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Message Authentication Codes

MAC = {KG,TAG,VRFY}

KG

M TAG VRFY accept/reject

K K

φ,M

MACs are fundamental cryptographic primitives.

Historically constructed from PRFs (with large range)

TAG(K ,M) ∼ PRF(K ,M) , VRFY(K ,M, φ) ∼ PRF(K ,M)
?
= φ

Domain extension: CBC, HMAC, Hash-then-Encrypt...

Heuristic: AES, SHA,. . .

Algebraic: Naor-Reingold PRF, LWE-PRF [BPR’12],... less
efficient, but provably secure & ZK-friendly (e.g. for e-cash.)
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Algebraic MAC/PRF

The Naor-Reingold PRF (based on DDH in G)

FNR( [h, x1, . . . , xm]
︸ ︷︷ ︸

key ∈G×Zm
p

, [b1, . . . , bm]
︸ ︷︷ ︸

input ∈{0,1}m

) := hw where w =

m∏

i=1

x
b1
i

State of the art algebraic PRFs

either

Key-size quadratic in security parameter (NR-PRF).
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GGM (algebraic PRG)

State of the art algebraic PRFs

either

Key-size quadratic in security parameter (NR-PRF).

Linear number of exponentiations (GGM).
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Algebraic MAC/PRF

The Naor-Reingold PRF (based on DDH in G)

FNR( [h, x1, . . . , xm]
︸ ︷︷ ︸

key ∈G×Zm
p

, [b1, . . . , bm]
︸ ︷︷ ︸

input ∈{0,1}m

) := hw where w =

m∏

i=1

x
b1
i

GGM (algebraic PRG)
Dodis-Yampolskiy PRF (q-DDHI)

State of the art algebraic PRFs

either

Key-size quadratic in security parameter (NR-PRF).

Linear number of exponentiations (GGM).

Exotic assumptions (q-DDHI).
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Algebraic MAC/PRF

The Naor-Reingold PRF (based on DDH in G)

FNR( [h, x1, . . . , xm]
︸ ︷︷ ︸

key ∈G×Zm
p

, [b1, . . . , bm]
︸ ︷︷ ︸

input ∈{0,1}m

) := hw where w =

m∏

i=1

x
b1
i

GGM (algebraic PRG)
Dodis-Yampolskiy PRF (q-DDHI)

State of the art algebraic PRFs

either

Key-size quadratic in security parameter (NR-PRF).

Linear number of exponentiations (GGM).

Exotic assumptions (q-DDHI).

Nothing better for MACs known. Previous to this work no MAC
construction from DDH with constant # of elements in key and
constant # of exponentiations.
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MACs vs. PRFs

MACs seem like simpler objects than PRFs

1 Unpredictability vs. indistinguishability.

2 Probabilistic vs. deterministic.
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MACs seem like simpler objects than PRFs

1 Unpredictability vs. indistinguishability.
Use search instead decision problems, CDH vs. DDH?

2 Probabilistic vs. deterministic.
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MACs vs. PRFs

MACs seem like simpler objects than PRFs

1 Unpredictability vs. indistinguishability.
Use search instead decision problems, CDH vs. DDH?

2 Probabilistic vs. deterministic.
Easier from inherently probabilistic assumptions like LPN?
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Definitions of MACs

TAG(K , .) A VRFY(K , ., .)QT QV

uf-cmva : unforgeability under chosen message/verification attack

MAC = {KG,TAG,VRFY} is (t,QT ,QV , ǫ)-uf-cmva secure if for
all adversaries A of size t making QT/QV TAG/VRFY queries:
The probability ATAG(K ,.),VRFY(K ,.,.) makes accepting VRFY query
(M, φ) and TAG was not queried on M before is ≤ ǫ.
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Definitions of MACs

TAG(K , .) A VRFY(K , ., .)QT QV

uf-cmva : unforgeability under chosen message/verification attack

MAC = {KG,TAG,VRFY} is (t,QT ,QV , ǫ)-uf-cmva secure if for
all adversaries A of size t making QT/QV TAG/VRFY queries:
The probability ATAG(K ,.),VRFY(K ,.,.) makes accepting VRFY query
(M, φ) and TAG was not queried on M before is ≤ ǫ.

Deterministic MAC with canonical verification.

1 TAG(K ,M) is deterministic.

2 VRFY(K ,M, φ) = (TAG(K ,M)
?
= φ)

No difference between 1 vs. many VRFY queries:
(t,QT , 1, ǫ)-uf-cmva ⇒ (t,QT ,QV , ǫQV )-uf-cmva

For probabilistic MACs 1 vs. many VRFY queries matters.
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Selective security and Indistinguishability

uf-cma : is short for uf-cmva with one verification query

(t,QT , ǫ)-uf-cma
def
= (t,QT , 1, ǫ)-uf-cmva

suf-cm(v)a : “selective” unforgeability, defined like uf-cm(v)a but
where A must commit to forged message before
making any oracle queries.

ind-cma : MAC is (t,QT , ǫ)-ind-cma if tags are
indistinguishable

∣
∣
∣
∣P
K
[ATAG(K ,.) = 1]− P

K
[ATAG(K ,0)]

∣
∣
∣
∣
≤ ǫ
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Our Results (1) Transformations

Efficient generic transformation

1 From one to many verification queries
uf-cma + ind-cma ⇒ uf-cmva.
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Our Results (1) Transformations

Efficient generic transformation

1 From one to many verification queries
uf-cma + ind-cma ⇒ uf-cmva.

2 (trivial) Domain extension for uf-cma + ind-cma secure MACs.

3 (trivial) From selective to full security suf-cma ⇒ uf-cma for MACs

with small range.
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Our Results (2) Constructions of algebraic MACs

General templates using

CCA-secure pubilc-key encryption, Hash-proof systems.

Key-homomorphic weak PRFs.

Signatures schemes.

DL based Instantitations

construction sk ∈ Tag σ on m Security Assumption

MACCS Z
4
p ×G G

4 uf-cmva DDH

MACHPS Z
3
p G

3 uf-cmva DDH

MAChwPRF Z
2
p G

2 suf-cma DDH

MACWhwPRF Z
λ+2
p G

2 uf-cma DDH

MACBB Z
3
p G

2 suf-cma gap-CDH

MACTBB Z
5
p G

3 suf-cma CDH

MACWaters Z
λ+2
p G

2 uf-cmva gap-CDH

PRFNR Z
λ
p ×G G PRF DDH
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Our Results (2) Constructions of algebraic MACs

DL based Instantitations

construction sk ∈ Tag σ on m Security Assumption

MACCS Z
4
p ×G G

4 uf-cmva DDH

MACHPS Z
3
p G

3 uf-cmva DDH

MAChwPRF Z
2
p G

2 suf-cma DDH

MACWhwPRF Z
λ+2
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2 uf-cma DDH

MACBB Z
3
p G

2 suf-cma gap-CDH

MACTBB Z
5
p G

3 suf-cma CDH

MACWaters Z
λ+2
p G

2 uf-cmva gap-CDH

PRFNR Z
λ
p ×G G PRF DDH

From [KPCJV11]

construction sk ∈ Tag σ on m Security Assumption

MACLPN Z
2ℓ
2 Z

(ℓ+1)×n

2 suf-cma LPN

MACBilinLPN Z
ℓ×λ
2 Z

(ℓ+1)×n

2 uf-cma LPN
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Transformations
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From one to many verification queries

m ‖ TAG(K , .) z

h

$ b ⊕ h(z)⊕ b

h m

⊕ ‖ VRFY(K , .)

Figure: TAG and VRFY with key (K , h) for message m using randomness
b. h is pairwise independent with range {0, 1}µ.
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From one to many verification queries

m ‖ TAG(K , .) z

h

$ b ⊕ h(z)⊕ b

h m

⊕ ‖ VRFY(K , .)

Figure: TAG and VRFY with key (K , h) for message m using randomness
b. h is pairwise independent with range {0, 1}µ.

Theorem (uf-cma + ind-cma ⇒ uf-cmva)

For any t,QT ,QV ∈ N, ǫ > 0, if MAC is

(t,QT , ǫ)-uf-cma secure

(t,QT , ǫ)-ind-cma secure

then MAC is (t,QT ,QV , ǫ
′)-uf-cmva secure where

ǫ′ = 2QV ǫ+ 2QVQT /2
µ.
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From selective to full security & domain extension

Selective to full security

Any MAC with message domain {0, 1}µ

(t,Q, ε)-suf-cma ⇒ (t,Q, ε2µ)-uf-cma

Domain Extension

Pairwise independent g : {0, 1}m → {0, 1}µ to increase domain.

TAG′(K ,M) = TAG(K , g(M))

(t,Q, ε)-uf-cma & (t,Q, ε)-ind-cma

⇒

(t,Q, 2ε+ Q/2µ)-uf-cma & (t,Q, ε)-ind-cma
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Constructions
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Construction from key-homomorphic weak PRF

Key-homomorphic weak PRF

Keyed family of functions {fk : X → Y}k∈K.

1 wPRF: fk(.) indistinguishable from random on random inputs.

2 key-homomorphic: fa·k1+b·k2(x) = a · fk1(x) + b · fk2(x).

kwPRF from DDH

{fk : G → G}k∈Zp
defined as fk(x) = xk .

1 wPRF under DDH.

2 key-homomorphic:
fa·k1+b·k2(x) = xa·k1+b·k2 = (fk1(x))

a(fk2(x))
b .
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Construction from key-homomorphic weak PRF

{fk : X 7→ Y}k∈K

KG : k1, k2 ∈$ K.

TAG(k1,k2)(m) : x , fm·k1+k2(x) , x ∈$ X

VRFY(k1,k2)(m, (x , y)) : fm·k1+k2(x)
?
= y .

Theorem

If f is a key-homomorphic weak PRF then MAC is suf-cma and

ind-cma secure MAC.

Instantiation with DDH

KG : k1, k2 ∈$ Zp

TAG(k1,k2)(m) : x , xm·k1+k2 , x ∈$ G

VRFY(k1,k2)(m, (x , y)) : xm·k1+k2 ?
= y
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Constructions from signatures

uf-cma secure signature scheme is a uf-cmva secure MAC.
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Constructions from signatures

uf-cma secure signature scheme is a uf-cmva secure MAC.

Overkill as MACs don’t need public verification.
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Constructions from signatures

uf-cma secure signature scheme is a uf-cmva secure MAC.

Overkill as MACs don’t need public verification.

Take signature scheme and “downgrade” it: loose public
verifiability but gain efficiency.
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Constructions from signatures

uf-cma secure signature scheme is a uf-cmva secure MAC.

Overkill as MACs don’t need public verification.

Take signature scheme and “downgrade” it: loose public
verifiability but gain efficiency.

MACBB from downgraded BB (prime-order instead bilinear group)

KG : k = (x , x ′, y) ∈$ Z
3
p.

TAGk(m) : (U, gxy · Uxm+x ′) ∈ G
2 where U ∈$ G.

VRFYk(m, (U,V )): gxy · Uxm+x ′ ?
= V .

Theorem

If gap-CDH holds in G then MACBB is suf-cma secure.
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Constructions from signatures

uf-cma secure signature scheme is a uf-cmva secure MAC.

Overkill as MACs don’t need public verification.

Take signature scheme and “downgrade” it: loose public
verifiability but gain efficiency.

Can go from gap-CDH to CDH using twinning Cash et. al
EC’08.

MACTBB downgraded BB plus twinning

KG : k = (x1, x
′
1, x2, x

′
2, y) ∈$ Z

5
p.

TAGk(m) : U, gx1yUx1m+x ′1, gx2yUx2m+x ′2 where U ∈$ G.

VRFYk(m, (U,V )): gxy · Uxm+x ′ ?
= V .

Theorem

If CDH holds in G then MACTBB is suf-cma secure.
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Construction from LPN [KPCJV11]

MACTBB downgraded BB plus twinning

KG : x ∈$ Z
2ℓ
2

TAGk(m) : (R,RT · x↓m + e) where R ∈$ Z
ℓ×n
2 and

e ∈ Z
n
2 has low weight.

VRFYk(m, (R, z)): |RT · x↓m − z| has low weight.

Theorem (KPCJV11)

If LPN is hard, then MACLPN is suf-cma and ind-cma.
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Questions?
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