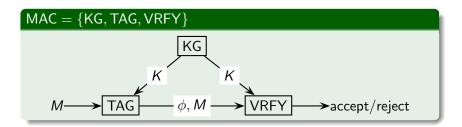
Message Authentication, Revisited

Yevgeniy Dodis, Eike Kiltz, Krzysztof Pietrzak, Daniel Wichs

EUROCRYPT 2012, April 16th, Cambridge UK

Message Authentication Codes



- MACs are fundamental cryptographic primitives.
- Historically constructed from PRFs (with large range)

 $\mathsf{TAG}(K, M) \sim \mathsf{PRF}(K, M)$, $\mathsf{VRFY}(K, M, \phi) \sim \mathsf{PRF}(K, M) \stackrel{!}{=} \phi$

- Domain extension: CBC, HMAC, Hash-then-Encrypt...
- Heuristic: AES, SHA,...
- Algebraic: Naor-Reingold PRF, LWE-PRF [BPR'12],... less efficient, but provably secure & ZK-friendly (e.g. for e-cash.)

• The Naor-Reingold PRF (based on DDH in \mathbb{G})

$$F_{NR}(\underbrace{[h, x_1, \dots, x_m]}_{\text{key} \in \mathbb{G} \times \mathbb{Z}_p^m}, \underbrace{[b_1, \dots, b_m]}_{\text{input} \in \{0,1\}^m}) := h^w \text{ where } w = \prod_{i=1}^m x_i^{b_1}$$

m

State of the art algebraic PRFs

either

• Key-size quadratic in security parameter (NR-PRF).

• The Naor-Reingold PRF (based on DDH in \mathbb{G})

$$F_{NR}\big(\underbrace{[h, x_1, \dots, x_m]}_{\text{key} \in \mathbb{G} \times \mathbb{Z}_p^m}, \underbrace{[b_1, \dots, b_m]}_{\text{input} \in \{0,1\}^m}\big) := h^w \text{ where } w = \prod_{i=1}^{m} x_i^{b_1}$$

m

• GGM (algebraic PRG)

State of the art algebraic PRFs

either

- Key-size quadratic in security parameter (NR-PRF).
- Linear number of exponentiations (GGM).

 $\bullet\,$ The Naor-Reingold PRF (based on DDH in $\mathbb{G})$

$$F_{NR}(\underbrace{[h, x_1, \dots, x_m]}_{\text{key} \in \mathbb{G} \times \mathbb{Z}_p^m}, \underbrace{[b_1, \dots, b_m]}_{\text{input} \in \{0,1\}^m}) := h^w \text{ where } w = \prod_{i=1}^{m} x_i^{b_1}$$

m

- GGM (algebraic PRG)
- Dodis-Yampolskiy PRF (q-DDHI)

State of the art algebraic PRFs

either

- Key-size quadratic in security parameter (NR-PRF).
- Linear number of exponentiations (GGM).
- Exotic assumptions (q-DDHI).

 $\bullet\,$ The Naor-Reingold PRF (based on DDH in $\mathbb{G})$

$$F_{NR}(\underbrace{[h, x_1, \dots, x_m]}_{\text{key} \in \mathbb{G} \times \mathbb{Z}_p^m}, \underbrace{[b_1, \dots, b_m]}_{\text{input} \in \{0,1\}^m}) := h^w \text{ where } w = \prod_{i=1}^{m} x_i^{b_1}$$

m

- GGM (algebraic PRG)
- Dodis-Yampolskiy PRF (q-DDHI)

State of the art algebraic PRFs

either

- Key-size quadratic in security parameter (NR-PRF).
- Linear number of exponentiations (GGM).
- Exotic assumptions (q-DDHI).

Nothing better for MACs known. Previous to this work no MAC construction from DDH with constant # of elements in key and constant # of exponentiations.

MACs vs. PRFs

MACs seem like simpler objects than PRFs

- Unpredictability vs. indistinguishability.
- Probabilistic vs. deterministic.

MACs vs. PRFs

MACs seem like simpler objects than PRFs

- Unpredictability vs. indistinguishability. Use search instead decision problems, CDH vs. DDH?
- Probabilistic vs. deterministic.

MACs vs. PRFs

MACs seem like simpler objects than PRFs

- Unpredictability vs. indistinguishability. Use search instead decision problems, CDH vs. DDH?
- Probabilistic vs. deterministic.

Easier from inherently probabilistic assumptions like LPN?

Definitions of MACs

$$\boxed{\mathsf{TAG}(K,.)} \longleftarrow Q_T \longrightarrow \mathcal{A} \longleftarrow Q_V \longrightarrow \boxed{\mathsf{VRFY}(K,.,.)}$$

uf-cm a : unforgeability under chosen message/verification attack

MAC = {KG, TAG, VRFY} is (t, Q_T, Q_V, ϵ) -uf-cmva secure if for all adversaries \mathcal{A} of size t making Q_T/Q_V TAG/VRFY queries: The probability $\mathcal{A}^{TAG(\mathcal{K},.),VRFY(\mathcal{K},...)}$ makes accepting VRFY query (M, ϕ) and TAG was not queried on M before is $\leq \epsilon$.

Definitions of MACs

$$\mathsf{TAG}(K,.) \longleftarrow Q_T \longrightarrow \mathcal{A} \longleftarrow Q_V \longrightarrow \mathsf{VRFY}(K,.,.)$$

uf-cm a : unforgeability under chosen message/verification attack

 $MAC = \{KG, TAG, VRFY\} \text{ is } (t, Q_T, Q_V, \epsilon)\text{-uf-cmva secure if for} \\ all adversaries \mathcal{A} \text{ of size } t \text{ making } Q_T/Q_V \text{ TAG/VRFY queries:} \\ \text{The probability } \mathcal{A}^{\text{TAG}(\mathcal{K},.),\text{VRFY}(\mathcal{K},...)} \text{ makes accepting VRFY query} \\ (M, \phi) \text{ and TAG was not queried on } M \text{ before is} \leq \epsilon.$

Deterministic MAC with canonical verification.

2 VRFY(
$$K, M, \phi$$
) = (TAG(K, M) $\stackrel{?}{=} \phi$)

- No difference between 1 vs. many VRFY queries: $(t, Q_T, 1, \epsilon)$ -uf-cmva $\Rightarrow (t, Q_T, Q_V, \epsilon Q_V)$ -uf-cmva
- For probabilistic MACs 1 vs. many VRFY queries matters.

Selective security and Indistinguishability

uf-cma : is short for uf-cmva with one verification query

$$(t, Q_T, \epsilon)$$
-uf-cma $\stackrel{\mathsf{def}}{=} (t, Q_T, 1, \epsilon)$ -uf-cmva

- suf-cm(v)a : "selective" unforgeability, defined like uf-cm(v)a but where A must commit to forged message before making any oracle queries.
 - ind-cma : MAC is (t, Q_T, ϵ) -ind-cma if tags are indistinguishable

$$\left| \underset{\mathcal{K}}{\mathbb{P}}[\mathcal{A}^{\mathsf{TAG}(\mathcal{K},.)} = 1] - \underset{\mathcal{K}}{\mathbb{P}}[\mathcal{A}^{\mathsf{TAG}(\mathcal{K},0)}] \right| \leq \epsilon$$

Efficient generic transformation

● From one to many verification queries uf-cma + ind-cma ⇒ uf-cmva.

Efficient generic transformation

- From one to many verification queries uf-cma + ind-cma ⇒ uf-cmva.
- 2 (trivial) Domain extension for uf-cma + ind-cma secure MACs.
- (trivial) From selective to full security suf-cma ⇒ uf-cma for MACs with small range.

Our Results (2) Constructions of algebraic MACs

General templates using

- CCA-secure pubilc-key encryption, Hash-proof systems.
- Key-homomorphic weak PRFs.
- Signatures schemes.

DL based Instantitations

construction	$sk \in$	Tag σ on m	Security	Assumption
MAC _{CS}	$\mathbb{Z}_p^4 \times \mathbb{G}$	\mathbb{G}^4	uf-cmva	DDH
MAC _{HPS}	\mathbb{Z}_p^3 \mathbb{Z}_p^2	\mathbb{G}^3	uf-cmva	DDH
MAC_{hwPRF}		\mathbb{G}^2	<mark>s</mark> uf-cma	DDH
MAC_{WhwPRF}	$\mathbb{Z}_p^{\lambda+2}$ \mathbb{Z}_p^3	\mathbb{G}^2	uf-cma	DDH
MAC _{BB}	\mathbb{Z}_p^3	\mathbb{G}^2	<mark>s</mark> uf-cma	gap-CDH
MAC _{TBB}	\mathbb{Z}_p^5	\mathbb{G}^3	<mark>s</mark> uf-cma	CDH
MAC_{Waters}	$\mathbb{Z}_p^{\tilde{\lambda}+2}$	\mathbb{G}^2	uf-cmva	gap-CDH
PRF _{NR}	$\mathbb{Z}_p^\lambda imes \mathbb{G}$	G	PRF	DDH

Our Results (2) Constructions of algebraic MACs

General templates using

- CCA-secure pubilc-key encryption, Hash-proof systems.
- Key-homomorphic weak PRFs.
- Signatures schemes.

DL based Instantitations

construction	$sk \in$	Tag σ on m	Security	Assumption
MAC _{CS}	$\mathbb{Z}_p^4 \times \mathbb{G}$	\mathbb{G}^4	uf-cmva	DDH
MAC _{HPS}	\mathbb{Z}_p^3 \mathbb{Z}_p^2	\mathbb{G}^3	uf-cmva	DDH
MAChwPRF	\mathbb{Z}_p^2	\mathbb{G}^2	<mark>s</mark> uf-cma	DDH
MAC_{WhwPRF}	$\mathbb{Z}_p^{\lambda+2}$ \mathbb{Z}_p^3	\mathbb{G}^2	uf-cma	DDH
MAC _{BB}	\mathbb{Z}_p^3	\mathbb{G}^2	<mark>s</mark> uf-cma	gap-CDH
MAC _{TBB}	\mathbb{Z}_p^5	\mathbb{G}^3	<mark>s</mark> uf-cma	CDH
MAC_{Waters}	$\mathbb{Z}_p^{\tilde{\lambda}+2}$	\mathbb{G}^2	uf-cmva	gap-CDH
PRF _{NR}	$\mathbb{Z}_p^\lambda imes \mathbb{G}$	G	PRF	DDH

Our Results (2) Constructions of algebraic MACs

DL based Instantitations

construction	$sk \in$	Tag σ on m	Security	Assumption
MAC _{CS}	$\mathbb{Z}_p^4 \times \mathbb{G}$	\mathbb{G}^4	uf-cmva	DDH
MAC _{HPS}	\mathbb{Z}_p^3	\mathbb{G}^3	uf-cmva	DDH
MAChwPRF	\mathbb{Z}_p^2	\mathbb{G}^2	<mark>s</mark> uf-cma	DDH
MACWhwPRF	$\mathbb{Z}^{\lambda+2}$	\mathbb{G}^2	uf-cma	DDH
MAC _{BB}	\mathbb{Z}_p^3	\mathbb{G}^2	<mark>s</mark> uf-cma	gap-CDH
MAC _{TBB}	\mathbb{Z}_p^5	\mathbb{G}^3	<mark>s</mark> uf-cma	CDH
MAC _{Waters}	$\mathbb{Z}_p^{\lambda+2}$	\mathbb{G}^2	uf-cmva	gap-CDH
PRF _{NR}	$\mathbb{Z}_p^\lambda imes \mathbb{G}$	G	PRF	DDH

From [KPCJV11]

construction	$sk \in$	Tag σ on m	Security	Assumption
MAC _{LPN}	$\mathbb{Z}_2^{2\ell}$	$\mathbb{Z}_2^{(\ell+1) imes n}$	<mark>s</mark> uf-cma	LPN
MAC _{BilinLPN}	$\mathbb{Z}_2^{\ell imes\lambda}$	$\mathbb{Z}_2^{(\ell+1) imes n}$	uf-cma	LPN

Transformations

Krzysztof Pietrzak Message Authentication, Revisited

From one to many verification queries

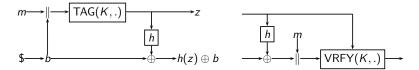


Figure: TAG and VRFY with key (K, h) for message *m* using randomness *b*. *h* is pairwise independent with range $\{0, 1\}^{\mu}$.

From one to many verification queries

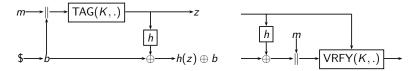


Figure: TAG and VRFY with key (K, h) for message *m* using randomness *b*. *h* is pairwise independent with range $\{0, 1\}^{\mu}$.

Theorem (uf-cma + ind-cma \Rightarrow uf-cm a)

For any $t, Q_T, Q_V \in \mathbb{N}$, $\epsilon > 0$, if MAC is

- (t, Q_T, ϵ) -uf-cma secure
- (t, Q_T, ϵ) -ind-cma secure

then \overline{MAC} is (t, Q_T, Q_V, ϵ') -uf-cmva secure where

$$\epsilon' = 2Q_V\epsilon + 2Q_VQ_T/2^{\mu}.$$

From selective to full security & domain extension

Selective to full security

Any MAC with message domain $\{0,1\}^\mu$

$$(t, Q, \varepsilon)$$
-suf-cma \Rightarrow $(t, Q, \varepsilon 2^{\mu})$ -uf-cma

Domain Extension

Pairwise independent $g: \{0,1\}^m \to \{0,1\}^\mu$ to increase domain.

$$TAG'(K, M) = TAG(K, g(M))$$

$$(t, Q, \varepsilon)$$
-uf-cma & (t, Q, ε) -ind-cma
 \Rightarrow
 $(t, Q, 2\varepsilon + Q/2^{\mu})$ -uf-cma & (t, Q, ε) -ind-cma

Constructions

< ≣⇒

Key-homomorphic weak PRF

Keyed family of functions $\{f_k : \mathcal{X} \to \mathcal{Y}\}_{k \in \mathcal{K}}$.

- **Q** wPRF: $f_k(.)$ indistinguishable from random on random inputs.
- 3 key-homomorphic: $f_{a \cdot k_1 + b \cdot k_2}(x) = a \cdot f_{k_1}(x) + b \cdot f_{k_2}(x)$.

kwPRF from DDH

$$\{f_k : \mathbb{G} \to \mathbb{G}\}_{k \in \mathbb{Z}_p}$$
 defined as $f_k(x) = x^k$.

wPRF under DDH.

2 key-homomorphic:

$$f_{a \cdot k_1 + b \cdot k_2}(x) = x^{a \cdot k_1 + b \cdot k_2} = (f_{k_1}(x))^a (f_{k_2}(x))^b$$

(신문) (신문)

Construction from key-homomorphic weak PRF

$$\{f_k : \mathcal{X} \mapsto \mathcal{Y}\}_{k \in \mathcal{K}}$$

$$\mathsf{KG} : k_1, k_2 \in_{\$} \mathcal{K}.$$

$$\mathsf{TAG}_{(k_1, k_2)}(m) : x, f_{m \cdot k_1 + k_2}(x) , x \in_{\$} \mathcal{X}$$

$$\mathsf{VRFY}_{(k_1, k_2)}(m, (x, y)) : f_{m \cdot k_1 + k_2}(x) \stackrel{?}{=} y.$$

Theorem

If f is a key-homomorphic weak PRF then MAC is suf-cma and ind-cma secure MAC.

Instantiation with DDH

$$\begin{array}{rcl} \mathsf{KG}: & k_{1}, k_{2} \in_{\$} \mathbb{Z}_{p} \\ \mathsf{TAG}_{(k_{1},k_{2})}(m): & x, x^{m \cdot k_{1}+k_{2}} \\ & \mathsf{VRFY}_{(k_{1},k_{2})}(m,(x,y)): & x^{m \cdot k_{1}+k_{2}} \stackrel{?}{=} y \end{array}$$

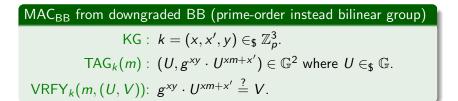
A 🗸

• uf-cma secure signature scheme is a uf-cmva secure MAC.

- uf-cma secure signature scheme is a uf-cmva secure MAC.
- Overkill as MACs don't need public verification.

- uf-cma secure signature scheme is a uf-cmva secure MAC.
- Overkill as MACs don't need public verification.
- Take signature scheme and "downgrade" it: loose public verifiability but gain efficiency.

- uf-cma secure signature scheme is a uf-cmva secure MAC.
- Overkill as MACs don't need public verification.
- Take signature scheme and "downgrade" it: loose public verifiability but gain efficiency.



Theorem

If gap-CDH holds in $\mathbb G$ then MAC_BB is suf-cma secure.

- uf-cma secure signature scheme is a uf-cmva secure MAC.
- Overkill as MACs don't need public verification.
- Take signature scheme and "downgrade" it: loose public verifiability but gain efficiency.
- Can go from gap-CDH to CDH using twinning Cash et. al EC'08.

MAC_{TBB} downgraded BB plus twinning

$$\begin{aligned} \mathsf{KG} : \ & k = (x_1, x_1', x_2, x_2', y) \in_{\$} \mathbb{Z}_p^5. \\ \mathsf{TAG}_k(m) : \ & U, g^{x_1 y} U^{x_1 m + x_1'}, g^{x_2 y} U^{x_2 m + x_2'} \text{ where } U \in_{\$} \mathbb{G}. \\ \mathsf{VRFY}_k(m, (U, V)) : \ & g^{xy} \cdot U^{xm + x'} \stackrel{?}{=} V. \end{aligned}$$

Theorem

If CDH holds in $\mathbb G$ then $\mathsf{MAC}_\mathsf{TBB}$ is suf-cma secure.

MAC_{TBB} downgraded BB plus twinning

 $\begin{array}{l} \mathsf{KG}: \ \mathbf{x} \in_{\$} \mathbb{Z}_{2}^{2\ell} \\ \mathsf{TAG}_{k}(\mathbf{m}): \ (\mathbf{R}, \mathbf{R}^{\mathcal{T}} \cdot \mathbf{x}_{\downarrow \mathbf{m}} + \mathbf{e}) \ \mathsf{where} \ \mathbf{R} \in_{\$} \mathbb{Z}_{2}^{\ell \times n} \ \mathsf{and} \\ \mathbf{e} \in \mathbb{Z}_{2}^{n} \ \mathsf{has} \ \mathsf{low} \ \mathsf{weight}. \\ \mathsf{VRFY}_{k}(\mathbf{m}, (\mathbf{R}, \mathbf{z})): \ |\mathbf{R}^{\mathcal{T}} \cdot \mathbf{x}_{\downarrow \mathbf{m}} - \mathbf{z}| \ \mathsf{has} \ \mathsf{low} \ \mathsf{weight}. \end{array}$

Theorem (KPCJV11)

If LPN is hard, then MAC_{LPN} is suf-cma and ind-cma.

Questions?

□ > < E > < E >

æ