Message Authentication, Revisited

Yevgeniy Dodis, Eike Kiltz, Krzysztof Pietrzak, Daniel Wichs

EUROCRYPT 2012, April 16th, Cambridge UK

 Ω

- MACs are fundamental cryptographic primitives.
- Historically constructed from PRFs (with large range)

 $\mathsf{TAG}(\mathcal{K},\mathcal{M})\sim \mathsf{PRF}(\mathcal{K},\mathcal{M})\,\,,\,\,\mathsf{VRFY}(\mathcal{K},\mathcal{M},\phi)\,\sim\,\mathsf{PRF}(\mathcal{K},\mathcal{M})\stackrel{?}{=}\phi$

- Domain extension: CBC, HMAC, Hash-then-Encrypt...
- Heuristic: AES, SHA,...
- Algebraic: Naor-Reingold PRF, LWE-PRF [BPR'12],... less efficient, but provably secure & ZK-friendly (e.g. for e-cash.)

The Naor-Reingold PRF (based on DDH in G)

$$
F_{NR}\left(\underbrace{[h,x_1,\ldots,x_m]}_{\text{key } \in \mathbb{G} \times \mathbb{Z}_p^m}\right), \underbrace{[b_1,\ldots,b_m]}_{\text{input } \in \{0,1\}^m}\right) := h^w \text{ where } w = \prod_{i=1}^m x_i^{b_1}
$$

m

つへへ

State of the art algebraic PRFs

either

Key-size quadratic in security parameter (NR-PRF).

• The Naor-Reingold PRF (based on DDH in G)

$$
F_{NR}\left(\underbrace{[h,x_1,\ldots,x_m]}_{\text{key } \in \mathbb{G} \times \mathbb{Z}_p^m}, \underbrace{[b_1,\ldots,b_m]}_{\text{input } \in \{0,1\}^m}\right) := h^w \text{ where } w = \prod_{i=1} x_i^{b_1}
$$

 m

つへへ

• GGM (algebraic PRG)

State of the art algebraic PRFs

either

- Key-size quadratic in security parameter (NR-PRF).
- Linear number of exponentiations (GGM).

• The Naor-Reingold PRF (based on DDH in G)

$$
F_{NR}\left(\underbrace{[h,x_1,\ldots,x_m]}_{\text{key } \in \mathbb{G} \times \mathbb{Z}_p^m}\right), \underbrace{[b_1,\ldots,b_m]}_{\text{input } \in \{0,1\}^m}\right) := h^w \text{ where } w = \prod_{i=1} x_i^{b_1}
$$

Ym

つへへ

- GGM (algebraic PRG)
- Dodis-Yampolskiy PRF (q-DDHI)

State of the art algebraic PRFs

either

- Key-size quadratic in security parameter (NR-PRF).
- Linear number of exponentiations (GGM).
- Exotic assumptions (q-DDHI).

• The Naor-Reingold PRF (based on DDH in G)

$$
F_{NR}\left(\underbrace{[h,x_1,\ldots,x_m]}_{\text{key } \in \mathbb{G} \times \mathbb{Z}_p^m}\right), \underbrace{[b_1,\ldots,b_m]}_{\text{input } \in \{0,1\}^m}\right) := h^w \text{ where } w = \prod_{i=1}^m x_i^{b_1}
$$

- GGM (algebraic PRG)
- Dodis-Yampolskiy PRF (q-DDHI)

State of the art algebraic PRFs

either

- Key-size quadratic in security parameter (NR-PRF).
- Linear number of exponentiations (GGM).
- Exotic assumptions (q-DDHI).

Nothing better for MACs known. Previous to this work no MAC construction from DDH with constant $#$ of elements in key and constant $#$ of exponentiations.

Ym

MACs vs. PRFs

MACs seem like simpler objects than PRFs

- **1** Unpredictability vs. indistinguishability.
- ² Probabilistic vs. deterministic.

 299

∍

MACs vs. PRFs

MACs seem like simpler objects than PRFs

- **1** Unpredictability vs. indistinguishability. Use search instead decision problems, CDH vs. DDH?
- **2** Probabilistic vs. deterministic.

MACs vs. PRFs

MACs seem like simpler objects than PRFs

- **1** Unpredictability vs. indistinguishability. Use search instead decision problems, CDH vs. DDH?
- **2** Probabilistic vs. deterministic.

Easier from inherently probabilistic assumptions like LPN?

Definitions of MACs

$$
\boxed{\mathsf{TAG}(K,.)} \longleftarrow Q_T \longrightarrow \mathcal{A} \longleftarrow Q_V \longrightarrow \boxed{\mathsf{VRFY}(K,.,.)}
$$

uf-cmva : unforgeability under chosen message/verification attack

MAC = {KG, TAG, VRFY} is (t, Q_T, Q_V, ϵ) -uf-cmva secure if for all adversaries A of size t making Q_T/Q_V TAG/VRFY queries: The probability $A^{TAG(K,.),VRFY(K,.,.)}$ makes accepting VRFY query (M, ϕ) and TAG was not queried on M before is $\leq \epsilon$.

Definitions of MACs

$$
\boxed{\mathsf{TAG}(K,.)} \longleftarrow Q_T \longrightarrow \mathcal{A} \longleftarrow Q_V \longrightarrow \boxed{\mathsf{VRFY}(K,.,.)}
$$

uf-cmva : unforgeability under chosen message/verification attack

MAC = {KG, TAG, VRFY} is (t, Q_T, Q_V, ϵ) -uf-cmva secure if for all adversaries A of size t making Q_T/Q_V TAG/VRFY queries: The probability $A^{TAG(K,.),VRFY(K,.,.)}$ makes accepting VRFY query (M, ϕ) and TAG was not queried on M before is $\leq \epsilon$.

Deterministic MAC with canonical verification.

$$
\bullet \ \ \textsf{TAG}(\mathcal{K},\mathcal{M}) \ \text{is deterministic}.
$$

•
$$
VRFY(K, M, \phi) = (TAG(K, M) \stackrel{?}{=} \phi)
$$

- No difference between 1 vs. many VRFY queries: $(t, Q_T, 1, \epsilon)$ -uf-cmva \Rightarrow $(t, Q_T, Q_V, \epsilon Q_V)$ -uf-cmva
- **•** For probabilistic MACs 1 vs. many VRFY queries matters.

 QQ

Selective security and Indistinguishability

uf-cma : is short for uf-cmva with one verification query

$$
(t, Q_T, \epsilon)\text{-uf-cma} \stackrel{\text{def}}{=} (t, Q_T, 1, \epsilon)\text{-uf-cmva}
$$

- $suf-cm(v)a$: "selective" unforgeability, defined like uf-cm(v)a but where A must commit to forged message before making any oracle queries.
	- ind-cma : MAC is (t, Q_T, ϵ) -ind-cma if tags are indistinguishable

$$
\left|\mathop{\mathbb{P}}_{\mathcal{K}}[\mathcal{A}^{\mathsf{TAG}(\mathcal{K},.)} = 1] - \mathop{\mathbb{P}}_{\mathcal{K}}[\mathcal{A}^{\mathsf{TAG}(\mathcal{K},0)}]\right| \leq \epsilon
$$

Efficient generic transformation

1 From one to many verification queries uf-cma $+$ ind-cma \Rightarrow uf-cmva.

Efficient generic transformation

- **1** From one to many verification queries uf-cma $+$ ind-cma \Rightarrow uf-cmva.
- \bullet (trivial) Domain extension for uf-cma + ind-cma secure MACs.
- \bigodot (trivial) From selective to full security suf-cma \Rightarrow uf-cma for MACs with small range.

Our Results (2) Constructions of algebraic MACs

General templates using

- CCA-secure pubilc-key encryption, Hash-proof systems.
- Key-homomorphic weak PRFs.
- Signatures schemes.

DL based Instantitations

Our Results (2) Constructions of algebraic MACs

General templates using

- CCA-secure pubilc-key encryption, Hash-proof systems.
- Key-homomorphic weak PRFs.
- Signatures schemes.

DL based Instantitations

Our Results (2) Constructions of algebraic MACs

DL based Instantitations

From [KPCJV11]

Transformations

Krzysztof Pietrzak [Message Authentication, Revisited](#page-0-0)

 QQ

∍

4 重

COL

From one to many verification queries

Figure: $\overline{\text{TAG}}$ and $\overline{\text{VRFY}}$ with key (K, h) for message m using randomness *b. h* is pairwise independent with range $\{0,1\}^{\mu}$.

 Ω

From one to many verification queries

Figure: $\overline{\text{TAG}}$ and $\overline{\text{VRFY}}$ with key (K, h) for message m using randomness *b. h* is pairwise independent with range $\{0,1\}^{\mu}$.

Theorem (uf-cma $+$ ind-cma \Rightarrow uf-cmva)

For any t, Q_T , $Q_V \in \mathbb{N}$, $\epsilon > 0$, if MAC is

- \bullet (t, Q_T , ϵ)-uf-cma secure
- \bullet (t, Q_T , ϵ)-ind-cma secure

then $\overline{\sf MAC}$ is $(t, Q_{\mathcal T}, Q_{\mathcal V}, \epsilon')$ -uf-cmva secure where

$$
\epsilon'=2Q_V\epsilon+2Q_VQ_T/2^\mu.
$$

From selective to full security & domain extension

Selective to full security

Any MAC with message domain $\{0,1\}^{\mu}$

$$
(t, Q, \varepsilon)
$$
-suf-cma \Rightarrow $(t, Q, \varepsilon 2^{\mu})$ -uf-cma

Domain Extension

Pairwise independent $g: \{0,1\}^m \to \{0,1\}^\mu$ to increase domain.

$$
TAG'(K, M) = TAG(K, g(M))
$$

$$
(t, Q, \varepsilon)\text{-uf-cma} \quad \& \quad (t, Q, \varepsilon)\text{-ind-cma} \\ \Rightarrow \\ (t, Q, 2\varepsilon + Q/2^{\mu})\text{-uf-cma} \quad \& \quad (t, Q, \varepsilon)\text{-ind-cma}
$$

4 @ 下 一本 重 下

 \rightarrow \equiv \rightarrow

∍

 Ω

Constructions

Krzysztof Pietrzak [Message Authentication, Revisited](#page-0-0)

 \mathbf{p} - すっと 舌

∍

Key-homomorphic weak PRF

Keyed family of functions $\{f_k : \mathcal{X} \to \mathcal{Y}\}_{k \in \mathcal{K}}$.

- \bullet wPRF: $f_k(.)$ indistinguishable from random on random inputs.
	- **2** key-homomorphic: $f_{a \cdot k_1 + b \cdot k_2}(x) = a \cdot f_{k_1}(x) + b \cdot f_{k_2}(x)$.

kwPRF from DDH

$$
\{f_k \ : \ \mathbb{G} \to \mathbb{G}\}_{k \in \mathbb{Z}_p} \text{ defined as } f_k(x) = x^k.
$$

1 wPRF under DDH.

$$
\begin{array}{ll}\n\text{Key-homomorphic:} \\
f_{a \cdot k_1 + b \cdot k_2}(x) = x^{a \cdot k_1 + b \cdot k_2} = (f_{k_1}(x))^a (f_{k_2}(x))^b.\n\end{array}
$$

メイモメイモド

Construction from key-homomorphic weak PRF

$$
\{f_k : \mathcal{X} \mapsto \mathcal{Y}\}_{k \in \mathcal{K}}
$$

\n
$$
KG: k_1, k_2 \in \mathfrak{F} \mathcal{K}.
$$

\n
$$
\mathsf{TAG}_{(k_1, k_2)}(m) : x, f_{m \cdot k_1 + k_2}(x), x \in \mathfrak{F} \mathcal{X}
$$

\n
$$
\mathsf{VRFY}_{(k_1, k_2)}(m, (x, y)) : f_{m \cdot k_1 + k_2}(x) = y.
$$

Theorem

If f is a key-homomorphic weak PRF then MAC is suf-cma and ind-cma secure MAC.

Instantiation with DDH

$$
KG: k_1, k_2 \in \mathcal{L}_p
$$

$$
TAG_{(k_1, k_2)}(m): x, x^{m \cdot k_1 + k_2}, x \in \mathcal{L}_p
$$

$$
VRFY_{(k_1, k_2)}(m, (x, y)): x^{m \cdot k_1 + k_2} \stackrel{?}{=} y
$$

 \sim \sim

不同

 $\mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\text{def}} \mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\text{def}} \mathbb{R}^n$

Ξ

uf-cma secure signature scheme is a uf-cmva secure MAC.

- uf-cma secure signature scheme is a uf-cmva secure MAC.
- Overkill as MACs don't need public verification.

 Ω

- uf-cma secure signature scheme is a uf-cmva secure MAC.
- Overkill as MACs don't need public verification.
- Take signature scheme and "downgrade" it: loose public verifiability but gain efficiency.

 Ω

- uf-cma secure signature scheme is a uf-cmva secure MAC.
- Overkill as MACs don't need public verification.
- Take signature scheme and "downgrade" it: loose public verifiability but gain efficiency.

Theorem

If gap-CDH holds in $\mathbb G$ then MAC_{BB} is suf-cma secure.

- uf-cma secure signature scheme is a uf-cmva secure MAC.
- Overkill as MACs don't need public verification.
- Take signature scheme and "downgrade" it: loose public verifiability but gain efficiency.
- Can go from gap-CDH to CDH using twinning Cash et. al EC'08.

MAC_{TBR} downgraded BB plus twinning

 $KG: k = (x_1, x_1', x_2, x_2', y) \in \mathcal{Z}_p^5.$ TAG_k(*m*): $U, g^{x_1y}U^{x_1m+x'_1}, g^{x_2y}U^{x_2m+x'_2}$ where $U \in \mathfrak{g} \mathbb{G}$. $\mathsf{VRFY}_k(m, (U, V))$: $g^{xy} \cdot U^{xm+x'} \stackrel{?}{=} V$.

Theorem

If CDH holds in $\mathbb G$ then MAC_{TBB} is suf-cma secure.

MAC_{TBR} downgraded BB plus twinning

 $KG: \mathbf{x} \in \mathbf{S} \mathbb{Z}_2^{2\ell}$ $\mathsf{TAG}_k(\mathsf{m})$: $(\mathsf{R},\mathsf{R}^\mathcal{T}\cdot \mathsf{x}_{\downarrow \mathsf{m}}+\mathsf{e})$ where $\mathsf{R}\in _\mathsf{S}\mathbb{Z}_2^{\ell\times n}$ and $\mathbf{e} \in \mathbb{Z}_2^n$ has low weight. $\mathsf{VRFY}_k(\mathsf{m},(\mathsf{R},\mathsf{z}))\colon\, |\mathsf{R}^\mathcal{T}\cdot\mathsf{x}_{\downarrow\mathsf{m}}-\mathsf{z}|$ has low weight.

Theorem (KPCJV11)

If LPN is hard, then MAC_{IPN} is suf-cma and ind-cma.

Questions?

 \leftarrow

- b

重

メ団 ト メ ヨ ト メ ヨ トー