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Single Encryption 

• The Basic Cryptanalytic Problem: 

• Input: a list of plaintext-ciphertext 
pairs (P1,C1), (P2,C2),(P3,C3),… 

• Goal: find all keys K such that  

  C1 =EK(P1), C2 =EK(P2),… 

 

• Exhaustive Search: 

• For each n-bit value of K 

• Perform trial encryptions i.e., test 
whether C1 =EK(P1), if so test whether 
C2 =EK(P2) … 

• Time: 2n, Memory: constant 
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Double Encryption 

• C=EK2
)EK1

)P)) with independent keys n-bit keys 
K1,K2 

 

• Suggested following concerns about the small 
keys size of DES 
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MITM Attack (Hellman, Merkle ‘81) 

• For each n-bit value of K1 
• Partially encrypt P1 and store the n-bit suggestions for X in a 

sorted list 

• For each n-bit value of K2 
• Partially decrypt C1 and look for matches in the list 

• For each of the ≈2n matches test the full key 

• Time 2n, memory 2n (ignoring logarithmic factors)  
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Triple Encryption 

• Triple Encryption: C=EK3
(EK2

)EK1
)P))) with 

independent keys K1,K2,K3 
• Triple-DES was used as a de-facto encryption standard 

from 1998 until 2001 (and even today…) 

 

• A trivial extension of the MITM attack (by 
guessing K3) breaks triple encryption in time 22n 
and memory 2n  
• Still the best known algorithm for triple encryption  

 

 



Multiple Encryption 

• r-fold encryption: EKr 
)EKr-1

)…(EK1
)P))) with 

independent keys K1,K2,…,Kr 

 

• An extension of MITM breaks r-fold encryption 
in time T and memory M such that TM=2rn=N 
(provided M≤2[r/2]n) 

 

• Suggests an optimal time-memory tradeoff of 
TM=N 

 



Improved Attack on 4-Fold Encryption with M=2n  
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K3 

• For each n-bit value of X2 
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Improved Attack on 4-Fold Encryption with M=2n  

• For each n-bit value of X2 
• Given P1,X2 obtain ≈2n suggestions for K1,K2 using a 2R MITM attack 
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Improved Attack on 4-Fold Encryption with M=2n  

• For each n-bit value of X2 
• Given P1,X2 obtain ≈2n suggestions for K1,K2 using a 2R MITM attack 
• For each suggestion, obtain Y2 and store the triplet in a sorted list  
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Improved Attack on 4-Fold Encryption with M=2n  

• For each n-bit value of X2 
• Given P1,X2 obtain ≈2n suggestions for K1,K2 using a 2R MITM attack 
• For each suggestion, obtain Y2 and store the triplet in a sorted list  
• Given X2,C1 obtain ≈2n suggestions for K3,K4 using a 2R MITM attack 
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Improved Attack on 4-Fold Encryption with M=2n  

• For each n-bit value of X2 
• Given P1,X2 obtain ≈2n suggestions for K1,K2 using a 2R MITM attack 
• For each suggestion, obtain Y2 and store the triplet in a sorted list  
• Given X2,C1 obtain ≈2n suggestions for K3,K4 using a 2R MITM attack 
• For each suggestion, obtain Y2 and match with the stored list 
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Improved Attack on 4-Fold Encryption with M=2n  

• For each n-bit value of X2 
• Given P1,X2 obtain ≈2n suggestions for K1,K2 using a 2R MITM attack 
• For each suggestion, obtain Y2 and store the triplet in a sorted list  
• Given X2,C1 obtain ≈2n suggestions for K3,K4 using a 2R MITM attack 
• For each suggestion, obtain Y2 and match with the stored list 
• For each of the ≈2n matches test the full key using (P3,C3( and (P4,C4( 
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Improved Attack on 4-Fold Encryption with M=2n  

• For each n-bit value of X2 
• Given P1,X2 obtain ≈2n suggestions for K1,K2 using a 2R MITM attack 
• For each suggestion, obtain Y2 and store the triplet in a sorted list  
• Given X2,C1 obtain ≈2n suggestions for K3,K4 using a 2R MITM attack 
• For each suggestion, obtain Y2 and match with the stored list 
• For each of the ≈2n matches test the full key using (P3,C3( and (P4,C4( 

• Time 22n, memory 2n (the same as triple-encryption!) 
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Increasing r Further 

• We obtained TM=23n (instead of 24n) for r=4 

 

• What happens when we increase r further? 

• We first fix M=2n and try to minimize T 
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Surprisingly Efficient Attack on 7-
Fold Encryption (a 7r attack) 
• Split the 7r cipher into two 

subciphers, a 3r top part and a 4r 
bottom part 

• Guess 2 intermediate encryption 
values in the middle (one for 
(P1,C1) and one for (P2,C2)) 
• Apply a 3r attack to the top part and 

store the 2n returned suggestions 

• Apply the 4r attack to the bottom 
part and test the returned keys on 
the fly  
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Analysis of the Attack 

• We guess 2n bits in the middle  

• The top 3r attack takes 22n time and 2n memory 

• The bottom 4r attack takes 22n time and 2n memory 

• The total complexity is T=24n (instead of 26n) 

• We obtain TM=25n (instead of 27n) 

 

 

 

 



Extending the 7r Attack 

• Our 7r attack divides the cipher asymmetrically 
into a top and bottom part  

 

 

 

 

• Can be extended recursively by dividing the 
cipher asymmetrically into subciphers 
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Constructing Asymmetric Algorithms 

• Using the asymmetric recursion, we construct a 
“magic sequence” of the “turning points”  

   Magic={4,7,11,16,22,29,37,46,…} 

• The algorithm becomes increasingly more efficient 
compared to the standard MITM 
• For r=4, we have T=22n (compared to T=23n) 

• For r=7, we have T=24n (compared to T=26n) 

• For r=11, we have T=27n (compared to T=210n)… 

• We obtain an asymptotic time complexity of   

   T≈2n(r-√(2r)) 

• The algorithms generalize to any amount of memory 

 

 



Where does the asymmetry come 
from? 

• Most recursive algorithms divide the problem 
symmetrically to avoid bottlenecks 

• However, there is asymmetry between the top 
and bottom subciphers 

• In the top part, we store all remaining suggestions in 
memory -> at most 2n suggestions can remain 

• In the bottom part, we can check the key suggestions 
on the fly -> no restriction on their number!  

• Hence, it is better to have more rounds in the 
bottom part! 

 



Dissection Algorithms 

• We obtain a new class of algorithms which we 
call dissection algorithms 

• We perform “cuts” of different sizes in carefully 
chosen places of the encryption structure  



Composite Problems 

• A composite problem 

• We are given the initial value(s) and the final value(s) 
of a cascade of r steps 

• In each step, one of a list of possible transformations 
was applied 

• The goal: Find out, which transformation was applied 
in each step (i.e., find all possible options) 

 

• Clearly, r-fold encryption is a composite 
problem 

 



Application to Knapsacks 

• Modular Knapsack Problem: 

• Input: A list of n integers {a1,a2,…,an} of n bits 
each, and a target integer S  

• Goal: Find a vector ɛ={ɛ1,ɛ2…ɛn} where ɛiϵ{0,1} 
such that S=∑1≤i≤n(ɛi∙ai) mod 2n  

 

• How do we apply the dissection techniques to 
the Knapsack problem? 

 

 



Representing Knapsack as a Block Cipher 

 

 

• We fix the plaintext to be the 0 n-bit vector, the 
ciphertext to be S 

• The knapsack problem reduces to recovering 
the key of this block cipher, given one plaintext-
ciphertext pair 

ɛ={ɛ1,ɛ2…ɛn}  

P 

C=P+∑1≤i≤n(ɛi∙ai) (mod 2n) 
 

+(ɛ1∙a1) 
+(ɛ2∙a2) 

+(ɛn∙an) 

…
…

 



Representing Knapsack as 4-Fold 
Encryption 

 

 

• We split the knapsack to 4 independent 
knapsacks by splitting the generators and 
defining S=σ1+σ2+σ3+σ4

 (mod 2n) 
• Xi=∑1≤j≤i(σ

j) 

{ɛ1,ɛ2…ɛn/4}  

0 

S 

{ɛn/4+1,…,ɛn/2}  

{ɛn/2+1,…,ɛ3n/4}  

{ɛ3n/4+1,…,ɛn}  

X1 

X2 

X3 



Representing Knapsack as 4-Fold 
Encryption  

• Problem: In r-fold encryption, we have r “small” 
plaintexts -> can efficiently guess intermediate 
values. Here we have a single “big” plaintext  

• Solution: Split the “block cipher” also vertically 
into n/4-bit blocks 
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Representing Knapsack as 4-Fold 
Encryption 

• Problem: Dependency between the “vertical” 
chunks through addition carries 

 

• Solution: Guess the intermediate encryption 
values in their natural order (from right to left) 
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Representing Knapsack as 4-Fold 
Encryption 

 

• Conclusion: We can apply to knapsacks the 
algorithm for r-fold encryption, for any r 

 

• We choose r according to the amount of 
available memory, in order to optimize the 
running time of the dissection algorithms 



Time-Memory Tradeoff  for Knapsacks 

Becker, Coron and Joux 2011 

Schroeppel and Shamir 1981 



Examples of Other Composite 
Problems 

• Rubik’s cube – find a shortest solution given an 
initial state 

• The matching phase in rebound attacks on 
hash functions  

• Card Shuffling 

• etc… 

 



Probabilistic Algorithms for MITM 

• Until now we only considered algorithms that 
are guaranteed to return all solutions 

• In the second half of the paper, we combine our 
dissection algorithms with the probabalistic  
Parallel Collision Search (Van Oorschot and 
Wiener, CRYPTO 1996)  

• We obtain significantly improved attacks for very 
small amounts of memory  



Conclusions 

• We improved the best known algorithms for 
multiple encryption 

• Our techniques allow us to improve the best 
known algorithms for the knapsack problem 
with small memory 

• These techniques are applicable to other 
composite problems that have nothing to do 
with cryptography    

 

 

 

 



Open Problems 

• Are our results optimal?  
• Can you improve our 7r attack? 

• Prove lower bounds for composite problems 

• In particular, prove that T≥N1/2 

• Our algorithms use the smallest number of P/C 
pairs. Can you improve the attacks by using 
slightly more data? 

• Find additional applications to dissection 
algorithms 

 

 



Thanks for listening! 


