

All-But-Many Lossy Trapdoor Functions

Dennis Hofheinz (Karlsruhe Institute of Technology)

Overview over this talk

All-But-Many Lossy Trapdoor Functions (ABM-LTFs)
A technical tool specifically designed for the multi-user-multi-challenge case

Construction of ABM-LTFs
A new look on Waters signatures

Next stop

All-But-Many Lossy Trapdoor Functions (ABM-LTFs)
A technical tool specifically designed for the multi-user-multi-challenge case

 (Keyed) function:

 Key can be ek (invertible mode) or ek' (lossy mode)

 Properties:

 Invertibility: F
ek

 invertible using suitable trapdoor ik sampled with ek

 Indistinguishability: ek ≈ ek'

 Lossiness: image set F
ek'

(X) ”much smaller” than X

 Constructions from LWE, DDH, DCR (efficient!):

Recap: Lossy Trapdoor Functions

F
ekX F

ek
(X)

ek = (pk, C = E
pk

(b))

(Invertible mode: b=1, lossy mode: b=0)

F
ek

(X) = CX = E
pk

(bX)

All-But-N LTFs [HLOV11]

 Idea to cope with multi-challenge setting: many lossy tags!

 Construction based on Paillier/DJ encryption:

 Problem: space complexity linear in the number of challenges
 Actually, this is necessary to encode precisely N lossy tags

 Yields SO-CCA secure PKE that depends on number of challenges

 Idea: each lossy tag T
i
* corresponds to a challenge ciphertext

 Our goal: LTFs with many lossy tags!

Pick degree-N polynomial f(T) = f
i
Ti with zeros T

1
*, …, T

N
*

ek = (pk, C
0
 = E

pk
(f

0
), …, C

N
 = E

pk
(f

N
))

F
ek,T

(X) = (C
i
Ti)X = E

pk
(f(T) X)

All-But-Many LTFs

 Intuition/sketch of definition:
 There are (superpoly) many lossy tags and (superpoly) many invertible tags

 Lossy and invertible tags computationally indistinguishable

 Invertible tags easy to sample, but trapdoor required to sample lossy tags

 Syntactic similarity to blinded signatures (valid signature = lossy tag)

All-But-One LTF:

x

Tag sets (x marks lossy tags):

All-But-N LTF:

x

xx

x

xx
x

All-But-Many LTF:

Next stop

Construction of ABM-LTFs
A new look on Waters signatures

 Syntactic similarity to ”blinded signatures” (valid sig = lossy tag)

 First attempt: so let's simply (Paillier/DJ-)encrypt signatures!

 Evaluation ”magically” verifies signature inside encryption

...should end up with C = E(0) iff sig is valid, then sets Y:=CX

 Sig valid C = E(0) F
ek,T

(X) = CX = E(0) lossy

 Sig invalid C = E(d) for d≠0 F
ek,T

(X) = CX = E(dX) invertible

 Problem: (Paillier/DJ-)encryption only additively homomorphic

 How to evaluate signature using only addition in Z
N
?

First attempt

T = E(Sign(H))

Something unique and public
(e.g., chameleon hash)

 Idea 1: use matrices instead of single elements (inspired by [PW08])

 Use ”encrypted” matrix-vector multiplication:

 F
ek,T

 lossy M non-invertible det(M)=0 (or non-invertible)

 Payoff: det(M) can be cubic in encrypted values

 Use determinant to encode more complex computations

Working with encrypted matrices

T → E(M) =()E(M
1,1

) E(M
1,2

) E(M
1,3

)
E(M

2,1
) E(M

2,2
) E(M

2,3
)

E(M
3,1

) E(M
3,2

) E(M
3,3

)

F
ek,T

(X) = E(M) ◦ = = E(M·X)()
j
 E(M

1,j
)Xj

j
 E(M

2,j
)Xj

j
 E(M

3,j
)Xj()X

1

X
2

X
3

 Idea 2: emulate Waters signatures in Z
N

 Use encryption instead of exponentiation (ga becomes E(a))

 Pairing becomes Paillier/DJ multiplication (encode verification into det(M)!)

 CDH in G becomes ”Paillier-No-Mult”: E(a), E(b) → E(ab) hard

 All-But-Many LTF construction (slightly simplified):

Note: det(M) = z – (ab+rh), so: T lossy M singular z = ab + rh

Translating Waters signatures

()E(z) E(a) E(r)
E(b) E(1) E(0)
E(h) E(0) E(1)

with E(h) = H(t) = h
0
+∑ t

i
h

i

 for t = CHF(R,Z;rnd)
T → E(M) =

ek = (A=E(a), B=E(b), H
i
=E(h

i
) (i=0,...,n)) (translated Waters public key)

T = (R=E(r), Z=E(z), CHF-rand) (translated Waters signature)

F
ek,T

(X) = E(M) ◦ X = E(M·X) (implicit Waters verification)

 Efficient CCA-secure Selective Opening Security
 Many challenges, need to make exactly challenges lossy

 Paillier-based ABM-LTFs give first efficient SO-CCA scheme

 (Not very efficient) tight IND-CCA security for PKE
 Make all challenges lossy simultaneously (tightly secure ABM-LTF)

 Different ABM-LTF required (not very efficient, based on q-SDDH)

 CCA-secure Key-Dependent Message security
 Similar concepts, but more structured ABM-LTFs required (upcoming)

 Leakage resilience?

Last slide: applications

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15

