A New Approach to Practical Active-Secure Two-Party Computation

Jesper Buus Nielsen¹, Peter Sebastian Nordholt¹, Claudio Orlandi¹ , Sai Sheshank Burra²

¹Aarhus University, Denmark

2 Indian Institute of Technology Guwahati

August 21, 2012

Active-Secure Two-Party Computation (2PC) $x \rightarrow y$ \overline{C} z

• Correctness:
$$
C(x, y) = z
$$

- \blacktriangleright Correctness: $C(x, y) = z$
- \blacktriangleright Privacy: Inputs are kept private.

• Correctness:
$$
C(x, y) = z
$$

 \blacktriangleright Privacy: Inputs are kept private.

- \blacktriangleright Correctness: $C(x, y) = z$
- \blacktriangleright Privacy: Inputs are kept private.
- \triangleright Practical: Runs in reasonable time for reasonable size circuits.

Motivation for this Work

▶ Solving real-world problems. E.g. computing outcome of auctions [BCD+09].

Motivation for this Work

- \triangleright Solving real-world problems. E.g. computing outcome of auctions [BCD+09].
- \triangleright Lack of diversity in practical 2PC. In fact all previous practical approaches uses Yao's Garbled Circuits technique.

Building blocks

▶ Passive-secure 2PC: The protocol of [GMW87] heavily utilizing Oblivious Transfer (OT).

Our approach

Building blocks

- ▶ Passive-secure 2PC: The protocol of [GMW87] heavily utilizing Oblivious Transfer (OT).
- \blacktriangleright Information theoretic MACs: To ensure active security.

Our approach

Building blocks

- ▶ Passive-secure 2PC: The protocol of [GMW87] heavily utilizing Oblivious Transfer (OT).
- \blacktriangleright Information theoretic MACs: To ensure active security.
- ▶ OT extension: A huge amount of OT at low amortized cost from the passive-secure protocol of [IKNP03].

 \triangleright New OT-extension technique with active security:

- \triangleright New OT-extension technique with active security:
	- \triangleright Only a factor 2 slower than the passive-secure protocol of [IKNP03]. (No asymptotic improvement).

- \triangleright New OT-extension technique with active security:
	- \triangleright Only a factor 2 slower than the passive-secure protocol of [IKNP03]. (No asymptotic improvement).
	- ► Implements \sim 500.000 OT/sec pr. core (vs. \sim 1000 OT/sec without extension).

 \triangleright New OT-extension technique with active security:

- \triangleright Only a factor 2 slower than the passive-secure protocol of [IKNP03]. (No asymptotic improvement).
- \blacktriangleright Implements \sim 500.000 OT/sec pr. core (vs. \sim 1000 OT/sec without extension).
- \triangleright New practical 2PC protocol:

- \triangleright New OT-extension technique with active security:
	- \triangleright Only a factor 2 slower than the passive-secure protocol of [IKNP03]. (No asymptotic improvement).
	- \blacktriangleright Implements \sim 500.000 OT/sec pr. core (vs. \sim 1000 OT/sec without extension).
- \triangleright New practical 2PC protocol:
	- \triangleright UC secure against an active and static adversary in the Random Oracle model.

- \triangleright New OT-extension technique with active security:
	- \triangleright Only a factor 2 slower than the passive-secure protocol of [IKNP03]. (No asymptotic improvement).
	- \blacktriangleright Implements \sim 500.000 OT/sec pr. core (vs. \sim 1000 OT/sec without extension).
- \triangleright New practical 2PC protocol:
	- \triangleright UC secure against an active and static adversary in the Random Oracle model.
	- \blacktriangleright Implements 20.000 gates/sec (online \sim 1.000.000 gates/sec).

- \triangleright New OT-extension technique with active security:
	- \triangleright Only a factor 2 slower than the passive-secure protocol of [IKNP03]. (No asymptotic improvement).
	- \blacktriangleright Implements \sim 500.000 OT/sec pr. core (vs. \sim 1000 OT/sec without extension).
- \triangleright New practical 2PC protocol:
	- \triangleright UC secure against an active and static adversary in the Random Oracle model.
	- \triangleright Implements 20.000 gates/sec (online \sim 1.000.000 gates/sec).
	- \blacktriangleright Faster than all implementations based on Garbled Circuits . . . except for [KsS12].

[Protocol Overview](#page-19-0)

[MACs](#page-36-0)

[Concluding](#page-61-0)

Active-Secure 2PC

Active-Secure 2PC

Preprocessing:

 \blacktriangleright Prepare random authenticated messages:

- \blacktriangleright Prepare random authenticated messages:
	- \blacktriangleright 1 per Input-gate.

- \blacktriangleright Prepare random authenticated messages:
	- \blacktriangleright 1 per Input-gate.
	- ► 16 B per AND-gate, for security $\sim 2^{-B\log(|\mathcal{C}|)}$.

- \blacktriangleright Prepare random authenticated messages:
	- \blacktriangleright 1 per Input-gate.
	- ► 16 B per AND-gate, for security $\sim 2^{-B\log(|\mathcal{C}|)}$.
- \triangleright Prove correlations between authenticated messages (think multiplication-triples).

Preprocessing:

- \blacktriangleright Prepare random authenticated messages:
	- \blacktriangleright 1 per Input-gate.
	- ► 16 B per AND-gate, for security $\sim 2^{-B\log(|\mathcal{C}|)}$.
- \triangleright Prove correlations between authenticated messages (think multiplication-triples).

Online:

Preprocessing:

- \blacktriangleright Prepare random authenticated messages:
	- \blacktriangleright 1 per Input-gate.
	- ► 16 B per AND-gate, for security $\sim 2^{-B\log(|\mathcal{C}|)}$.
- \triangleright Prove correlations between authenticated messages (think multiplication-triples).

Online:

 \triangleright Use preprocessed values and simple (non-crypto) protocols to evaluate circuit on actual input.

Preprocessing:

- \blacktriangleright Prepare random authenticated messages:
	- \blacktriangleright 1 per Input-gate.
	- ► 16 B per AND-gate, for security $\sim 2^{-B\log(|\mathcal{C}|)}$.
- \triangleright Prove correlations between authenticated messages (think multiplication-triples).

Online:

 \triangleright Use preprocessed values and simple (non-crypto) protocols to evaluate circuit on actual input.

[Protocol Overview](#page-19-0)

[MACs](#page-36-0)

[Concluding](#page-61-0)

Message $x \in_R \{0,1\}$ MAC $M = K \oplus x\Delta$

Global key $\Delta \in_R \{0,1\}^n$ Local key $K \in_R \{0,1\}^n$

Message $x \in_R \{0,1\}$ MAC $M = K \oplus x \Delta$

Unforgeability:

Global key $\Delta \in_R \{0,1\}^n$ Local key $K \in_R \{0,1\}^n$

Message $x \in_R \{0,1\}$ MAC $M = K \oplus x \Delta$

Global key $\Delta \in_R \{0,1\}^n$ Local key $K \in_R \{0,1\}^n$

Unforgeability:

 $M = K \oplus x\Delta$ does not give information on Δ .

Message $x \in_R \{0,1\}$ MAC $M = K \oplus x \Delta$

Global key $\Delta \in_R \{0,1\}^n$ Local key $K \in_R \{0,1\}^n$

Unforgeability:

- $M = K \oplus x\Delta$ does not give information on Δ .
- \blacktriangleright Let $M_0 = K \oplus 0\Delta = K$ and $M_1 = K \oplus 1\Delta = K \oplus \Delta$.

Message $x \in_R \{0,1\}$ MAC $M = K \oplus x \Delta$

Global key $\Delta \in_R \{0,1\}^n$ Local key $K \in_R \{0,1\}^n$

Unforgeability:

- $M = K \oplus x\Delta$ does not give information on Δ .
- \blacktriangleright Let $M_0 = K \oplus 0\Delta = K$ and $M_1 = K \oplus 1\Delta = K \oplus \Delta$.
- $\blacktriangleright M_0 \oplus M_1 = \Delta$.

Obtaining MACs: The Functionality

Obtaining MACs: Protocol Steps

- ▶ Step 1: Obtain a few, long MACs on Alice's random bits.
- ▶ Step 2: Turn into many, short MACs on Bob's random bits.

OT $c \in \{0, 1\}$ $S_0, S_1 \in \{0, 1\}^T$ S_c

To authenticate bits x_1, x_2, \ldots, x_n .

▶ Problem: Bob must use same \triangle in every OT.

- ▶ Problem: Bob must use same \triangle in every OT.
- \blacktriangleright Solution:
	- \triangleright Do 2n OTs.

- ^I Problem: Bob must use same ∆ in every OT.
- \blacktriangleright Solution:
	- \blacktriangleright Do 2n OTs.
	- ► Force Bob to use consistent Δ , using a "cut-n-chose"-like technique.

- ^I Problem: Bob must use same ∆ in every OT.
- \blacktriangleright Solution:
	- \blacktriangleright Do 2n OTs.
	- ► Force Bob to use consistent Δ , using a "cut-n-chose"-like technique.
	- \triangleright Sacrifice half of the authenticated messages.

 $\blacktriangleright N_i = L_i \oplus y_i \Gamma$, i.e. N_i is a MAC on y_i w. keys L_i, Γ .

A few (2n) OTs with long messages ($T = poly(n)$ bits).

A few (n) long $(T$ bits) MACs for Alice.

- A few (n) long $(T$ bits) MACs for Alice.
- \blacktriangleright Many (T) short (n bits) MACs for Bob.

- A few (n) long $(T$ bits) MACs for Alice.
- \blacktriangleright Many (T) short (*n* bits) MACs for Bob.
- ▶ Note 1: Can get long OTs from short OT using a PRG.

- A few (n) long $(T$ bits) MACs for Alice.
- \blacktriangleright Many (T) short (*n* bits) MACs for Bob.
- ▶ Note 1: Can get long OTs from short OT using a PRG.
- \triangleright Note 2: Can get short OT from short aBit (i.e. OT-extension).

[Protocol Overview](#page-19-0)

[MACs](#page-36-0)

[Concluding](#page-61-0)

Take away:

Finally a non-Garbled Circuits approach do practical 2PC!

Take away:

- Finally a non-Garbled Circuits approach do practical 2PC!
- \blacktriangleright It's based on GMW and OT-extension.

Take away:

- Finally a non-Garbled Circuits approach do practical 2PC!
- It's based on GMW and OT -extension.
- \blacktriangleright It's really fast!

Take away:

- \blacktriangleright Finally a *non-Garbled Circuits* approach do practical 2PC!
- It's based on GMW and OT -extension.
- \blacktriangleright It's really fast!
- \triangleright . . So if you're implementing a 2PC protocol, why not give this a try?

Take away:

- \blacktriangleright Finally a *non-Garbled Circuits* approach do practical 2PC!
- It's based on GMW and OT -extension.
- \blacktriangleright It's really fast!
- \triangleright . . So if you're implementing a 2PC protocol, why not give this a try?

Thank you.