Cover and Decomposition Index Calculus on Elliptic Curves made practical

Application to a previously unreachable curve over \mathbb{F}_{p^6}

Vanessa VITSE – Antoine JOUX

Université de Versailles Saint-Quentin, Laboratoire PRISM

Eurocrypt 2012

Vanessa VITSE (UVSQ)

Cover and decomposition index calculus

16 avril 2012 1 / 21

Section 1

Known attacks of the ECDLP

• • • • • • • • • • • •

Discrete logarithm problem

Discrete logarithm problem (DLP)

Given a group G and $g, h \in G$, find – when it exists – an integer x s.t.

$$h = g^{x}$$

→ ∃ →

Discrete logarithm problem

Discrete logarithm problem (DLP)

Given a group G and $g, h \in G$, find – when it exists – an integer x s.t.

$$h = g^{\times}$$

Difficulty is related to the group:

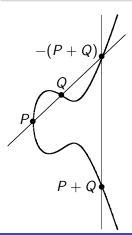
- Generic attacks: complexity in $\Omega(\max(\alpha_i \sqrt{p_i}))$ if $\#G = \prod_i p_i^{\alpha_i}$
- ② $G \subset (\mathbb{F}_q^*, \times)$: index calculus method with complexity in $L_q(1/3)$ where $L_q(\alpha) = \exp(c(\log q)^{\alpha}(\log \log q)^{1-\alpha})$.
- G ⊂ (Jac_C(F_q), +): index calculus method better than generic attacks (if g > 2)

・何・ ・ヨ・ ・ヨ・ ・ヨ

The discrete logarithm problem on elliptic curves

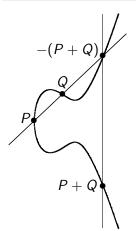
Use the group of points of an elliptic curve defined over a finite field

(EC)DLP: given $P, Q \in G$, find (if it exists) x st Q = [x]PThe group law is a good compromise between simplicity and intricacy



The discrete logarithm problem on elliptic curves Use the group of points of an elliptic curve defined over a finite field

(EC)DLP: given $P, Q \in G$, find (if it exists) x st Q = [x]PThe group law is a good compromise between simplicity and intricacy

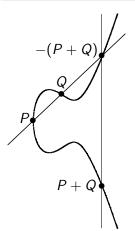


Choice of the field:

- Prime field 𝔽_p = ℤ/pℤ: good security but modular arithmetic difficult to implement in hardware
- Extension field 𝑘_{pⁿ}: interesting when p = 2 or p fits into a computer word

The discrete logarithm problem on elliptic curves Use the group of points of an elliptic curve defined over a finite field

(EC)DLP: given $P, Q \in G$, find (if it exists) x st Q = [x]PThe group law is a good compromise between simplicity and intricacy



Choice of the field:

- Prime field 𝔽_p = ℤ/pℤ: good security but modular arithmetic difficult to implement in hardware
- Extension field F_p: interesting when p = 2 or p fits into a computer word
 Potentially vulnerable to index calculus

Basic outline of index calculus methods (additive notations)

- Choice of a factor base: $\mathcal{F} = \{g_1, \dots, g_N\} \subset G$
- 2 Relation search: decompose $a_i \cdot g + b_i \cdot h(a_i, b_i \text{ random})$ into \mathcal{F}

$$a_i \cdot g + b_i \cdot h = \sum_{j=1}^N c_{i,j} \cdot g_j$$

- Solution Linear algebra: once k independent relations found $(k \ge N)$
 - construct the matrices $A = \begin{pmatrix} a_i & b_i \end{pmatrix}_{1 \le i \le k}$ and $M = \begin{pmatrix} c_{i,j} \end{pmatrix}_{1 \le i \le k}$
 - find $v = (v_1, \ldots, v_k) \in \ker({}^tM)$ such that $vA \neq 0 \mod \#G$
 - compute the solution of DLP: $x = -(\sum_i a_i v_i) / (\sum_i b_i v_i) \mod \#G$

Index calculus

Two difficulties :

- From a practical point of view : linear algebra often the most delicate phase
 - matrices are huge (several millions of unknowns) but very sparse (only a few non-zero coeff. per row)
 - difficult to distribute dedicated algorithms

Index calculus

Two difficulties :

- From a practical point of view : linear algebra often the most delicate phase
 - matrices are huge (several millions of unknowns) but very sparse (only a few non-zero coeff. per row)
 - difficult to distribute dedicated algorithms

From a theoretical point of view : how to find relations?

- on $E(\mathbb{F}_p)$, no known method
- on $E(\mathbb{F}_{p^n})$, two existing methods:
 - * transfer to $Jac_{\mathcal{C}}(\mathbb{F}_p)$ via Weil descent
 - ★ direct decompositions (Gaudry/Diem)

• • = • • = •

Let $\mathcal{W} = \mathcal{W}_{\mathbb{F}_{q^n}/\mathbb{F}_q}(E)$ be the **Weil restriction** of $E_{|\mathbb{F}_{q^n}}$ elliptic curve. Inclusion of a curve $\mathcal{C}_{|\mathbb{F}_q} \hookrightarrow \mathcal{W}$ induces a **cover map** $\pi : \mathcal{C}(\mathbb{F}_{q^n}) \to E(\mathbb{F}_{q^n})$.

Let $\mathcal{W} = \mathcal{W}_{\mathbb{F}_{q^n}/\mathbb{F}_q}(E)$ be the **Weil restriction** of $E_{|\mathbb{F}_{q^n}}$ elliptic curve. Inclusion of a curve $\mathcal{C}_{|\mathbb{F}_q} \hookrightarrow \mathcal{W}$ induces a **cover map** $\pi : \mathcal{C}(\mathbb{F}_{q^n}) \to E(\mathbb{F}_{q^n})$.

• transfer the DLP from $\langle P \rangle \subset E(\mathbb{F}_{q^n})$ to $\mathsf{Jac}_\mathcal{C}(\mathbb{F}_q)$

$$\begin{array}{ccc} \mathcal{C}(\mathbb{F}_{q^n}) & \operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{q^n}) \xrightarrow{Tr} \operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_q) \\ & & & \\ \downarrow^{\pi} & & \pi^* \uparrow & & \\ \mathcal{E}(\mathbb{F}_{q^n}) & \operatorname{Jac}_{\mathcal{E}}(\mathbb{F}_{q^n}) \simeq \mathcal{E}(\mathbb{F}_{q^n}) \end{array}$$

Let $\mathcal{W} = \mathcal{W}_{\mathbb{F}_{q^n}/\mathbb{F}_q}(E)$ be the **Weil restriction** of $E_{|\mathbb{F}_{q^n}}$ elliptic curve. Inclusion of a curve $\mathcal{C}_{|\mathbb{F}_q} \hookrightarrow \mathcal{W}$ induces a **cover map** $\pi : \mathcal{C}(\mathbb{F}_{q^n}) \to E(\mathbb{F}_{q^n})$.

• transfer the DLP from $\langle P
angle \subset E(\mathbb{F}_{q^n})$ to $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_q)$

$$\begin{array}{ccc} \mathcal{C}(\mathbb{F}_{q^n}) & \operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{q^n}) \xrightarrow{T_r} \operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_q) \\ & & & \\ \downarrow^{\pi} & & \pi^* \uparrow & & \\ E(\mathbb{F}_{q^n}) & \operatorname{Jac}_{E}(\mathbb{F}_{q^n}) \simeq E(\mathbb{F}_{q^n}) \end{array}$$

② use index calculus on Jac_C(𝔽_q):
 → efficient if C is hyperelliptic with small genus g [Gaudry] or has a small degree plane model [Diem]

超す イヨト イヨト ニヨ

Let $\mathcal{W} = \mathcal{W}_{\mathbb{F}_{q^n}/\mathbb{F}_q}(E)$ be the **Weil restriction** of $E_{|\mathbb{F}_{q^n}}$ elliptic curve. Inclusion of a curve $\mathcal{C}_{|\mathbb{F}_q} \hookrightarrow \mathcal{W}$ induces a **cover map** $\pi : \mathcal{C}(\mathbb{F}_{q^n}) \to E(\mathbb{F}_{q^n})$.

• transfer the DLP from $\langle P \rangle \subset E(\mathbb{F}_{q^n})$ to $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_q)$

$$\begin{array}{ccc} \mathcal{C}(\mathbb{F}_{q^n}) & \operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{q^n}) \xrightarrow{T_r} \operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_q) \\ & & & \\ \downarrow^{\pi} & & \pi^* \uparrow & & \\ E(\mathbb{F}_{q^n}) & \operatorname{Jac}_{\mathcal{E}}(\mathbb{F}_{q^n}) \simeq E(\mathbb{F}_{q^n}) \end{array}$$

② use index calculus on Jac_C(𝔽_q):
 → efficient if C is hyperelliptic with small genus g [Gaudry] or has a small degree plane model [Diem]

Main difficulty : find a convenient curve $\ensuremath{\mathcal{C}}$ with a genus small enough

イロト 人間ト イヨト イヨト

The GHS construction

Gaudry-Heß-Smart (binary fields), Diem (odd characteristic case)

Given an elliptic curve $E_{|\mathbb{F}_{q^n}}$ and a degree 2 map $E \to \mathbb{P}^1$, construct a curve $\mathcal{C}_{|\mathbb{F}_q}$ and a cover map $\pi : \mathcal{C} \to E$.

The GHS construction

Gaudry-Heß-Smart (binary fields), Diem (odd characteristic case)

Given an elliptic curve $E_{|\mathbb{F}_{q^n}}$ and a degree 2 map $E \to \mathbb{P}^1$, construct a curve $\mathcal{C}_{|\mathbb{F}_q}$ and a cover map $\pi : \mathcal{C} \to E$.

Problem: for most elliptic curves, g is of the order of 2^n

- Index calculus on $Jac_{\mathcal{C}}(\mathbb{F}_q)$ usually slower than generic methods on $E(\mathbb{F}_{q^n})$
- Possibility of using isogenies from *E* to a vulnerable curve [Galbraith]
 → increase the number of vulnerable curves

• • = • • = • =

Decomposition attack

Idea from Gaudry and Diem: no transfer, but apply directly index calculus on $E(\mathbb{F}_{q^n})$ (or $Jac_{\mathcal{H}}(\mathbb{F}_{q^n})$)

Principle

Factor base:

 $\mathcal{F} = \{ D_Q \in \mathsf{Jac}_{\mathcal{H}}(\mathbb{F}_{q^n}) \ : \ D_Q \sim (Q) - (\mathcal{O}_{\mathcal{H}}), Q \in \mathcal{H}(\mathbb{F}_{q^n}), x(Q) \in \mathbb{F}_q \}$

- Decomposition of an arbitrary divisor $D \in \operatorname{Jac}_{\mathcal{H}}(\mathbb{F}_{q^n})$ into ng divisors of the factor base $D \sim \sum_{i=1}^{ng} ((Q_i) (\mathcal{O}_{\mathcal{H}}))$
- Asymptotic complexity in $q^{2-2/ng}$ as $q
 ightarrow \infty$

通 ト イヨ ト イヨト

Decomposition attack

Idea from Gaudry and Diem: no transfer, but apply directly index calculus on $E(\mathbb{F}_{q^n})$ (or $Jac_{\mathcal{H}}(\mathbb{F}_{q^n})$)

Principle

Factor base:

 $\mathcal{F} = \{ D_Q \in \mathsf{Jac}_{\mathcal{H}}(\mathbb{F}_{q^n}) \ : \ D_Q \sim (Q) - (\mathcal{O}_{\mathcal{H}}), Q \in \mathcal{H}(\mathbb{F}_{q^n}), x(Q) \in \mathbb{F}_q \}$

- Decomposition of an arbitrary divisor $D \in \operatorname{Jac}_{\mathcal{H}}(\mathbb{F}_{q^n})$ into ng divisors of the factor base $D \sim \sum_{i=1}^{ng} ((Q_i) (\mathcal{O}_{\mathcal{H}}))$
- Asymptotic complexity in $q^{2-2/ng}$ as $q
 ightarrow \infty$
- all curves are equally weak under this attack
- decomposition is hard: need to solve polynomial systems

イロト 不得下 イヨト イヨト 二日

Nagao's approach for decompositions

How to check if D = (u, v) can be decomposed ?

$$D + \sum_{i=1}^{ng} \left((Q_i) - (\mathcal{O}_{\mathcal{H}}) \right) \sim 0 \Leftrightarrow D + \sum_{i=1}^{ng} \left((Q_i) - (\mathcal{O}_{\mathcal{H}}) \right) = div(f)$$

where f is in the Riemann-Roch space $\mathcal{L}(ng(\mathcal{O}_{\mathcal{H}}) - D)$

Decomposition of D: resolution of a quadratic polynomial system over \mathbb{F}_q

- n(n-1)g variables from scalar restriction of coord. of f in projectivized Riemann-Roch space
- (n − 1) ng equations
 expressing that elementary symmetric polynomials of the x(Q_i) lie in F_q.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Analysis of Nagao's approach

- Solve a 0-dim quadratic polynomial system of (n − 1)ng eq./var. for each decomposition test
 - \rightarrow complexity at least polynomial in $d = 2^{(n-1)ng}$
 - ightarrow in practice, resolution only possible for *n* and $g \leq 3$
 - or g = 1 and $n \le 5$ (using Semaev's summation polynomials)
- Proba. of decomposition is $\simeq 1/(ng)!$ and the factor base has $\simeq q$ elements
 - ightarrow about (ng)!q decomposition tests needed, even more for large prime variations

Relation search too slow for practical DLP resolution

(日) (同) (日) (日) (日)

Section 2

A new index calculus method

Vanessa VITSE (UVSQ)

3 16 avril 2012 12 / 21

-

• • = • •

First ingredient: improved relation search for Jacobians

Using Nagao's approach to obtain enough decompositions is ${\bf too\ slow}$

Another type of relations

Instead of decompositions, compute relations involving only elements of \mathcal{F} :

$$\sum_{i=1}^m \left((\mathcal{Q}_i) - (\mathcal{O}_\mathcal{H}) \right) \sim 0$$

Heuristically, expected number of such relations is $\simeq q^{m-ng}/m!$ \rightarrow as $\simeq q$ relations are needed, consider m = ng + 2

First ingredient: improved relation search for Jacobians

Using Nagao's approach to obtain enough decompositions is $\ensuremath{\textbf{to}}$ slow

Another type of relations

Instead of decompositions, compute relations involving only elements of \mathcal{F} :

$$\sum_{i=1}^m \left((\mathcal{Q}_i) - (\mathcal{O}_\mathcal{H})
ight) \sim 0$$

Heuristically, expected number of such relations is $\simeq q^{m-ng}/m!$ \rightarrow as $\simeq q$ relations are needed, consider m = ng + 2

Similar type of relations considered in NFS, FFS and Diem's index calculus for small degree plane curves

・ 同 ト ・ ヨ ト ・ ヨ ト

Modified index calculus

 ${\mathcal H}$ hyperelliptic curve of genus g defined over ${\mathbb F}_{q^n},\ n\geq 2$

- find relations of the form $\sum_{i=1}^{ng+2}\left((\mathcal{Q}_i)-(\mathcal{O}_{\mathcal{H}})\right)\sim 0$
- linear algebra: deduce DL of factor base elements up to a constant
- descent phase: compute two Nagao-style decompositions to complete the DLP resolution

Modified index calculus

 ${\mathcal H}$ hyperelliptic curve of genus g defined over ${\mathbb F}_{q^n}$, $n\geq 2$

- find relations of the form $\sum_{i=1}^{ng+2}\left((\mathcal{Q}_i)-(\mathcal{O}_{\mathcal{H}})
 ight)\sim 0$
- linear algebra: deduce DL of factor base elements up to a constant
- descent phase: compute two Nagao-style decompositions to complete the DLP resolution
- With Nagao: about (ng)! q quadratic polynomial systems of n(n-1)g eq./var. to solve
- With variant: only 1 under-determined quadratic system of n(n-1)g + 2n 2 eq. and n(n-1)g + 2n var.

(過) (モン・モン・ヨ)

Modified index calculus

 ${\mathcal H}$ hyperelliptic curve of genus g defined over ${\mathbb F}_{q^n},\ n\geq 2$

- find relations of the form $\sum_{i=1}^{ng+2}\left((\mathcal{Q}_i)-(\mathcal{O}_{\mathcal{H}})
 ight)\sim 0$
- linear algebra: deduce DL of factor base elements up to a constant
- descent phase: compute two Nagao-style decompositions to complete the DLP resolution
- With Nagao: about (ng)! q quadratic polynomial systems of n(n-1)g eq./var. to solve
- With variant: only 1 under-determined quadratic system of n(n-1)g + 2n 2 eq. and n(n-1)g + 2n var.

Fast resolution

Goal: find a new set of generators of the ideal s.t. each specialization of two variables yields an easy to solve system \to lex Gröbner basis

Vanessa VITSE (UVSQ)

Cover and decomposition index calculus

16 avril 2012 14 / 21

A special case: quadratic extensions in odd characteristic

Key point: define \mathbb{F}_{q^2} as $\mathbb{F}_q(t)/(t^2-\omega)$

Additional structure on the equations: polynomials obtained after restriction of scalars are multi-homogeneous of bidegree (1, 1) \rightarrow variables of the first homogeneous block belong to a 1-dim. variety

A special case: quadratic extensions in odd characteristic

Key point: define \mathbb{F}_{q^2} as $\mathbb{F}_q(t)/(t^2-\omega)$

Additional structure on the equations: polynomials obtained after restriction of scalars are multi-homogeneous of bidegree (1,1) \rightarrow variables of the first homogeneous block belong to a 1-dim. variety

Decomposition method:

- (1) "specialization": choose a value for the first variables
- $\textcircled{\sc order}$ remaining variables lie in a one-dimensional vector space \rightsquigarrow easy to solve system

Further improvement possible by using a sieving technique

- 本間 と えき と えき とうき

A special case: quadratic extensions in odd characteristic

Key point: define \mathbb{F}_{q^2} as $\mathbb{F}_q(t)/(t^2-\omega)$

Additional structure on the equations: polynomials obtained after restriction of scalars are multi-homogeneous of bidegree (1,1) \rightarrow variables of the first homogeneous block belong to a 1-dim. variety

Decomposition method:

- Ispecialization": choose a value for the first variables
- $\textcircled{\sc order}$ remaining variables lie in a one-dimensional vector space \rightsquigarrow easy to solve system

Further improvement possible by using a sieving technique

Much faster to compute decompositions with our variant \rightarrow about 960 times faster for (n,g) = (2,3) on a 150-bit curve

イロト イポト イヨト イヨト

The sieving technique

Fact: solutions of the polynomial system only give the polynomial $F(x) = \prod_i (x - x(Q_i)) \in \mathbb{F}_q[x] \rightarrow$ remains to test if it is split.

The sieving technique

Fact: solutions of the polynomial system only give the polynomial $F(x) = \prod_i (x - x(Q_i)) \in \mathbb{F}_q[x] \rightarrow$ remains to test if it is split.

Sieving method: avoid the factorization of F

- - $\to F$ becomes a polynomial in $\mathbb{F}_q[x,\lambda]$ of deg. 2 in λ and 2g + 2 in x

2 Enumeration in
$$x \in \mathbb{F}_q$$
 instead of λ

 \rightarrow corresponding values of λ are easier to compute

Possible to recover the values of λ for which there were deg_x F associated values of x

・ロン ・聞と ・ ほと ・ ほと

The sieving technique

Fact: solutions of the polynomial system only give the polynomial $F(x) = \prod_i (x - x(Q_i)) \in \mathbb{F}_q[x] \rightarrow$ remains to test if it is split.

Sieving method: avoid the factorization of F

- - \to *F* becomes a polynomial in $\mathbb{F}_q[x, \lambda]$ of deg. 2 in λ and 2g + 2 in x

2 Enumeration in
$$x \in \mathbb{F}_q$$
 instead of λ

 \rightarrow corresponding values of λ are easier to compute

Possible to recover the values of λ for which there were deg_x F associated values of x

$$\lambda$$
012 \cdots $p-1$ $\#x$ x_0 x_1 x_2 \cdots x_i \cdots

Adapted to large prime variations by sieving only on "small primes"

イロト イポト イヨト イヨト

Second ingredient: the combined attack

- Let $E(\mathbb{F}_{q^n})$ elliptic curve such that
 - \bullet GHS provides covering curves ${\cal C}$ with too large genus
 - *n* is too large for a practical decomposition attack

Second ingredient: the combined attack

- Let $E(\mathbb{F}_{q^n})$ elliptic curve such that
 - \bullet GHS provides covering curves ${\cal C}$ with too large genus
 - *n* is too large for a practical decomposition attack

Cover and decomposition attack [Joux-V.]

If *n* composite, combine both approaches:

- **(**) use GHS on the subextension $\mathbb{F}_{q^n}/\mathbb{F}_{q^d}$ to transfer the DL to $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{q^d})$
- ② then use decomposition attack on $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{q^d})$ with base field \mathbb{F}_q to solve the DLP

Second ingredient: the combined attack

- Let $E(\mathbb{F}_{q^n})$ elliptic curve such that
 - \bullet GHS provides covering curves ${\cal C}$ with too large genus
 - *n* is too large for a practical decomposition attack

Cover and decomposition attack [Joux-V.]

If *n* composite, combine both approaches:

- **(**) use GHS on the subextension $\mathbb{F}_{q^n}/\mathbb{F}_{q^d}$ to transfer the DL to $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{q^d})$
- ② then use decomposition attack on Jac_C(𝔽_{q^d}) with base field 𝔽_q to solve the DLP

 \rightarrow well adapted for curves defined over some Optimal Extension Fields

Extension degree n = 6 occurs for OEF; ideal target for this combined attack.

Most favorable case

- $\mathcal{E}_{|\mathbb{F}_{a^6}}$ has a genus 3 hyperelliptic cover by $\mathcal{H}_{|\mathbb{F}_{a^2}}$
 - ightarrow occurs for $\Theta(q^4)$ curves directly [Thériault, Momose-Chao]
 - \rightarrow for most curves after an isogeny walk

Otherwise, for curves defined over such extension fields:

• GHS yields cover $\mathcal{C}_{|\mathbb{F}_q}$ with genus $g \ge 9$ and with equality for less than q^3 curves

 \rightsquigarrow index calculus on $\mathsf{Jac}_\mathcal{C}(\mathbb{F}_q)$ is slower

direct decomposition attack fails to compute any relation

通 ト イヨ ト イヨト

Comparisons and complexity estimates for 160 bits based on Magma

p 27-bit prime, $E(\mathbb{F}_{p^6})$ elliptic curve with 160-bit prime order subgroup

Comparisons and complexity estimates for 160 bits based on Magma

p 27-bit prime, $E(\mathbb{F}_{p^6})$ elliptic curve with 160-bit prime order subgroup

• Generic attacks: $\tilde{O}(p^3) \cos t$, $\approx 5 \times 10^{13}$ years

Comparisons and complexity estimates for 160 bits based on Magma

- *p* 27-bit prime, $E(\mathbb{F}_{p^6})$ elliptic curve with 160-bit prime order subgroup Generic attacks: $\tilde{O}(p^3)$ cost, $\approx 5 \times 10^{13}$ years
 - Is Former index calculus methods:

	Decomposition	GHS	
$\mathbb{F}_{p^6}/\mathbb{F}_{p^2}$	$ ilde{O}(p^2)$ memory bottleneck		
$\mathbb{F}_{p^6}/\mathbb{F}_p$	intractable	efficient for $\leq 1/p^3$ curves $g = 9: \tilde{O}(p^{7/4}), \approx 1500$ years	

Comparisons and complexity estimates for 160 bits based on Magma

- *p* 27-bit prime, $E(\mathbb{F}_{p^6})$ elliptic curve with 160-bit prime order subgroup Generic attacks: $\tilde{O}(p^3)$ cost, $\approx 5 \times 10^{13}$ years
 - Is Former index calculus methods:

	Decomposition	GHS	
$\mathbb{F}_{p^6}/\mathbb{F}_{p^2}$	$ ilde{O}(ho^2)$ memory bottleneck		
$\mathbb{F}_{p^6}/\mathbb{F}_p$	intractable	efficient for $\leq 1/p^3$ curves $g=9:~ ilde{O}(p^{7/4}),pprox 1500$ years	

- Over and decomposition: $\tilde{O}(p^{5/3}) \text{ cost using the hyperelliptic genus 3 cover defined over } \mathbb{F}_{p^2}$
 - Nagao-style decomposition: pprox 750 years
 - Modified relation search: \approx 300 years

A concrete attack on a 150-bit curve

E : $y^2 = x(x - \alpha)(x - \sigma(\alpha))$ defined over \mathbb{F}_{p^6} where $p = 2^{25} + 35$, such that $\#E = 4 \cdot 356814156285346166966901450449051336101786213$

• Previously unreachable curve: GHS gives cover over \mathbb{F}_p of genus 33...

A concrete attack on a 150-bit curve

E : $y^2 = x(x - \alpha)(x - \sigma(\alpha))$ defined over \mathbb{F}_{p^6} where $p = 2^{25} + 35$, such that $\#E = 4 \cdot 356814156285346166966901450449051336101786213$

- Previously unreachable curve: GHS gives cover over \mathbb{F}_p of genus 33...
- Complete resolution of DLP in about 1 month with cover and decomposition, using genus 3 hyperelliptic cover $\mathcal{H}_{|\mathbb{F}_{n^2}}$

Relation search

• lex GB: 2.7 sec with one core⁽¹⁾ • sieving: $p^2/(2 \cdot 8!) \simeq 1.4 \times 10^{10}$ relations in 62 h on 1024 cores⁽²⁾ $\rightarrow 960 \times$ faster than Nagao

Linear algebra

- SGE: 25.5 h on 32 cores⁽²⁾ \rightarrow fivefold reduction
- Lanczos: 28.5 days on 64 cores⁽²⁾ (200 MB of data broadcast/round)

(Descent phase done in \sim 14s for one point)

 $^{(1)}$ Magma on 2.6 GHz Intel Core 2 Duo

⁽²⁾ 2.93 GHz quadri-core Intel Xeon 5550 _~

Vanessa VITSE (UVSQ)

Cover and decomposition index calculus

16 avril 2012 20 / 21

Scaling data for our implementation

Size of <i>p</i>	$\log_2 p \approx 23$	$\log_2 p \approx 24$	$\log_2 p \approx 25$
Group size	136 bits	142 bits	148 bits
Sieving (CPU.hours)	3 600	15 400	63 500
Sieving (real time)	3.5 hours	15 hours	62 hours
Matrix column nb	990 193	1 736 712	3 092 914
(SGE reduction)	(4.2)	(4.8)	(5.4)
Lanczos (CPU.hours)	4 900	16 000	43 800
Lanczos (real time)	77 hours	250 hours	28.5 days

ightarrow approximately 200 CPU.years to break DLP over a 160-bit curve group

Cover and Decomposition Index Calculus on Elliptic Curves made practical

Application to a previously unreachable curve over \mathbb{F}_{p^6}

Vanessa VITSE – Antoine JOUX

Université de Versailles Saint-Quentin, Laboratoire PRISM

Eurocrypt 2012

Vanessa VITSE (UVSQ)

Cover and decomposition index calculus

16 avril 2012