Efficient Dissection of Composite Problems, with Applications to Cryptanalysis, Knapsacks, and Combinatorial Search Problems

Itai Dinur¹, Orr Dunkelman^{1,2}, Nathan Keller³ and Adi Shamir¹

¹ Computer Science department, The Weizmann Institute, Rehovot, Israel

- ² Computer Science Department, University of Haifa, Israel
- ³ Department of Mathematics, Bar-Ilan University, Israel

Single Encryption

- The Basic Cryptanalytic Problem:
 - Input: a list of plaintext-ciphertext pairs (P₁,C₁), (P₂,C₂), (P₃,C₃),...
 - Goal: find all keys K such that

 $C_1 = E_K(P_1), C_2 = E_K(P_2),...$

- Exhaustive Search:
 - For each n-bit value of K
 - Perform trial encryptions i.e., test whether C₁ = E_K(P₁), if so test whether C₂ = E_K(P₂) ...
 - Time: 2ⁿ, Memory: constant

- C=E_{K2}(E_{K1}(P)) with independent keys n-bit keys K₁,K₂
- Suggested following concerns about the small keys size of **DES**

For each n-bit value of K₁

- Partially encrypt P₁ and store the n-bit suggestions for X in a sorted list
- For each n-bit value of K₂
 - Partially decrypt C₁ and look for matches in the list
 - For each of the ≈2ⁿ matches test the full key
- Time 2ⁿ, memory 2ⁿ (ignoring logarithmic factors)

Triple Encryption

- Triple Encryption: C=E_{K3}(E_{K2}(E_{K1}(P))) with independent keys K₁,K₂,K₃
 - Triple-DES was used as a de-facto encryption standard from 1998 until 2001 (and even today...)
- A trivial extension of the MITM attack (by guessing K₃) breaks triple encryption in time 2²ⁿ and memory 2ⁿ
 - Still the best known algorithm for triple encryption

Multiple Encryption

- r-fold encryption: E_{Kr}(E_{Kr-1}(...(E_{K1}(P))) with independent keys K₁,K₂,...,K_r
- An extension of MITM breaks r-fold encryption in time T and memory M such that TM=2^{rn}=N (provided M≤2^{[r/2]n})
- Suggests an optimal time-memory tradeoff of TM=N

→For each n-bit value of X₂

- For each n-bit value of X₂
- \rightarrow Given P₁,X₂ obtain \approx 2ⁿ suggestions for K₁,K₂ using a 2R MITM attack

 P_4

 C_4

Given P₁,X₂ obtain ≈2ⁿ suggestions for K₁,K₂ using a 2R MITM attack
 For each suggestion, obtain Y₂ and store the triplet in a sorted list

- For each n-bit value of X₂
 - Given P_1, X_2 obtain $\approx 2^n$ suggestions for K_1, K_2 using a 2R MITM attack
 - For each suggestion, obtain Y₂ and store the triplet in a sorted list
 - →Given X_2, C_1 obtain $\approx 2^n$ suggestions for K_3, K_4 using a 2R MITM attack

Improved Attack on 4-Fold Encryption with M=2ⁿ

- For each n-bit value of X₂
 - Given P_1, X_2 obtain $\approx 2^n$ suggestions for K_1, K_2 using a 2R MITM attack
 - For each suggestion, obtain Y₂ and store the triplet in a sorted list
 - Given X_2, C_1 obtain $\approx 2^n$ suggestions for K_3, K_4 using a 2R MITM attack
 - \rightarrow For each suggestion, obtain Y_2 and match with the stored list

- For each n-bit value of X₂
 - Given P_1, X_2 obtain $\approx 2^n$ suggestions for K_1, K_2 using a 2R MITM attack
 - For each suggestion, obtain Y₂ and store the triplet in a sorted list
 - Given X_2, C_1 obtain $\approx 2^n$ suggestions for K_3, K_4 using a 2R MITM attack
 - For each suggestion, obtain Y₂ and match with the stored list
 - → For each of the $\approx 2^{n}$ matches **test the full key** using (P_3, C_3) and (P_4, C_4)

- For each n-bit value of X₂
 - Given P_1, X_2 obtain $\approx 2^n$ suggestions for K_1, K_2 using a 2R MITM attack
 - For each suggestion, obtain Y₂ and store the triplet in a sorted list
 - Given X_2, C_1 obtain $\approx 2^n$ suggestions for K_3, K_4 using a 2R MITM attack
 - For each suggestion, obtain Y₂ and match with the stored list
 - For each of the ≈2ⁿ matches test the full key using (P₃,C₃) and (P₄,C₄)
- Time 2²ⁿ, memory 2ⁿ (the same as triple-encryption!)

Increasing r Further

- We obtained TM=2³ⁿ (instead of 2⁴ⁿ) for r=4
- What happens when we increase r further?
- We first fix M=2ⁿ and try to minimize T

Surprisingly Efficient Attack on 7-Fold Encryption (a 7r attack)

- Split the 7r cipher into two subciphers, a 3r top part and a 4r bottom part
- Guess 2 intermediate encryption values in the middle (one for (P₁,C₁) and one for (P₂,C₂))
 - Apply a 3r attack to the top part and store the 2ⁿ returned suggestions
 - Apply the 4r attack to the bottom part and test the returned keys on the fly

Analysis of the Attack

- We guess 2n bits in the middle
 - The top 3r attack takes 2²ⁿ time and 2ⁿ memory
 - The bottom 4r attack takes 2²ⁿ time and 2ⁿ memory
- The total complexity is T=2⁴ⁿ (instead of 2⁶ⁿ)
- We obtain TM=2⁵ⁿ (instead of 2⁷ⁿ)

Extending the 7r Attack

 Our 7r attack divides the cipher asymmetrically into a top and bottom part

 Can be extended recursively by dividing the cipher asymmetrically into subciphers

Constructing Asymmetric Algorithms

- Using the asymmetric recursion, we construct a "magic sequence" of the "turning points" Magic={4,7,11,16,22,29,37,46,...}
- The algorithm becomes increasingly more efficient compared to the standard MITM
 - For r=4, we have T=2²ⁿ (compared to T=2³ⁿ)
 - For r=7, we have T=2⁴ⁿ (compared to T=2⁶ⁿ)
 - For r=11, we have T=2⁷ⁿ (compared to T=2¹⁰ⁿ)...
- We obtain an asymptotic time complexity of T≈2^{n(r-√(2r))}
- The algorithms generalize to any amount of memory

Where does the asymmetry come from?

- Most recursive algorithms divide the problem symmetrically to avoid bottlenecks
- However, there is asymmetry between the top and bottom subciphers
 - In the top part, we store all remaining suggestions in memory -> at most 2ⁿ suggestions can remain
 - In the bottom part, we can check the key suggestions
 on the fly -> no restriction on their number!
- Hence, it is better to have more rounds in the bottom part!

Dissection Algorithms

- We obtain a new class of algorithms which we call dissection algorithms
- We perform "cuts" of different sizes in carefully chosen places of the encryption structure

Composite Problems

A composite problem

- We are given the initial value(s) and the final value(s) of a cascade of r steps
- In each step, one of a list of possible transformations was applied
- The goal: Find out, which transformation was applied in each step (i.e., find all possible options)
- Clearly, r-fold encryption is a composite problem

Application to Knapsacks

- Modular Knapsack Problem:
 - Input: A list of n integers {a₁,a₂,...,a_n} of n bits each, and a target integer S
 - Goal: Find a vector $\varepsilon = \{\varepsilon_1, \varepsilon_2, ..., \varepsilon_n\}$ where $\varepsilon_i \in \{0, 1\}$ such that $S = \sum_{1 \le i \le n} (\varepsilon_i \cdot a_i) \mod 2^n$
- How do we apply the dissection techniques to the Knapsack problem?

Representing Knapsack as a Block Cipher

We fix the plaintext to be the 0 n-bit vector, the ciphertext to be S

 The knapsack problem reduces to recovering the key of this block cipher, given one plaintextciphertext pair

• We split the knapsack to 4 independent knapsacks by splitting the generators and defining $S=\sigma_1+\sigma_2+\sigma_3+\sigma_4 \pmod{2^n}$

• $X_i = \sum_{1 \le j \le i} (\sigma^j)$

- Problem: In r-fold encryption, we have r "small" plaintexts -> can efficiently guess intermediate values. Here we have a single "big" plaintext
- Solution: Split the "block cipher" also vertically into n/4-bit blocks

 Problem: Dependency between the "vertical" chunks through addition carries

 Solution: Guess the intermediate encryption values in their natural order (from right to left)

- **Conclusion:** We can apply to knapsacks the algorithm for r-fold encryption, for any r
- We choose r according to the amount of **available memory**, in order to optimize the running time of the dissection algorithms

Examples of Other Composite Problems

- Rubik's cube find a shortest solution given an initial state
- The matching phase in rebound attacks on hash functions
- Card Shuffling
- etc...

Probabilistic Algorithms for MITM

- Until now we only considered algorithms that are guaranteed to return all solutions
- In the second half of the paper, we combine our dissection algorithms with the probabalistic
 Parallel Collision Search (Van Oorschot and Wiener, CRYPTO 1996)
- We obtain significantly improved attacks for very small amounts of memory

Conclusions

- We improved the best known algorithms for multiple encryption
- Our techniques allow us to improve the best known algorithms for the knapsack problem with small memory
- These techniques are applicable to other composite problems that have nothing to do with cryptography

Open Problems

- Are our results optimal?
 - Can you improve our 7r attack?
- Prove lower bounds for composite problems
 - In particular, prove that T≥N^{1/2}
- Our algorithms use the smallest number of P/C pairs. Can you improve the attacks by using slightly more data?
- Find additional applications to dissection algorithms

Thanks for listening!