Robust Coin Flipping

Gene Kopp and John Wiltshire-Gordon

University of Michigan

gkopp@umich.edu jwiltshiregordon@umich.edu

April 15, 2012

G. Kopp & J. Wiltshire-Gordon (U of M) [Robust Coin Flipping](#page-0-0) April 15, 2012 2 / 1

4 0 8

– ∢ ⁄ਚ → < 3 × ÷

← ロ ▶ → 伊

→ < 3 × $\overline{4}$ э

э

×

∢ ロ ▶ ィ 何

 $\,$ - 4 国 ト 3

÷

∢ ロ ▶ ィ 何

 $\,$ 一不 医小头

4 **D F**

G. Kopp & J. Wiltshire-Gordon (U of M) [Robust Coin Flipping](#page-0-0) April 15, 2012 3/1

4 D F – ∢ ⁄ਚ

4 **D F**

Probability of \Box ? $\overline{1}$ $\frac{1}{2} \cdot 0.73 + \frac{1}{2}$ $\frac{1}{2} \cdot 0.27 = \frac{1}{2}$ 2

4 **D F**

Probability of \Box ? $\overline{1}$ $\frac{1}{2} \cdot 0.73 + \frac{1}{2}$ $\frac{1}{2} \cdot 0.27 = \frac{1}{2}$ 2

0.64 0.36

 \leftarrow \Box

Probability of \Box ? $\overline{1}$ $\frac{1}{2} \cdot 0.73 + \frac{1}{2}$ $\frac{1}{2} \cdot 0.27 = \frac{1}{2}$ 2

 $0.64 \cdot \frac{1}{2} + 0.36 \cdot \frac{1}{2}$ 2

 \leftarrow \Box

 QQ

Probability of \bigoplus ? $\overline{1}$ $\frac{1}{2} \cdot 0.73 + \frac{1}{2}$ $\frac{1}{2} \cdot 0.27 = \frac{1}{2}$ 2

 $0.64 \cdot \frac{1}{2} + 0.36 \cdot \frac{1}{2} = \frac{1}{2}$ 2

 \leftarrow \Box

 QQ

$\left(\begin{array}{c}1\\7\end{array}\right)$ 2 $\overline{1}$ $rac{1}{2}$) $\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} 0.73 \\ 0.27 \end{array}\right)$ = 1 2

4 **D F**

医间周

$\left(\begin{array}{c}1\\7\end{array}\right)$ 2 $\overline{1}$ $rac{1}{2}$) $\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} 0.73 \\ 0.27 \end{array}\right)$ = 1 2 $(0.64 \ 0.26)$ $\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} 1/2 \\ 1/2 \end{array}\right)$ $1/2$ \setminus = 1 2

G. Kopp & J. Wiltshire-Gordon (U of M) [Robust Coin Flipping](#page-0-0) April 15, 2012 4 / 1

$\left(\begin{array}{c}1\\2\end{array}\right)$ 2 1 $\frac{1}{2}$) $\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)\left(\begin{array}{c} 0.73 \\ 0.27 \end{array}\right)$ = 1 2 $(0.64 \ 0.26)$ $\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)\left(\begin{array}{c} 1/2 \\ 1/2 \end{array}\right)$ 1/2 \setminus = 1 2

G. Kopp & J. Wiltshire-Gordon (U of M) [Robust Coin Flipping](#page-0-0) April 15, 2012 5 / 1

 $A =$ $\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$

4 0 8

$$
A=\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)
$$

This bilinear operator encodes the operation "XOR"

G. Kopp & J. Wiltshire-Gordon (U of M) [Robust Coin Flipping](#page-0-0) A April 15, 2012 6 / 1

$$
A=\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)
$$

This bilinear operator encodes the operation "XOR" Once you discover \overline{A} the problem is easy.

Philosophy: Three Easy Steps

1. Begin with a natural cryptological problem

4 0 8

- 1. Begin with a natural cryptological problem
- 2. Recast problem in terms of multilinear algebra:

1. Begin with a natural cryptological problem 2. Recast problem in terms of multilinear algebra: "Does there exist a multilinear operator with these properties? If so, can I construct one?"

1. Begin with a natural cryptological problem 2. Recast problem in terms of multilinear algebra: "Does there exist a multilinear operator with these properties? If so, can I construct one?" 3. Draw on a rich array of techniques in algebraic geometry to to find or disprove the key multilinear operator

The problem we solved is fun

4 0 8

The problem we solved is fun But...

4 0 8

 QQ

The problem we solved is fun But...

We hope to convince you that the techniques are serious and practical.

Alice has $p = q + r$ programmable random sources:

Alice has $p = q + r$ programmable random sources: a of them are faulty;

Alice has $p = q + r$ programmable random sources: q of them are faulty; r of them are reliable.

Alice has $p = q + r$ programmable random sources: q of them are faulty; r of them are reliable. And the two types are indistinguishable!

Alice has $p = q + r$ programmable random sources: q of them are faulty; r of them are reliable. And the two types are indistinguishable!

She wishes to generate a coin flip such that

つひい

Alice has $p = q + r$ programmable random sources: q of them are faulty; r of them are reliable. And the two types are indistinguishable!

She wishes to generate a coin flip such that the probability of heads is α

つひひ

Alice has $p = q + r$ programmable random sources: q of them are faulty; r of them are reliable. And the two types are indistinguishable!

She wishes to generate a coin flip such that the probability of heads is α the probability of tails is $1 - \alpha$.

つひひ

G. Kopp & J. Wiltshire-Gordon (U of M) [Robust Coin Flipping](#page-0-0) April 15, 2012 10 / 1

4 **D F**

4 0 8

 \leftarrow

 \leftarrow
Results

 \leftarrow

Rational α Is Easy

• Say
$$
\alpha = \frac{a}{b}
$$
.

← ロ ▶ → イ 印

 \blacktriangleright 4

- Say $\alpha = \frac{a}{b}$ $\frac{a}{b}$.
- Alice programs source *i* to pick x_i from $\mathbb{Z}/b\mathbb{Z}$ with the uniform distribution.

• Say
$$
\alpha = \frac{a}{b}
$$
.

Alice programs source *i* to pick x_i from $\mathbb{Z}/b\mathbb{Z}$ with the uniform distribution.

• Heads if
$$
\sum_{i=1}^{p} x_i \in \{0, ..., a-1\}
$$
; tails otherwise.

• Say
$$
\alpha = \frac{a}{b}
$$
.

Alice programs source *i* to pick x_i from $\mathbb{Z}/b\mathbb{Z}$ with the uniform distribution.

• Heads if
$$
\sum_{i=1}^{p} x_i \in \{0, ..., a-1\}
$$
; tails otherwise.

Works if even one source is reliable (i.e. if $r \geq 1$)

$$
\left(\begin{array}{cc}\n\frac{1}{2} & \frac{1}{2}\n\end{array}\right)\n\left(\begin{array}{cc}\n0 & 1 \\
1 & 0\n\end{array}\right)\n\left(\begin{array}{c}\n0.73 \\
0.27\n\end{array}\right) = \frac{1}{2}
$$
\n
$$
\left(\begin{array}{cc}\n0.64 & 0.26\n\end{array}\right)\n\left(\begin{array}{cc}\n0 & 1 \\
1 & 0\n\end{array}\right)\n\left(\begin{array}{c}\n1/2 \\
1/2\n\end{array}\right) = \frac{1}{2}
$$

G. Kopp & J. Wiltshire-Gordon (U of M) [Robust Coin Flipping](#page-0-0) April 15, 2012 12 / 1

4 D F - ∢ +ਾ э

Lemma

Any bilinear form A has at most one associated α .

$$
\left(\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \end{array}\right) \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} 0.73 \\ 0.27 \end{array}\right) = \frac{1}{2}
$$

$$
\left(\begin{array}{cc} 0.64 & 0.26 \end{array}\right) \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} 1/2 \\ 1/2 \end{array}\right) = \frac{1}{2}
$$

 QQ

Lemma

Any bilinear form A has at most one associated α .

Corollary

When $p = 2$, $\alpha \in \mathbb{Q}$.

Lemma

Any bilinear form A has at most one associated α .

Corollary

When $p = 2$, $\alpha \in \mathbb{Q}$.

 \bullet Since A is a zero-one matrix, it is fixed by any field automorphism of \mathbb{C}/\mathbb{Q}

Lemma

Any bilinear form A has at most one associated α .

Corollary

When $p = 2$, $\alpha \in \mathbb{Q}$.

- Since A is a zero-one matrix, it is fixed by any field automorphism of \mathbb{C}/\mathbb{O}
- But any nontrivial Galois conjugate of α would violate the lemma!

Restatement using Multilinear Algebra

For $p = 3$, $q = 1$, we want to find a $\{0, 1\}$ -hypermatrix A and probability vectors $\beta^{(i)}$ such that, for all probability vectors $x^{(i)}$,

$$
\alpha = A(x^{(1)}, \beta^{(2)}, \beta^{(3)}) = A(\beta^{(1)}, x^{(2)}, \beta^{(3)}) = A(\beta^{(1)}, \beta^{(2)}, x^{(3)}).
$$

G. Kopp & J. Wiltshire-Gordon (U of M) [Robust Coin Flipping](#page-0-0) April 15, 2012 14 / 1

∢ ロ ▶ ィ 何

 \sim

$A =$ $\begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$ 1 1 0 $\left(\begin{array}{ccc} 0 & 0 & 1 \ 0 & 1 & 1 \end{array}\right)$

4 0 8

$$
A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}
$$

\n
$$
\beta^{(1)} = \begin{pmatrix} \frac{1}{2}(-1 + \sqrt{5}) & \frac{1}{2}(3 - \sqrt{5}) \end{pmatrix}
$$

\n
$$
\beta^{(2)} = \begin{pmatrix} \frac{1}{2}(3 - \sqrt{5}) \\ \frac{1}{2}(-1 + \sqrt{5}) \end{pmatrix}
$$

\n
$$
\beta^{(3)} = \begin{pmatrix} \frac{1}{10}(5 - \sqrt{5}) & \frac{1}{10}(5 - \sqrt{5}) & \frac{1}{5}\sqrt{5} \end{pmatrix}
$$

G. Kopp & J. Wiltshire-Gordon (U of M) [Robust Coin Flipping](#page-0-0) April 15, 2012 14 / 1

∢ ロ ▶ ィ 何

 \sim

$$
A = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}
$$

\n
$$
\beta^{(1)} = \begin{pmatrix} \frac{1}{2}(-1 + \sqrt{5}) & \frac{1}{2}(3 - \sqrt{5}) \end{pmatrix}
$$

\n
$$
\beta^{(2)} = \begin{pmatrix} \frac{1}{2}(3 - \sqrt{5}) \\ \frac{1}{2}(-1 + \sqrt{5}) \end{pmatrix}
$$

\n
$$
\beta^{(3)} = \begin{pmatrix} \frac{1}{10}(5 - \sqrt{5}) & \frac{1}{10}(5 - \sqrt{5}) & \frac{1}{5}\sqrt{5} \end{pmatrix}
$$

\n
$$
\alpha = \frac{\sqrt{5} - 1}{2}
$$

∢ ロ ▶ ィ 何

 \sim

4 D F - 4 包

 α = $A(x^{(1)}, \beta^{(2)}, \beta^{(3)})$

4 D F

 \rightarrow \overline{m} \rightarrow \rightarrow \overline{m}

$$
\alpha = A(x^{(1)}, \beta^{(2)}, \beta^{(3)})
$$

$$
\alpha J(x^{(1)}, \beta^{(2)}, \beta^{(3)}) = A(x^{(1)}, \beta^{(2)}, \beta^{(3)})
$$

4 D F - 4 包

$$
\alpha = A(x^{(1)}, \beta^{(2)}, \beta^{(3)})
$$

\n
$$
\alpha J(x^{(1)}, \beta^{(2)}, \beta^{(3)}) = A(x^{(1)}, \beta^{(2)}, \beta^{(3)})
$$

\n
$$
(\alpha J - A)(x^{(1)}, \beta^{(2)}, \beta^{(3)}) = 0
$$

4 D F - 4 包

$$
\alpha = A(x^{(1)}, \beta^{(2)}, \beta^{(3)})
$$

\n
$$
\alpha J(x^{(1)}, \beta^{(2)}, \beta^{(3)}) = A(x^{(1)}, \beta^{(2)}, \beta^{(3)})
$$

\n
$$
(\alpha J - A)(x^{(1)}, \beta^{(2)}, \beta^{(3)}) = 0
$$

So $\alpha J - A$ satisfies the degeneracy conditions:

$$
(\alpha J - A)(x^{(1)}, \beta^{(2)}, \beta^{(3)}) = 0
$$

\n
$$
(\alpha J - A)(\beta^{(1)}, x^{(2)}, \beta^{(3)}) = 0
$$

\n
$$
(\alpha J - A)(\beta^{(1)}, \beta^{(2)}, x^{(3)}) = 0
$$

G. Kopp & J. Wiltshire-Gordon (U of M) [Robust Coin Flipping](#page-0-0) April 15, 2012 15 / 1

 QQ

$$
\alpha = A(x^{(1)}, \beta^{(2)}, \beta^{(3)})
$$

\n
$$
\alpha J(x^{(1)}, \beta^{(2)}, \beta^{(3)}) = A(x^{(1)}, \beta^{(2)}, \beta^{(3)})
$$

\n
$$
(\alpha J - A)(x^{(1)}, \beta^{(2)}, \beta^{(3)}) = 0
$$

So $\alpha J - A$ satisfies the degeneracy conditions:

$$
(\alpha J - A)(x^{(1)}, \beta^{(2)}, \beta^{(3)}) = 0
$$

\n
$$
(\alpha J - A)(\beta^{(1)}, x^{(2)}, \beta^{(3)}) = 0
$$

\n
$$
(\alpha J - A)(\beta^{(1)}, \beta^{(2)}, x^{(3)}) = 0
$$

\n
$$
\iff \text{Det}(\alpha J - A) = 0
$$

 QQ

• The hyperplane defined by $(\alpha J - A)(x) = 0$ is tangent to the Segre variety at the point $\beta^{(1)}\otimes \cdots \otimes \beta^{(p)}.$

- The hyperplane defined by $(\alpha J A)(x) = 0$ is tangent to the Segre variety at the point $\beta^{(1)}\otimes \cdots \otimes \beta^{(p)}.$
- Projective duality gives the set of tangent hyperplanes the structure of a variety, too.

- The hyperplane defined by $(\alpha J A)(x) = 0$ is tangent to the Segre variety at the point $\beta^{(1)}\otimes \cdots \otimes \beta^{(p)}.$
- Projective duality gives the set of tangent hyperplanes the structure of a variety, too.
- Under favorable conditions, this variety is cut out by a single polynomial Det. So Det($\alpha J - A$) = 0.

- The hyperplane defined by $(\alpha J A)(x) = 0$ is tangent to the Segre variety at the point $\beta^{(1)}\otimes \cdots \otimes \beta^{(p)}.$
- Projective duality gives the set of tangent hyperplanes the structure of a variety, too.
- Under favorable conditions, this variety is cut out by a single polynomial Det. So Det($\alpha J - A$) = 0.
- There's a problem when $Det(tJ A) \equiv 0...$

- The hyperplane defined by $(\alpha J A)(x) = 0$ is tangent to the Segre variety at the point $\beta^{(1)}\otimes \cdots \otimes \beta^{(p)}.$
- Projective duality gives the set of tangent hyperplanes the structure of a variety, too.
- Under favorable conditions, this variety is cut out by a single polynomial Det. So Det $(\alpha J - A) = 0$.
- There's a problem when $Det(tJ A) \equiv 0...$ We repeat the argument is a suitable singular stratum.

• Case $p = 3$, $q = 1$ is the core of the proof of the constructive direction for algebraic α .

• Case $p = 3$, $q = 1$ is the core of the proof of the constructive direction for algebraic α .

Proof in two steps:

• Case $p = 3$, $q = 1$ is the core of the proof of the constructive direction for algebraic α .

Proof in two steps:

• Use algebraic geometry to produce a point on the variety

• Case $p = 3$, $q = 1$ is the core of the proof of the constructive direction for algebraic α .

Proof in two steps:

- Use algebraic geometry to produce a point on the variety
- Use Diophantine approximation and analysis to wiggle the solution into the positive cone

• Deduce general case from $p = 3$, $q = 1$ case using the Bureaucracy Lemma.

• The algebraic geometry of multilinear operators is a powerful tool...

4 0 8

 QQ

- The algebraic geometry of multilinear operators is a powerful tool...
- which can be applied to cryptologic problems in a serious way.
- The algebraic geometry of multilinear operators is a powerful tool...
- which can be applied to cryptologic problems in a serious way.
- **•** Thank you!

 299