
universal composability from
essentially any trusted setup

Mike Rosulek | | CRYPTO 2012

.

secure computation. . .

Several parties wish to carry out an agreed-upon computation.

I Parties have individual inputs / output

I Security guarantees:
I Privacy (learn no more than your prescribed output)
I Input independence
I Output consistency, etc..

I Parties are mutually distrusting, some possibly malicious

Example:

I Set intersection A ∩ B (function evaluation)

I Generate a fair coin toss (randomized)

I Online poker without a dealer (reactive)

.

secure computation. . .

Several parties wish to carry out an agreed-upon computation.

I Parties have individual inputs / output

I Security guarantees:
I Privacy (learn no more than your prescribed output)
I Input independence
I Output consistency, etc..

I Parties are mutually distrusting, some possibly malicious

Example:

I Set intersection A ∩ B (function evaluation)

I Generate a fair coin toss (randomized)

I Online poker without a dealer (reactive)

.

good news, bad news. . .

.
Good news [Canetti01]
..

.

. ..

.

.

Universal Composition (UC) framework = realistic security model for

Internet protocols.

.
Bad news [CanettiFischlin01,CanettiKushilevitzLindell06]
..
.
. ..

.

.UC security is impossible for almost all tasks that we care about/

.

good news, bad news. . .

.
Good news [Canetti01]
..

.

. ..

.

.

Universal Composition (UC) framework = realistic security model for

Internet protocols.

.
Bad news [CanettiFischlin01,CanettiKushilevitzLindell06]
..
.
. ..

.

.UC security is impossible for almost all tasks that we care about/

.

the next best thing. . .

Slightly relax UC framework:

I Assume bounded network latency [KalaiLindellPrabhakaran05]

I Uniform adversaries, non-uniform simulators

[LinPassVenkitasubramaniam09]

I Superpolynomial-time simulators

[Pass03, PrabhakaranSahai04, BarakSahai05, MalkinMoriartyYakovenko06,

CanettiLinPass10, ...]

I Trusted setup: Protocols can use ideal functionality
I Bit-commitment [CanettiLindellOstrovskySahai02]
I Common random string [CanettiLindellOstrovskySahai02,...]
I Oblivious transfer [IshaiPrabhakaranSahai08]
I Trusted hardware device [Katz07]

.

the next best thing. . .

Slightly relax UC framework:

I Assume bounded network latency [KalaiLindellPrabhakaran05]

I Uniform adversaries, non-uniform simulators

[LinPassVenkitasubramaniam09]

I Superpolynomial-time simulators

[Pass03, PrabhakaranSahai04, BarakSahai05, MalkinMoriartyYakovenko06,

CanettiLinPass10, ...]

I Trusted setup: Protocols can use ideal functionality
I Bit-commitment [CanettiLindellOstrovskySahai02]
I Common random string [CanettiLindellOstrovskySahai02,...]
I Oblivious transfer [IshaiPrabhakaranSahai08]
I Trusted hardware device [Katz07]

.

the next best thing. . .

Slightly relax UC framework:

I Assume bounded network latency [KalaiLindellPrabhakaran05]

I Uniform adversaries, non-uniform simulators

[LinPassVenkitasubramaniam09]

I Superpolynomial-time simulators

[Pass03, PrabhakaranSahai04, BarakSahai05, MalkinMoriartyYakovenko06,

CanettiLinPass10, ...]

I Trusted setup: Protocols can use ideal functionality
I Bit-commitment [CanettiLindellOstrovskySahai02]
I Common random string [CanettiLindellOstrovskySahai02,...]
I Oblivious transfer [IshaiPrabhakaranSahai08]
I Trusted hardware device [Katz07]

.

fundamental question. . .

.

.

. ..

.

.

How useful isF as a trusted setup?

I What tasks have UC-secure protocols in the presence ofF?

.
Possible “levels of power” forF
..

.

. ..

.

.

I Useless: access toF is equivalent to no trusted setup.

⇔ F already has a UC-secure protocol without setups

I Intermediate: something between these two extremes

I Complete: all tasks have UC-secure protocols in presence ofF

.

fundamental question. . .

.

.

. ..

.

.

How useful isF as a trusted setup?

I What tasks have UC-secure protocols in the presence ofF?

.
Possible “levels of power” forF
..

.

. ..

.

.

I Useless: access toF is equivalent to no trusted setup.

⇔ F already has a UC-secure protocol without setups

I Intermediate: something between these two extremes

I Complete: all tasks have UC-secure protocols in presence ofF

.

fundamental question. . .

.

.

. ..

.

.

How useful isF as a trusted setup?

I What tasks have UC-secure protocols in the presence ofF?

.
Possible “levels of power” forF
..

.

. ..

.

.

I Useless: access toF is equivalent to no trusted setup.

⇔ F already has a UC-secure protocol without setups

I Intermediate: something between these two extremes

I Complete: all tasks have UC-secure protocols in presence ofF

.

fundamental question. . .

.

.

. ..

.

.

How useful isF as a trusted setup?

I What tasks have UC-secure protocols in the presence ofF?

.
Possible “levels of power” forF
..

.

. ..

.

.

I Useless: access toF is equivalent to no trusted setup.

⇔ F already has a UC-secure protocol without setups

I Intermediate: something between these two extremes

I Complete: all tasks have UC-secure protocols in presence ofF

.

take-homemessage. . .
1. Which 2-party setups are useless?

I Complete characterization [PrabhakaranRosulek08]

2. Which 2-party setups are complete?

I Almost-complete characterization [This talk]

⇒ Nearly every setup is either useless or complete.

.

.complete

.useless

.

Characterize reactive,

randomized functionalities,

w/ behavior depending on

security parameter!

[MajiPrabhakaranRosulek10]

restricted to deterministic

& constant-sized.

.

take-homemessage. . .
1. Which 2-party setups are useless?

I Complete characterization [PrabhakaranRosulek08]

2. Which 2-party setups are complete?

I Almost-complete characterization [This talk]

⇒ Nearly every setup is either useless or complete.

.

.complete

.useless

.

Characterize reactive,

randomized functionalities,

w/ behavior depending on

security parameter!

[MajiPrabhakaranRosulek10]

restricted to deterministic

& constant-sized.

.

take-homemessage. . .
1. Which 2-party setups are useless?

I Complete characterization [PrabhakaranRosulek08]

2. Which 2-party setups are complete?
I Almost-complete characterization [This talk]

⇒ Nearly every setup is either useless or complete.

.

.complete

.useless

.

Characterize reactive,

randomized functionalities,

w/ behavior depending on

security parameter!

[MajiPrabhakaranRosulek10]

restricted to deterministic

& constant-sized.

.

take-homemessage. . .
1. Which 2-party setups are useless?

I Complete characterization [PrabhakaranRosulek08]

2. Which 2-party setups are complete?
I Almost-complete characterization [This talk]

⇒ Nearly every setup is either useless or complete.

.

.complete

.useless

.

Characterize reactive,

randomized functionalities,

w/ behavior depending on

security parameter!

[MajiPrabhakaranRosulek10]

restricted to deterministic

& constant-sized.

.

take-homemessage. . .
1. Which 2-party setups are useless?

I Complete characterization [PrabhakaranRosulek08]

2. Which 2-party setups are complete?
I Almost-complete characterization [This talk]

⇒ Nearly every setup is either useless or complete.

.

.complete

.useless

.

Characterize reactive,

randomized functionalities,

w/ behavior depending on

security parameter!

[MajiPrabhakaranRosulek10]

restricted to deterministic

& constant-sized.

.

take-homemessage. . .
1. Which 2-party setups are useless?

I Complete characterization [PrabhakaranRosulek08]

2. Which 2-party setups are complete?
I Almost-complete characterization [This talk]

⇒ Nearly every setup is either useless or complete.

.

.complete

.useless

.

Characterize reactive,

randomized functionalities,

w/ behavior depending on

security parameter!

[MajiPrabhakaranRosulek10]

restricted to deterministic

& constant-sized.

.

“splitting game” forF . . .

∆ :=

.

.. .

.F
.(b).(a)

.Z

−

.

.F .F

.T
.(b).(a) .(b).(a)

.Z

.

.
Definitions
..

.

. ..

.

.

F is splittable if T has a winning strategy. [PrabhakaranRosulek08]

⇔ ∃T : ∀Z : ∆ negligible. (“T fools all environments”)

F is strongly unsplittable ifZ has a winning strategy.

⇔ ∃Z : ∀T : ∆ 1/poly. (“Z detects all splitting strategies”)

I Some (arguably unnatural)F admit no winning strategy forZ or T !

I Applies to arbitrary (reactive, randomized, etc) functionalities.

.

“splitting game” forF . . .

∆ :=

. .. .

.F
.(b).(a)

.Z

−

.

.F .F

.T
.(b).(a) .(b).(a)

.Z
.

.
Definitions
..

.

. ..

.

.

F is splittable if T has a winning strategy. [PrabhakaranRosulek08]

⇔ ∃T : ∀Z : ∆ negligible. (“T fools all environments”)

F is strongly unsplittable ifZ has a winning strategy.

⇔ ∃Z : ∀T : ∆ 1/poly. (“Z detects all splitting strategies”)

I Some (arguably unnatural)F admit no winning strategy forZ or T !

I Applies to arbitrary (reactive, randomized, etc) functionalities.

.

“splitting game” forF . . .

∆ :=

. .. .

.F
.(b).(a)

.Z

−

.

.F .F

.T
.(b).(a) .(b).(a)

.Z
.

.
Definitions
..

.

. ..

.

.

F is splittable if T has a winning strategy. [PrabhakaranRosulek08]

⇔ ∃T : ∀Z : ∆ negligible. (“T fools all environments”)

F is strongly unsplittable ifZ has a winning strategy.

⇔ ∃Z : ∀T : ∆ 1/poly. (“Z detects all splitting strategies”)

I Some (arguably unnatural)F admit no winning strategy forZ or T !

I Applies to arbitrary (reactive, randomized, etc) functionalities.

.

“splitting game” forF . . .

∆ :=

. .. .

.F
.(b).(a)

.Z

−

.

.F .F

.T
.(b).(a) .(b).(a)

.Z
.

.
Definitions
..

.

. ..

.

.

F is splittable if T has a winning strategy. [PrabhakaranRosulek08]

⇔ ∃T : ∀Z : ∆ negligible. (“T fools all environments”)

F is strongly unsplittable ifZ has a winning strategy.

⇔ ∃Z : ∀T : ∆ 1/poly. (“Z detects all splitting strategies”)

I Some (arguably unnatural)F admit no winning strategy forZ or T !

I Applies to arbitrary (reactive, randomized, etc) functionalities.

.

“splitting game” forF . . .

∆ :=

. .. .

.F
.(b).(a)

.Z

−

.

.F .F

.T
.(b).(a) .(b).(a)

.Z
.

.
Definitions
..

.

. ..

.

.

F is splittable if T has a winning strategy. [PrabhakaranRosulek08]

⇔ ∃T : ∀Z : ∆ negligible. (“T fools all environments”)

F is strongly unsplittable ifZ has a winning strategy.

⇔ ∃Z : ∀T : ∆ 1/poly. (“Z detects all splitting strategies”)

I Some (arguably unnatural)F admit no winning strategy forZ or T !

I Applies to arbitrary (reactive, randomized, etc) functionalities.
.

quiz: splittable or not?. . .

.

.F

.x .f(x)

... where f is a OWF

.

quiz: splittable or not?. . .

.. .

.F

.Z

.1

.rand x .y

.“does y = f(x)?”

.

.F .F

.T

.Z

.negl(k)

.rand x .y

.f(x) .??

.“does y = f(x)?”

I To make interactions similar, T must be able to invert f

⇒ ThisZ detects every T
⇒ F is strongly unsplittable

.

quiz: splittable or not?. . .

.. .

.F

.Z

.1

.rand x

.y

.“does y = f(x)?”

.

.F .F

.T

.Z

.negl(k)

.rand x

.y

.f(x) .??

.“does y = f(x)?”

I To make interactions similar, T must be able to invert f

⇒ ThisZ detects every T
⇒ F is strongly unsplittable

.

quiz: splittable or not?. . .

.. .

.F

.Z

.1

.rand x .y

.“does y = f(x)?”

.

.F .F

.T

.Z

.negl(k)

.rand x .y

.f(x) .??

.“does y = f(x)?”

I To make interactions similar, T must be able to invert f

⇒ ThisZ detects every T
⇒ F is strongly unsplittable

.

quiz: splittable or not?. . .

.. .

.F

.Z

.1

.rand x .y

.“does y = f(x)?” .

.F .F

.T

.Z

.negl(k)

.rand x .y

.f(x) .??

.“does y = f(x)?”

I To make interactions similar, T must be able to invert f

⇒ ThisZ detects every T
⇒ F is strongly unsplittable

.

quiz: splittable or not?. . .

.. .

.F

.Z

.1

.rand x .y

.“does y = f(x)?” .

.F .F

.T

.Z

.negl(k)

.rand x .y

.f(x) .??

.“does y = f(x)?”

I To make interactions similar, T must be able to invert f

⇒ ThisZ detects every T
⇒ F is strongly unsplittable

.

quiz: splittable or not?. . .

.. .

.F

.Z

.1

.rand x .y

.“does y = f(x)?” .

.F .F

.T

.Z

.negl(k)

.rand x .y

.f(x) .??

.“does y = f(x)?”

I To make interactions similar, T must be able to invert f

⇒ ThisZ detects every T
⇒ F is strongly unsplittable

.

the characterization. . .

.

.complete

.useless

.

.
F complete

∗⇐F strongly unsplittable
[This talk]

∗: slightly more involved statement for reactiveF

.
F useless⇔F splittable

[PrabhakaranRosulek08]

.
Outline: Strong Unsplittability⇒ Complete
..

.

. ..

.

.

Suffices to construct UC-secure commitment protocol

1. UC-commitment is complete [CanettiLindellOstrovskySahai02]

.

the characterization. . .

.

.complete

.useless

.

.
F complete

∗⇐F strongly unsplittable
[This talk]

∗: slightly more involved statement for reactiveF

.
F useless⇔F splittable

[PrabhakaranRosulek08]

.
Outline: Strong Unsplittability⇒ Complete
..

.

. ..

.

.

Suffices to construct UC-secure commitment protocol

1. UC-commitment is complete [CanettiLindellOstrovskySahai02]

.

the characterization. . .

.

.complete

.useless

.

.
F complete

∗⇐F strongly unsplittable
[This talk]
∗: slightly more involved statement for reactiveF

.
F useless⇔F splittable

[PrabhakaranRosulek08]

.
Outline: Strong Unsplittability⇒ Complete
..

.

. ..

.

.

Suffices to construct UC-secure commitment protocol

1. UC-commitment is complete [CanettiLindellOstrovskySahai02]

.

the characterization. . .

.

.complete

.useless

.

.
F complete

∗⇐F strongly unsplittable
[This talk]
∗: slightly more involved statement for reactiveF

.
F useless⇔F splittable

[PrabhakaranRosulek08]

.
Outline: Strong Unsplittability⇒ Complete
..

.

. ..

.

.

Suffices to construct UC-secure commitment protocol

1. UC-commitment is complete [CanettiLindellOstrovskySahai02]

.

commitment protocol. . .

How to do it (using our example)...

.

.F

.x .f(x)

.

commitment protocol. . .
.

.

. ..

.

.

.

.C = com(b)

.C = com(0).C = com(1− b)

.


.
commit

phase

.receiver
.
honest
sender

.σ

.
straight-line
simulator

.
cheating
sender

.



.
reveal

phase

.b

.F.F
.rand x.y = f(x) .rand x

.
subprotocol:

.
if σ opens C to b:
.

output y
.
else:.

output f(y)

.
if σ opens C to b:
.

output x
.
else:.

output f(x)

.
if σ opens C to b:
.

output z
.
else:.

output f(z)

.F
.z .f(z)

?
= f(x)

.(σ, y).(−, x).(σ, z) .
?
= f(x)

.

commitment protocol. . .
.

.

. ..

.

.

.

.C = com(b)

.C = com(0).C = com(1− b)

.


.
commit

phase

.receiver
.
honest
sender

.σ

.
straight-line
simulator

.
cheating
sender

.



.
reveal

phase

.b

.F

.F

.rand x.y = f(x)

.rand x

.
subprotocol:

.
if σ opens C to b:
.

output y
.
else:.

output f(y)

.
if σ opens C to b:
.

output x
.
else:.

output f(x)

.
if σ opens C to b:
.

output z
.
else:.

output f(z)

.F
.z .f(z)

?
= f(x)

.(σ, y).(−, x).(σ, z) .
?
= f(x)

.

commitment protocol. . .
.

.

. ..

.

.

.

.C = com(b)

.C = com(0).C = com(1− b)

.


.
commit

phase

.receiver
.
honest
sender

.σ

.
straight-line
simulator

.
cheating
sender

.



.
reveal

phase

.b

.F

.F

.rand x.y = f(x)

.rand x

.
subprotocol:

.
if σ opens C to b:
.

output y
.
else:.

output f(y)

.
if σ opens C to b:
.

output x
.
else:.

output f(x)

.
if σ opens C to b:
.

output z
.
else:.

output f(z)

.F
.z .f(z)

?
= f(x)

.(σ, y)

.(−, x).(σ, z)

.
?
= f(x)

.

commitment protocol. . .
.

.

. ..

.

.

.

.C = com(b)

.C = com(0)

.C = com(1− b).


.
commit

phase

.receiver

.
honest
sender

.σ

.
straight-line
simulator

.
cheating
sender

.



.
reveal

phase

.b

.F

.F

.rand x.y = f(x)

.rand x

.
subprotocol:

.
if σ opens C to b:
.

output y
.
else:.

output f(y)

.
if σ opens C to b:
.

output x
.
else:.

output f(x)

.
if σ opens C to b:
.

output z
.
else:.

output f(z)

.F
.z .f(z)

?
= f(x)

.(σ, y)

.(−, x)

.(σ, z)

.
?
= f(x)

.

commitment protocol. . .
.

.

. ..

.

.

.

.C = com(b).C = com(0)

.C = com(1− b)

.


.
commit

phase

.receiver

.
honest
sender

.σ

.
straight-line
simulator

.
cheating
sender

.



.
reveal

phase

.b

.F

.F

.rand x.y = f(x)

.rand x

.
subprotocol:

.
if σ opens C to b:
.

output y
.
else:.

output f(y)

.
if σ opens C to b:
.

output x
.
else:.

output f(x)

.
if σ opens C to b:
.

output z
.
else:.

output f(z)

.F
.z .f(z)

?
= f(x)

.(σ, y).(−, x)

.(σ, z) .
?
= f(x)

.

commitment protocol. . .
.

.

. ..

.

.

.

.C = com(b).C = com(0)

.C = com(1− b)

.


.
commit

phase

.receiver

.
honest
sender

.σ

.
straight-line
simulator

.
cheating
sender

.



.
reveal

phase

.b

.F

.F

.rand x.y = f(x)

.rand x

.
subprotocol:

.
if σ opens C to b:
.

output y
.
else:.

output f(y)

.
if σ opens C to b:
.

output x
.
else:.

output f(x)

.
if σ opens C to b:
.

output z
.
else:.

output f(z)

.F
.z .f(z)

?
= f(x)

.(σ, y).(−, x).(σ, z) .
?
= f(x)

.

protocol: key idea. .

..sender

.simulator .receiver

.receiver

.F

.F

.F

.F

Honest sender: Bypass “instance ofF” within subprotocol

Simulator: Bypass ideal instance ofF
Cheating sender: “Stuck between” two instances ofF

.
Strong Un-Splittability
..

.

. ..

.

.

There is a way for receiver to behave which can distinguish:

I Interacting with a single instance ofF (#1, #2)

I Interacting with any “split”F (#3)

.

protocol: key idea. .

.

.sender

.simulator

.receiver

.receiver

.F

.F

.F

.F

Honest sender: Bypass “instance ofF” within subprotocol

Simulator: Bypass ideal instance ofF

Cheating sender: “Stuck between” two instances ofF

.
Strong Un-Splittability
..

.

. ..

.

.

There is a way for receiver to behave which can distinguish:

I Interacting with a single instance ofF (#1, #2)

I Interacting with any “split”F (#3)

.

protocol: key idea. .

..sender

.simulator .receiver

.receiver

.F

.F

.F

.F

Honest sender: Bypass “instance ofF” within subprotocol

Simulator: Bypass ideal instance ofF
Cheating sender: “Stuck between” two instances ofF

.
Strong Un-Splittability
..

.

. ..

.

.

There is a way for receiver to behave which can distinguish:

I Interacting with a single instance ofF (#1, #2)

I Interacting with any “split”F (#3)

.

protocol: key idea. .

..sender

.simulator

.receiver

.receiver

.F

.F

.F

.F

Honest sender: Bypass “instance ofF” within subprotocol

Simulator: Bypass ideal instance ofF
Cheating sender: “Stuck between” two instances ofF

.
Strong Un-Splittability
..

.

. ..

.

.

There is a way for receiver to behave which can distinguish:

I Interacting with a single instance ofF (#1, #2)

I Interacting with any “split”F (#3)

.

wrap-up. . .

Other things in the paper (full version @ eprint/2011/240):
I Get from “one-sided” to full-fledged UC commitment

I Subtleties, caveats for reactiveF
I Complete⇒ strongly unsplittable? (almost!)

Summary:

Every “natural” functionality (reactive, randomized, etc.) is either

useless or complete as a UC setup.

.

wrap-up. . .

Other things in the paper (full version @ eprint/2011/240):
I Get from “one-sided” to full-fledged UC commitment

I Subtleties, caveats for reactiveF
I Complete⇒ strongly unsplittable? (almost!)

Summary:

Every “natural” functionality (reactive, randomized, etc.) is either

useless or complete as a UC setup.

.

.

