Semantic Security for the Wiretap Channel

Stefano Tessaro MIT

Joint work with Mihir Bellare (UCSD) Alexander Vardy (UCSD) Cryptography today is (mainly) based on computational assumptions.

We wish instead to base cryptography on a physical assumption.

Presence of channel noise

Noisy channel assumption has been used previously to achieve oblivious transfer, commitments [CK88,C97]

But we return to an older and more basic setting ...

Wyner's Wiretap Model [W75,CK78]

$$M \longrightarrow ENC \xrightarrow{C} ChR \xrightarrow{C'} DEC \longrightarrow M'$$
$$\xrightarrow{ChA} Z(M)$$

Goals: Message privacy + correctness

Assumption: ChA is "noisier" than ChR

Encryption is keyless

Security is information-theoretic

Additional goal: Maximize rate R = |M|/|C|

Channels

A channel is a randomized map $Ch: \{0,1\} \rightarrow \{0,1\}$

We extend the domain of Ch to $\{0,1\}^*$ via $\operatorname{Ch}(x_1x_2 \dots x_n) = \operatorname{Ch}(x_1)\operatorname{Ch}(x_2) \dots \operatorname{Ch}(x_n)$ $y_1 = \operatorname{Ch}(x_1)$ $y_2 = \operatorname{Ch}(x_2)$ $y_3 = \operatorname{Ch}(x_3)$ $y_4 = \operatorname{Ch}(x_4)$

Clear channel:
$$Ch(b) = b$$

Binary symmetric channel with error probability *p*:

$$BSC_p(b) = \begin{cases} b & \text{with prob. } 1-p \\ 1-b & \text{with prob. } p \end{cases}$$

Wyner's Wiretap Model – More concretely

$$M \longrightarrow ENC \xrightarrow{C} BSC_p \longrightarrow DEC \longrightarrow M'$$
$$BSC_q \longrightarrow Z(M)$$

Assumption: $p < q \leq 1/2$

Wiretap channel – Realization

Increasing practical interest: Physical-layer security

Wiretap Channel – Previous work

35 years of previous work:

Hundreds of papers/books on wiretap security within the information theory & coding community

Two major drawbacks:

1. Improper privacy notions

Entropy-based notions Only consider random messages

2. No polynomial-time schemes with optimal rate Non-explicit decryption algorithms Weaker security

This work: We fill both gaps

Our contributions

1. New security notions for the wiretap channel model:

- Semantic security, distinguishing security following [GM82]
- Mutual-information security
- Equivalence among the three

2. Polynomial-time encryption scheme:

- Semantically secure
- Optimal rate

Outline

1. Security notions

2. Polynomial-time scheme

Prior work – Mutual-information security

Critique – Random messages

Common misconception: c.f. e.g. [CDS11]

"[...] the particular choice of the distribution on M as a uniformly random sequence will cause <u>no loss of generality</u>. [...] the transmitter can use a suitable source-coding scheme to compress the source to its entropy prior to the transmission, and ensure that from the intruder's point of view, M is uniformly distributed."

Wrong! No universal (source-independent) compression algorithm exists!

We want security for arbitrary message distributions, following [GM82]!

Critique: Mutual information is hard to work with / interpret!

Semantic security

Distinguishing Security (DS) $\max_{A,M_0,M_1} \Pr[A(M_0, M_1, Z(M_B)) = B] = 1/2 + \mathbf{negl}$

Relations

Theorem. MIS, DS, SS are equivalent.

Outline

1. Security notions

2. Polynomial-time scheme

Polynomial-time scheme

$$M \longrightarrow ENC \xrightarrow{C} BSC_p \longrightarrow DEC \longrightarrow M'$$
$$BSC_q \longrightarrow Z(M)$$

Goal: Polynomial-time ENC and DEC which satisfy:
1) Correctness: Pr[M ≠ M'] = negl
2) Semantic security
3) Optimal rate

- We observe that fuzzy extractors of [DORS08] can be used to achieve 1 + 2. (Also: [M92,...])
- [HM10,MV11] Constructions achieving 1 + 3 or 2 + 3.

This work: First polynomial-time scheme achieving 1 + 2 + 3

What is the optimal rate?

$$M \longrightarrow ENC \xrightarrow{C} BSC_p \longrightarrow DEC \longrightarrow M'$$
$$BSC_q \longrightarrow Z(M)$$

Definition: Rate R = |M|/|C| $h(x) = -x \log x - (1-x) \log(1-x)$

Previous work: [L77] No MIS-R secure scheme can have rate higher than h(q) - h(p) - o(1).

Our scheme: Rate h(q) - h(p) - o(1)

Hence, h(q) - h(p) - o(1) is the optimal rate for all security notions!

Our encryption scheme

Our encryption scheme – Security

Theorem. ENC is semantically secure.

Challenge: Ciphertext distribution depends on combinatorial properties of E.

Two steps:

- 1. Reduce semantic security to random-message security.
- 2. Prove random-message security.

Observation. If (E, D) are encoder/decoder of ECC for BSC_p, then correctness holds.

Optimal choice: Concatenated codes [F66], **polar codes [A09]**: k = (1 - h(p) - o(1))n

Concluding remarks

Summary:

- New equivalent security notions for the wiretap setting: DS, SS, MIS.
- First polynomial-time scheme achieving these security notions with optimal rate.
- Our scheme is simple, modular, and efficient.

Concluding remarks

Summary:

- New equivalent security notions for the wiretap setting: DS, SS, MIS.
- First polynomial-time scheme achieving these security notions with optimal rate.
- Our scheme is simple, modular, and efficient.

Additional remarks:

- We provide a general and concrete treatment.
- Scheme can be used on larger set of channels.

Concluding remarks

Summary:

- New equivalent security notions for the wiretap setting: DS, SS, MIS.
- First polynomial-time scheme achieving these security notions with optimal rate.
- Our scheme is simple, modular, and efficient.

Additional remarks:

- We provide a general and concrete treatment.
- Scheme can be used on larger set of channels.

Thank you!