare random authenticated messages:

I 1 per Input-gate.
I 16B per AND-gate, for security ∼ 2−B log(|C |).

I Prove correlations between authenticated messages (think
multiplication-triples).

Online:

I Use preprocessed values and simple (non-crypto) protocols to
evaluate circuit on actual input.
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Information Theoretic MACs

Message x ∈R {0, 1}
MAC M = K ⊕ x∆

Global key ∆ ∈R {0, 1}n
Local key K ∈R {0, 1}n

Unforgeability:

I M = K ⊕ x∆ does not give information on ∆.

I Let M0 = K ⊕ 0∆ = K and M1 = K ⊕ 1∆ = K ⊕∆.

I M0 ⊕M1 = ∆.
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Obtaining MACs: The Functionality

aBit

K ,∆x

M = K ⊕ x∆
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Obtaining MACs: Protocol Steps

I Step 1: Obtain a few, long MACs on Alice's random bits.

I Step 2: Turn into many, short MACs on Bob's random bits.
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Step 1: Long MACs for Alice

To authenticate bits x1, x2, . . . , xn:

2nn

OT

S0, S1 ∈ {0, 1}Tc ∈ {0, 1}

Sc

I Problem: Bob must use same ∆ in every OT.

I Solution:

I Do 2n OTs.
I Force Bob to use consistent ∆, using a �cut-n-chose�-like

technique.
I Sacri�ce half of the authenticated messages.
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Step 2: Short MACs For Bob

M1 M2
. . . Mn = K1 K2

. . . Kn ⊕ x1∆ x2∆ . . . xn∆
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Step 2: Short MACs For Bob

(K1,1, . . . ,K1,n)

(K2,1, . . . ,K2,n)

...

(KT ,1, . . . ,KT ,n)

=

(M1,1, . . . ,M1,n)

(M2,1, . . . ,M2,n)

...

(MT ,1, . . . ,MT ,n)

⊕

(x1, . . . , xn)∆1

(x1, . . . , xn)∆2

...

(x1, . . . , xn)∆T

I Ni = Li ⊕ yiΓ, i.e. Ni is a MAC on yi w. keys Li , Γ.
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Obtaining MACs: Summary

OTOTOTOTOTOT

OTOTOTOTOTOT

aBitaBitaBit

aBitaBitaBitaBitaBitaBitaBitaBitaBitaBitaBitaBitaBitaBitaBitaBit

OTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOT

I A few (2n) OTs with long messages (T = poly(n) bits).

I A few (n) long (T bits) MACs for Alice.

I Many (T ) short (n bits) MACs for Bob.

I Note 1: Can get long OTs from short OT using a PRG.

I Note 2: Can get short OT from short aBit (i.e. OT-extension).
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Concluding . . .

Take away:

I Finally a non-Garbled Circuits approach do practical 2PC!

I It's based on GMW and OT-extension.

I It's really fast!

I . . . So if you're implementing a 2PC protocol, why not give
this a try?

Thank you.
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