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Sport Match

Probability of ?
1
2 · 0.73 + 1

2 · 0.27 = 1
2

0.64 · 12 + 0.36 · 12 = 1
2
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The Hero of the Sport Match
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The Hero of the Sport Match

A =

(
0 1
1 0

)

This bilinear operator encodes the operation “XOR”
Once you discover A the problem is easy.
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Philosophy: Three Easy Steps

1. Begin with a natural cryptological problem

2. Recast problem in terms of multilinear algebra:
“Does there exist a multilinear operator with these
properties? If so, can I construct one?”
3. Draw on a rich array of techniques in algebraic
geometry to to find or disprove the key multilinear
operator
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The Robust Coin Flipping Problem

The problem we solved is fun

But...
We hope to convince you that
the techniques are serious and practical.
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The Robust Coin Flipping Problem

Alice has p = q + r programmable random sources:

q of them are faulty;
r of them are reliable.

And the two types are indistinguishable!

She wishes to generate a coin flip such that
the probability of heads is α
the probability of tails is 1− α.
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Rational α Is Easy

Say α = a
b .

Alice programs source i to pick xi from Z/bZ with
the uniform distribution.

Heads if

p∑
i=1

xi ∈ {0, ..., a − 1}; tails otherwise.

Works if even one source is reliable (i.e. if r ≥ 1)
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When p = 2, Every α is Rational

Lemma
Any bilinear form A has at most one associated α.

(
1
2

1
2

)( 0 1
1 0

)(
0.73
0.27

)
=

1

2

(
0.64 0.26

)( 0 1
1 0

)(
1/2
1/2

)
=

1

2

Corollary
When p = 2, α ∈ Q.

Since A is a zero-one matrix, it is fixed by any field
automorphism of C/Q
But any nontrivial Galois conjugate of α would
violate the lemma!
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Restatement using Multilinear Algebra

For p = 3, q = 1, we want to find a {0, 1}-hypermatrix
A and probability vectors β(i) such that, for all
probability vectors x (i),

α = A(x (1), β(2), β(3)) = A(β(1), x (2), β(3)) = A(β(1), β(2), x (3)).
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An Example Solution

A =

(
1 0 1
1 1 0

0 0 1
0 1 1

)
β(1) =

(
1
2(−1 +

√
5) 1

2(3−
√

5)
)

β(2) =

(
1
2(3−

√
5)

1
2(−1 +

√
5)

)
β(3) =

(
1
10(5−

√
5) 1

10(5−
√

5) 1
5

√
5
)

α =

√
5− 1

2
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Any α is an Algebraic Number?

α = A(x (1), β(2), β(3))

αJ(x (1), β(2), β(3)) = A(x (1), β(2), β(3))

(αJ − A)(x (1), β(2), β(3)) = 0

So αJ − A satisfies the degeneracy conditions:

(αJ − A)(x (1), β(2), β(3)) = 0

(αJ − A)(β(1), x (2), β(3)) = 0

(αJ − A)(β(1), β(2), x (3)) = 0

⇐⇒ Det(αJ − A) = 0
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Any α is an Algebraic Number

The hyperplane defined by (αJ − A)(x) = 0 is
tangent to the Segre variety at the point
β(1) ⊗ · · · ⊗ β(p).

Projective duality gives the set of tangent
hyperplanes the structure of a variety, too.

Under favorable conditions, this variety is cut out by
a single polynomial Det. So Det(αJ − A) = 0.

There’s a problem when Det(tJ − A) ≡ 0. . . We
repeat the argument is a suitable singular stratum.
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Constructing any Algebraic α

Case p = 3, q = 1 is the core of the proof of the
constructive direction for algebraic α.

Proof in two steps:

Use algebraic geometry to produce a point on the
variety

Use Diophantine approximation and analysis to
wiggle the solution into the positive cone
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Constructing any Algebraic α

Deduce general case from p = 3, q = 1 case using
the Bureaucracy Lemma.

3 2 5 2 3 4 2 2 4 3 5 1 3 5 3 5 2 4 1 1 1 5 1 2 4 4 5
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Recap

The algebraic geometry of multilinear operators is a
powerful tool...

which can be applied to cryptologic problems in a
serious way.

Thank you!
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