Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP

Zvika Brakerski

Stanford University

CRYPTO 2012

Outsourcing Computation

Email, web-search, navigation, social networking…

Search query, location, business information, medical information…

What if x is private?

Outsourcing Computation – Privately

Homomorphic Encryption

 $f, Enc(x_1), ..., Enc(x_n) \rightarrow Enc(f(x_1, ..., x_n))$ We assume w.l.o.g $f \in \{+, \times\}$ (over \mathbb{Z}_2).

The Old Days of FHE 2009-2011

- Gentry's breakthrough [G09,G10] first candidate.
- [vDGHV10, BV11a]: Similar outline, different assumptions.
- [GH11]: Chimeric-FHE.
- Efficiency attempts [SV10,SS10,GH10,LNV11].

2nd Generation FHE

- [BV11b]: LWE-based FHE (= apx. short vector in lattice).
	- Better assumption.
	- Clean presentation: no ideals, no "squashing".
	- Efficiency improvement.
- [BGV12]: Improved performance via Modulus Switching.
	- Quantitatively better assumption.
	- "Leveled" homomorphism without bootstrapping.
	- Efficiency improvements using ideals ("batching").

[GHS11,GHS12a, GHS12b]: Efficiency improvements and optimizations using ideals.

This work:

Modulus switching is a red herring

"Scale-independent encryption" \Rightarrow better performance with less headache

Encryption algorithm: Doesn't matter.

Decryption algorithm: $(\vec{c} \cdot \vec{s} \pmod{q})$ (mod 2).

FHE 101 [BV11b]

The Scheme:

Secret key:

Ciphertext:

$$
\vec{s} \in \mathbb{Z}_q^n
$$
\n
$$
\vec{c} \in \mathbb{Z}_q^n
$$
\n
$$
\vec{c} \in \mathbb{Z}_q^n
$$
\nsmall (initial) noise $|e| < B = \alpha q$
\ndec. if $|e|/q < \frac{1}{4}$

Additive Homomorphism:

That again? Just add'em, dude…

noise $|e| < B = \alpha q$

4

 $\vec{c}_1, \vec{c}_2 \Rightarrow \vec{c}_1 + \vec{c}_2 \pmod{q}$

FHE 101 [BV11b]

The Scheme:

Secret key:
$$
\vec{s} \in \mathbb{Z}_q^n
$$

\nCiphertext:
$$
\vec{c} \in \mathbb{Z}_q^n
$$

\nsmall (initial) noise $|e| < B = \alpha q$

\ndec. if $|e|/q < \frac{1}{4}$

Multiplicative Homomorphism:

Modulus Switching [BGV12]

Idea: Bring noise back down by dividing the entire ciphertext by B .

$$
\vec{c} \in \mathbb{Z}_q^n
$$

with noise $|e| < B^2$ \boxed{B} with noise $|e| < B$

(make sure not to harm the message bit m)

Noise/modulus evolution:

$$
(\mathbf{B}, \mathbf{q}) \to (\mathbf{B}, \mathbf{q}/\mathbf{B}) \to \cdots \to (\mathbf{B}, \mathbf{q}/\mathbf{B}^d)
$$

dec. if $B^{d+1} < q/4$

My Problems with Modulus Switching

- 1. Modulus switching is scale-dependent.
	- Scaling B , q changes performance:

Smaller B , $q \Rightarrow$ smaller $B^{d+1}/q \Rightarrow$ better homomorphism.

2. What does modulus switching really do?

nothing…

- Same as a scaling factor in the tensoring process

 $(\vec{c}_1, \vec{c}_2 \Rightarrow \tau \cdot \vec{c}_1 \otimes \vec{c}_2 \pmod{q}).$

- In a "correct" scale, this factor should be 1.

Our Solution: Scale-Independent FHE

Hardness assumption is the same $LWE_{n,q,\alpha}$.

Scale-Independent Multiplication

Secret key:

\n
$$
\vec{s} \in \mathbb{Z}^{n}
$$
\nCiphertext:

\n
$$
\vec{c} \in \mathbb{R}_{2}^{n}
$$
\nreal numbers mod 2 \equiv (-1,1]

\nFind the sum of the following matrices:

\n
$$
\vec{c} \in \mathbb{R}_{2}^{n}
$$
\nand (initial) noise $|\epsilon| < 2\alpha$ (in initial) noise $|\epsilon| < \frac{1}{2}$ (

Multiplicative Homomorphism:

$$
\vec{c}_1, \vec{c}_2 \Rightarrow \vec{c}_1 \otimes \vec{c}_2
$$
\n
$$
(\vec{c}_1 \otimes \vec{c}_2) \cdot (\vec{s} \otimes \vec{s})
$$
\n
$$
= (m_1 + \epsilon_1 + 2l_1) \cdot (m_2 + \epsilon_2 + 2l_2)
$$
\n
$$
= m_1 m_2 + \epsilon_1 \cdot (m_2 + 2l_2) + \epsilon_2 \cdot (m_1 + 2l_1) + \epsilon_1 \epsilon_2 \quad (mod 2)
$$
\n
$$
\sim \alpha \cdot |m + 2l| \leq \alpha \cdot ||\vec{s}||_1
$$
\n
$$
\sim \alpha^2 = \text{tiny}
$$

Scale-Independent Multiplication

Multiplicative Homomorphism:

$$
\vec{c}_1, \vec{c}_2 \Rightarrow \vec{c}_1 \otimes \vec{c}_2 \ (mod \ 2) \in \mathbb{R}_2^{n^2}
$$

Noise blowup: $\alpha \rightarrow \alpha \cdot ||\vec{s}||_1$

Not good enough: $\|\vec{s}\|_1 \approx nq$

Solution: Decompose the elements of \vec{s} into $n\log q$ bits.

Binary Decomposition

 $\vec{s} = (s[1], s[2], ...$

```
\vec{c} = (c[1], c[2], ...
```
 $\vec{s} \cdot \vec{c} = s[1] \cdot c[1] + s[2] \cdot c[2] + \cdots$

Scale-Independent Multiplication

$$
\begin{array}{ccc}\n & \text{if } \|\vec{s}\|_1 \le n \log q \\
\text{Secret key:} & \vec{s} \in \{0,1\}^{n \log q} \\
& \vec{c} \cdot \vec{s} = m + \epsilon + 2I \\
& \text{small (initial) noise } |\epsilon| < 2\alpha \\
& \text{real numbers } mod \ 2 \equiv (-1,1]\n\end{array}
$$

Multiplicative Homomorphism:

$$
\vec{c}_1, \vec{c}_2 \Rightarrow \vec{c}_1 \otimes \vec{c}_2 \ (mod \ 2) \in \mathbb{R}_2^{n^2}
$$

Noise blowup: $\boldsymbol{\alpha} \to \boldsymbol{\alpha} \cdot (\boldsymbol{n} \log \boldsymbol{q}) \leq \boldsymbol{\alpha} \cdot \boldsymbol{n^2}$

For depth d circuit: $\alpha \to \alpha \cdot n^{O(d)}$ regardless of scale!

Full Homomorphism via Bootstrapping

Evaluating depth d circuit: $\alpha \rightarrow \alpha \cdot n^{O(d)}$

For "bootstrapping": $d = O(\log n) \Rightarrow \alpha \rightarrow \alpha \cdot n^{O(\log n)}$ \Rightarrow dec. if $\boldsymbol{\alpha} \approx \boldsymbol{n}^{-\boldsymbol{O}(\log n)}$ regardless of $q!$ (in [BGV12] only for "small" odd q)

Using $q \approx 2^n \Rightarrow$ Hardness based on classical GapSVP.

Conclusion

- Scale-independence \Rightarrow FHE without modulus switching.
- Homomorphic properties independent of q .
	- $-$ But q still matters for security.

- Properties of [BGV12] extend.
- Bonuses:
	- $-$ Our q can be even (e.g. power of 2).
	- Security based on classical GapSVP (as opposed to quantum).
- Simpler!

also see blog post with Boaz Barak:

tiny.cc/fheblog1 ; tiny.cc/fheblog2

Farewell CRYPTO '12…

blog post with Boaz Barak:

tiny.cc/fheblog1 ; tiny.cc/fheblog2