
Fully Homomorphic Encryption
without Modulus Switching

 from Classical GapSVP

Zvika Brakerski

Stanford University

CRYPTO 2012

Outsourcing Computation

Email, web-search, navigation, social networking…

𝑥 𝑓

𝑓(𝑥)

𝑥

What if 𝑥 is private?

Search query, location, business
information, medical information…

Outsourcing Computation – Privately

Homomorphic Encryption

𝑓, 𝐸𝑛𝑐 𝑥1 , … , 𝐸𝑛𝑐 𝑥𝑛 → 𝐸𝑛𝑐(𝑓 𝑥1, … , 𝑥𝑛)

We assume w.l.o.g 𝑓 ∈ *+,×+ (over ℤ2).

𝑥 𝑓

𝑦

𝐸𝑛𝑐(𝑥)

𝐷𝑒𝑐 𝑦 = 𝑓(𝑥)

Learns nothing on 𝑥.

The Old Days of FHE

• Gentry’s breakthrough [G09,G10] – first
candidate.

• [vDGHV10, BV11a]: Similar outline, different
assumptions.

• [GH11]: Chimeric-FHE.

• Efficiency attempts [SV10,SS10,GH10,LNV11].

2009-2011

2nd Generation FHE

• [BV11b]: LWE-based FHE (= apx. short vector in lattice).

– Better assumption.

– Clean presentation: no ideals, no “squashing”.

– Efficiency improvement.

• [BGV12]: Improved performance via Modulus Switching.

– Quantitatively better assumption.

– “Leveled” homomorphism without bootstrapping.

– Efficiency improvements using ideals (“batching”).

[GHS11,GHS12a, GHS12b]: Efficiency improvements
and optimizations using ideals.

This work:

Modulus switching is a red herring

“Scale-independent encryption”

⇒ better performance with less headache

FHE 101 [BV11b]

Secret key: 𝑠 ∈ ℤ𝑞
𝑛

Ciphertext: 𝑐 ∈ ℤ𝑞
𝑛

Encryption algorithm: Doesn’t matter.

Decryption algorithm: 𝑐 ⋅ 𝑠 𝑚𝑜𝑑 𝑞 (𝑚𝑜𝑑 2).

Security based on 𝐿𝑊𝐸𝑛,𝑞,𝛼
 The Scheme:

𝑐 ⋅ 𝑠 = 𝑚 + 2𝑒 + 𝑞𝐼

small (initial) noise 𝑒 < 𝐵 = 𝛼𝑞

dec. if 𝑒 /𝑞 <
1

4

FHE 101 [BV11b]

Secret key: 𝑠 ∈ ℤ𝑞
𝑛

Ciphertext: 𝑐 ∈ ℤ𝑞
𝑛

The Scheme:

𝑐 ⋅ 𝑠 = 𝑚 + 2𝑒 + 𝑞𝐼

small (initial) noise 𝑒 < 𝐵 = 𝛼𝑞

dec. if 𝑒 /𝑞 <
1

4

Additive Homomorphism:
That again? Just add’em, dude…

𝑐 1, 𝑐 2 ⇒ 𝑐 1 + 𝑐 2 𝑚𝑜𝑑 𝑞

FHE 101 [BV11b]

Multiplicative Homomorphism:

𝑐 1, 𝑐 2 ⇒ 𝑐 1 ⊗ 𝑐 2 𝑚𝑜𝑑 𝑞 ∈ ℤ𝑞
𝑛2

vector of all cross terms 𝑐 1 𝑖 ⋅ 𝑐 2 𝑗 𝑖,𝑗

𝑐 1 ⊗ 𝑐 2 ⋅ 𝑠 ⊗ 𝑠 = 𝑐 1 ⋅ 𝑠 ⋅ 𝑐 2 ⋅ 𝑠 = 𝑚1 + 2𝑒1 ⋅ 𝑚2 + 2𝑒2 (𝑚𝑜𝑑 𝑞)

 = 𝑚1𝑚2 + 2 ⋅ 𝑂 𝑒1𝑒2 (𝑚𝑜𝑑 𝑞)

𝑠𝑘 changed…
but we can bring it back

(we have the technology)

~𝐵2

noise blows up!

𝑩 → 𝑩𝟐 → ⋯ → 𝑩𝟐𝒅

dec. if 𝐵2𝑑
/𝑞 <

1

4

Secret key: 𝑠 ∈ ℤ𝑞
𝑛

Ciphertext: 𝑐 ∈ ℤ𝑞
𝑛

The Scheme:

𝑐 ⋅ 𝑠 = 𝑚 + 2𝑒 + 𝑞𝐼

small (initial) noise 𝑒 < 𝐵 = 𝛼𝑞

dec. if 𝑒 /𝑞 <
1

4

Modulus Switching [BGV12]

Idea: Bring noise back down by dividing the entire
ciphertext by 𝐵.

𝑐 ∈ ℤ𝑞
𝑛

with noise |𝑒| < 𝐵2
/𝐵

 𝑐 /𝐵 ∈ ℤ𝑞/𝐵
𝑛

with noise |𝑒| < 𝐵

(make sure not to harm the message bit 𝑚)

(𝑩, 𝒒) → (𝑩, 𝒒/𝑩) → ⋯ → (𝑩, 𝒒/𝑩𝒅)

Noise/modulus evolution:

dec. if 𝐵𝑑+1 < 𝑞/4

My Problems with Modulus Switching

1. Modulus switching is scale-dependent.
- Scaling 𝐵, 𝑞 changes performance:

Smaller 𝐵, 𝑞 smaller 𝐵𝑑+1/𝑞 better homomorphism.

2. What does modulus switching really do?

- Same as a scaling factor in the tensoring process
 (𝑐 1, 𝑐 2 ⇒ 𝜏 ⋅ 𝑐 1 ⊗ 𝑐 2 𝑚𝑜𝑑 𝑞).

- In a “correct” scale, this factor should be 1.

nothing…

Our Solution: Scale-Independent FHE

Compare with previous:

real numbers 𝑚𝑜𝑑 2 ≡ (−1,1]

Hardness assumption is the same 𝐿𝑊𝐸𝑛,𝑞,𝛼.

Secret key: 𝑠 ∈ ℤ𝑛

Ciphertext: 𝑐 ∈ ℝ2
𝑛

𝑐 ⋅ 𝑠 = 𝑚 + 𝜖 + 2𝐼

small (initial) noise 𝜖 < 2𝛼

dec. if 𝜖 <
1

2

Scale-Independent Multiplication

Multiplicative Homomorphism:

𝑐 1, 𝑐 2 ⇒ 𝑐 1 ⊗ 𝑐 2 𝑚𝑜𝑑 2 ∈ ℝ2
𝑛2

 𝑐 1 ⊗ 𝑐 2 ⋅ 𝑠 ⊗ 𝑠 = 𝑐 1 ⋅ 𝑠 ⋅ 𝑐 2 ⋅ 𝑠

 = 𝑚1 + 𝜖1 + 2𝐼1 ⋅ 𝑚2 + 𝜖2 + 2𝐼2 (𝑚𝑜𝑑 2)

 = 𝑚1𝑚2 + 𝜖1 ⋅ 𝑚2 + 2𝐼2 + 𝜖2 ⋅ 𝑚1 + 2𝐼1 + 𝜖1𝜖2 (𝑚𝑜𝑑 2)

Careful!

1/2 𝑚𝑜𝑑 2 ⋅ 2 𝑚𝑜𝑑 2 ≠ 1 (𝑚𝑜𝑑 2)

~𝛼2= tiny! ~𝛼 ⋅ |𝑚 + 2𝐼|

𝑚 + 2𝐼 ≈ 𝑐 ⋅ 𝑠 ≤ 𝑠 1

≲ 𝛼 ⋅ 𝑠 1

real numbers 𝑚𝑜𝑑 2 ≡ (−1,1]

Secret key: 𝑠 ∈ ℤ𝑛

Ciphertext: 𝑐 ∈ ℝ2
𝑛

𝑐 ⋅ 𝑠 = 𝑚 + 𝜖 + 2𝐼

small (initial) noise 𝜖 < 2𝛼

dec. if 𝜖 <
1

2

Noise blowup: 𝜶 → 𝜶 ⋅ 𝒔 𝟏

Scale-Independent Multiplication

Multiplicative Homomorphism:

𝑐 1, 𝑐 2 ⇒ 𝑐 1 ⊗ 𝑐 2 𝑚𝑜𝑑 2 ∈ ℝ2
𝑛2

Noise blowup: 𝜶 → 𝜶 ⋅ 𝒔 𝟏

Not good enough: 𝑠 1 ≈ 𝑛𝑞

Solution: Decompose the elements of 𝑠 into 𝑛 log 𝑞 bits.

real numbers 𝑚𝑜𝑑 2 ≡ (−1,1]

Secret key: 𝑠 ∈ ℤ𝑛

Ciphertext: 𝑐 ∈ ℝ2
𝑛

𝑐 ⋅ 𝑠 = 𝑚 + 𝜖 + 2𝐼

small (initial) noise 𝜖 < 2𝛼

dec. if 𝜖 <
1

2

𝑠 = 𝑠 1 , 𝑠 2 , …

𝑐 = 𝑐 1 , 𝑐 2 , …

𝑠 ⋅ 𝑐 = 𝑠 1 ⋅ 𝑐 1 + 𝑠 2 ⋅ 𝑐 2 + ⋯

𝑠 = 𝑠 1 0, … , 𝑠 1 log 𝑞 , 𝑠 2 0, … , 𝑠 2 log 𝑞 , …

𝑐 = 𝑐 1 , 2𝑐 1 , … , 2log 𝑞𝑐 1 , 𝑐 2 , 2𝑐 2 , … , 2log 𝑞𝑐 2 , …

 𝑠 ⋅ 𝑐 = 𝑠 1 𝑖 ⋅ 2𝑖𝑐 1𝑖 + 𝑠 2 𝑖 ⋅ 2𝑖𝑐 2𝑖 + ⋯

 = 𝑠 1 ⋅ 𝑐 1 + 𝑠 2 ⋅ 𝑐 2 + ⋯

Binary Decomposition

Scale-Independent Multiplication

𝑐 1, 𝑐 2 ⇒ 𝑐 1 ⊗ 𝑐 2 𝑚𝑜𝑑 2 ∈ ℝ2
𝑛2

Noise blowup: 𝜶 → 𝜶 ⋅ 𝒔 𝟏

𝑠 1 ≤ 𝑛 log 𝑞

Noise blowup: 𝜶 → 𝜶 ⋅ 𝒏 log 𝒒 ≤ 𝜶 ⋅ 𝒏𝟐

For depth 𝑑 circuit: 𝛼 → 𝛼 ⋅ 𝑛𝑂(𝑑)
regardless of scale!

real numbers 𝑚𝑜𝑑 2 ≡ (−1,1]

Secret key: 𝑠 ∈ *0,1+𝑛 log 𝑞

Ciphertext: 𝑐 ∈ ℝ2
𝑛 log 𝑞

𝑐 ⋅ 𝑠 = 𝑚 + 𝜖 + 2𝐼

small (initial) noise 𝜖 < 2𝛼

dec. if 𝜖 <
1

2

Multiplicative Homomorphism:

Full Homomorphism via Bootstrapping

Evaluating depth 𝑑 circuit: 𝜶 → 𝜶 ⋅ 𝒏𝑶(𝒅)

For “bootstrapping”: 𝑑 = 𝑂(log 𝑛) ⇒ 𝜶 → 𝜶 ⋅ 𝒏𝑶(𝐥𝐨𝐠 𝒏)

⇒ dec. if 𝜶 ≈ 𝒏−𝑶(𝐥𝐨𝐠 𝒏) regardless of 𝑞!

(in *BGV12+ only for “small” odd 𝑞)

Using 𝑞 ≈ 2𝑛 ⇒ Hardness based on classical GapSVP.

Conclusion

• Scale-independence FHE without modulus switching.

• Homomorphic properties independent of 𝑞.
– But 𝑞 still matters for security.

• Properties of [BGV12] extend.

• Bonuses:
– Our 𝑞 can be even (e.g. power of 2).
– Security based on classical GapSVP (as opposed to quantum).

• Simpler!

tiny.cc/fheblog1 ; tiny.cc/fheblog2

also see blog post with Boaz Barak:

Farewell CRYPTO ’12…

tiny.cc/fheblog1 ; tiny.cc/fheblog2

also see blog post with Boaz Barak:

