Faster Algorithms
For Approximate Common Divisors:

Breaking FHE Challenges Over The Integers

Yuanmi Chen', Phong Q. Nguyen?

Eurocrypt, 2012

'ENS (France)
2INRIA (France) & Tsinghua University (China)

o Motivation

© The Trick
@ Approximate Common-Divisor Problem
@ Our Approach
@ Our Result

Q Other Applications
@ Noisy Factoring
@ Low-Exponent RSA

e Conclusion

Motivation

Motivation: Security of FHE schemes

Fully Homomorphic Encryption: Perform calculation on
encrypted data!

There are many FHE schemes now, but very few come with
concrete parameters:

@ Ideal lattices: [Gen09] —[GH10].
© Approximate GCD: [vDGHV10] —[CMNT11].
Q ..

Question: How secure are the systems?

Motivation

FHE based on Approx-GCD

We studies [vDGHV10] and [CMNT11] schemes, which are
based on Approx-GCD problem, introduced in [HGO1].

[CMNT11] schemes proposed unusual parameters, e.g. huge
numbers.

It is not clear what is the best attack.

Motivation

Our work

@ A time/memory trade-off for "algebraic" exhaustive search:

Improved attack on the FHE scheme of [CMNT11].

© Several applications to cryptanalysis:

RSA, Factoring.

Note: a similar trade-off already appeared in Strassen factoring algorithm, but we show
new uses.

The Trick

© The Trick
@ Approximate Common-Divisor Problem
@ Our Approach
@ Our Result

The Trick
©00

Approximate Common-Divisor Problem

Approximate Common-Divisor Problem

Problem:
Xo = PQo
X1 = P+
Xo = pPQ2+1I2

where p is a secret big prime. We are given x;’s which are near
multiples of p, except xp.

Question: Given x;, recover p?

The Trick
oeo

Approximate Common-Divisor Problem

Greatest Common-Divisor Problem

If there were no noise, the problem would be easy:

Xo = PGo
X1 = Pa

where p is a secret big prime. We are given x;’s which are exact
multiples of p.

Question: Given xg, x1, recover p?

The Trick
oeo

Approximate Common-Divisor Problem

Greatest Common-Divisor Problem

If there were no noise, the problem would be easy:

Xo = PGo
X1 = Pa

where p is a secret big prime. We are given x;’s which are exact
multiples of p.

Question: Given xg, x1, recover p?

Answer: p < gcd(xo, X1).

The Trick
ooe

Approximate Common-Divisor Problem

Approximate Common-Divisor Problem

Problem:

Xo = PQo
Xy = P+

where p is a secret big prime. We are given x;’s which are near
multiples of p, except xg

Question: Given x;, and suppose r; < 27, recover p?

The Trick
ooe

Approximate Common-Divisor Problem

Approximate Common-Divisor Problem

Problem:

Xo = PQo
Xy = P+

where p is a secret big prime. We are given x;’s which are near
multiples of p, except xg

Question: Given x;, and suppose r; < 27, recover p?

Enumerate over all possible r.
p < gcd (xo, (xy — i) mod xp) VO <i<2F—1
27 GCD operations.

The Trick
ooe

Approximate Common-Divisor Problem

Approximate Common-Divisor Problem

Problem:

Xo = PQo
X1 = pPgi+n

where p is a secret big prime. We are given x;’s which are near
multiples of p, except xg

Question: Given x;, and suppose r; < 27, recover p?

Enumerate over all possible r.
p + gcd (xo, 125" (x4 — i) mod x0>

2° multiplications. : ~_5_fimes faster than GCD :

The Trick
€000

Our Approach

Our Algorithm

Goal: [T, (x1 — i) mod xg

Observation: The set S = {0,...,2° — 1} is structured:

[XXX]

The Trick
€000

Our Approach

Our Algorithm

Goal: [T, (x1 — i) mod xg

Observation: The set S = {0,...,2° — 1} is structured:

S = {Si, /-} = { uj + Vj} [><xx><x><xx><><><xxx><x><xx><x><xx><¥><xxxxxxxxxxxxxxxxxxxxxxx]

1
U= {Ui} C0... kxxxxxxxxxxxxxxxxxxxxxxx]

|
V = {vl} [XRRKXXXRKKKXXKKKKXXIKKXXA - .. 0. ..]
T

The Trick
€000

Our Approach

Our Algorithm

Goal: [T, (x1 — i) mod xg

Observation: The set S = {0,...,2° — 1} is structured:

S={s; j} ={u+ V/} XXX XXX XXX XXXXXXXXK]
]

U= {Ui} C0... kxxxxxxxxxxxxxxxxxxxxxxx]
]

V= {vl} [xxxxxxxxxxxxxxxxxxxxxxxxx% .. 0...]

p<+1
forall s;;
p<«p- (X1 —sij)

The Trick
€000

Our Approach

Our Algorithm

Goal: [T, (x1 — i) mod xg

Observation: The set S = {0,...,2° — 1} is structured:

S={s; j} ={u+ V/} XXX XXX XXX XXXXXXXXK]
]

U= {Ui} C0... kxxxxxxxxxxxxxxxxxxxxxxx]
]

V= {vl} [xxxxxxxxxxxxxxxxxxxxxxxxx% .. 0...]

p<+1
forall s;; |[|S||=2°
p<«p- (X1 —sij)

The Trick
€000

Our Approach

Our Algorithm

Goal: [T, (x1 — i) mod xg

Observation: The set S = {0,...,2° — 1} is structured:

S = {Si, j} ={u+ V/} ORI XRTKKKKHHHHHHTXXKKK]
U= {Ui} C0... ?xxxxxxxxxxxxxxxxxxxxxxx]
V= {vl} [xxxxxxxxxxxxxxxxxxxxxxxxxi .. 0...]
p+1
forall u;
forall

V
pep- - u—v)

The Trick
€000

Our Approach

Our Algorithm

Goal: [T, (x1 — i) mod xg

Observation: The set S = {0,...,2° — 1} is structured:

S = {Si, j} ={u+ V/} ORI XRTKKKKHHHHHHTXXKKK]
U= {Ui} C0... ?xxxxxxxxxxxxxxxxxxxxxxx]
V= {vl} [xxxxxxxxxxxxxxxxxxxxxxxxxi .. 0...]
p+1
forall Ui ______
forall |

The Trick
€000

Our Approach

Our Algorithm

Goal: [T, (x1 — i) mod xg

Observation: The set S = {0,...,2° — 1} is structured:

S = {Si, j} ={u+ V/} [><xx><><><xx><><xxxx><><><xx><><><xx><£><xxxxxxxxxxxxxxxxxxxxxxx]
U= {Ui} C0... ?xxxxxxxxxxxxxxxxxxxxxxx]
V = {vl} [xxxxxxxxxxxxxxxxxxxxxxxxxi ..0...]
T
p+1
forall u;

| Calculate in time O(2°/2) |

F(x) < I;(x1 —x —v)) l

|
|
L e e e e e e e e e e - - - - J

The Trick
€000

Our Approach

Our Algorithm

Goal: [T, (x1 — i) mod xg

Observation: The set S = {0,...,2° — 1} is structured:

S={sij} ={u+v} XXX XK
U={u} [ixxxxxxxxxxxxxxxxxxxxxxxx]
V={v} [xxxxxxxxxxxxxxxxxxxxxxxxxi — 0]
p <1
F(x) < II;(x1 —x—v) polynomial degree 2/2
forall u; 2r/2 points

p <« p-F(uj)

The Trick
€000

Our Approach

Our Algorithm

Goal: [T, (x1 — i) mod xg

Observation: The set S = {0,...,2° — 1} is structured:

S={si;} ={u+v} XXX XK
U={u} [ixxxxxxxxxxxxxxxxxxxxxxxx]
V={v} [xxxxxxxxxxxxxxxxxxxxxxxxxi — 0]
p <1
F(x) « Hj(x1 —X—V) polynomial degree 2¢/2
forall u; 2r/2 points
pp-F(u)

Classical algorithms for fast evaluation of a 2°/2-degree polynomial at 2#/2 points
in O(27/2) time and space

The Trick
0®00

Our Approach

Classical Tools

One knows how to:
251
@ Construct the polynomial H (X — aj) using product tree
i=0
in time O(29).

The Trick
0®00

Our Approach

Classical Tools

One knows how to:
251
@ Construct the polynomial H (X — aj) using product tree
i=0
in time O(29).
@ Evaluate f(X) on {ap,...,a_1}, deg(f) < 2°
in time O(2%).

The Trick
0®00

Our Approach

Classical Tools

One knows how to:

251
@ Construct the polynomial H (X — aj) using product tree
i=0
in time O(29).
@ Evaluate f(X) on {ap,...,a_1}, deg(f) < 2°
in time O(2%).

251
Step 1 Construct product tree H (X — a;). O(2%)
i=0

The Trick
0®00

Our Approach

Classical Tools

One knows how to:
25_1
@ Construct the polynomial H (X — aj) using product tree
i=0
in time O(29).
@ Evaluate f(X) on {ap,...,a_1}, deg(f) < 2°
in time O(29%).
251 y
Step 1 Construct product tree H (X —aj). O(2%)
i=0
Step 2 Calculate f(a;) < f(X)mod(X — a;),Vi. O(2°)

The Trick
fole] Y]

Our Approach

Tool (1): Product Tree

251
Calculate J] (X — &) in time O(2%).
i=0

X —a X — a4 X — ap X —ag X —aps_o X — aps _4

The Trick
fole] Y]

Our Approach

Tool (1): Product Tree

251
Calculate J] (X — &) in time O(2%).

i=0
(X — ap)(X — ay) X — ap)(X — a3) (X — axs _o)(X — axs_4)

/ \ / \ / \ 25—1.0(1)

X —a X — a4 X — ap X —ag X —aps_o X — aps _4

The Trick
fole] Y]

Our Approach

Tool (1): Product Tree

25—1
Calculate J] (X — &) in time O(2%).

i=0

2s—1_4 21:[‘ (X
—a)
11_!:) X = a) j=25—1
/ \ / \ 25— . o2l

(X — ap)(X — ay) X — ap)(X — a3) (X — axs _o)(X — axs_4)

/ \ / \ / \ 25—1.0(1)

X —a X — a4 X — ap X —ag X —aps_o X — aps _4

The Trick
fole] Y]

Our Approach

Tool (1): Product Tree

25—1
Calculate J] (X — &) in time O(2%).
i=0
25
TIx - a)
=0 B
\\ 0(2571)
2s—1_4 / Zi—[(X :
- a) :
11_!:) X = a) j=25—1
/ \ / \ 25— . o2l
(X — ap)(X — ay) X — ap)(X — a3) (X — axs _o)(X — axs_4)

/ \ / \ / \ 25—1.0(1)

X —a X — a4 X — ap X —ag X —aps_o X — aps _4

The Trick
fole] Y]

Our Approach

Tool (1): Product Tree

25—1
Calculate J] (X — &) in time O(2%).
i=0
25
TIx - a)
=0 N
/ \\ 0(25—1)
2s—1 1 28 .
X — a) :
/ \ / \ 25— . B2
(X — ap)(X — ay) X — ap)(X — a3) (X — axs _o)(X — axs_4)
/ \ / \ / \ 25=1.0(1)
X —a X — a4 X — a X —ag X —aps_o X — aps _4

Total Time Complexity: O(2°)

The Trick
oooe

Our Approach

Tool (2): Evaluation

Evaluate f(X) on {ao, ..., ass_1}, deg(f) < 25 in time O(29).

251
Step 1 Construct product tree H (X —a). T = O(2%)
i=0

The Trick
oooe

Our Approach

Tool (2): Evaluation

Evaluate f(X) on {ao, ..., ass_1}, deg(f) < 25 in time O(29).

251
Step 1 Construct product tree H (X —a). T = O(2%)
i=0

Step 2 Calculate f(a;) «+ f(X)mod(X — a;)
N
M2, ~'(x-a M50 - a)
SN N

(X —a)(X — a1) (X —ags _p)(X = aps_4)

1

(X = a) (X —ay) (X = aps_») (X = as_1)

The Trick
oooe

Our Approach

Tool (2): Evaluation

Evaluate f(X) on {ao, ..., ass_1}, deg(f) < 25 in time O(29).

251
Step 1 Construct product tree H (X —a). T = O(2%)
i=0
Step 2 Calculate f(a;) «+ f(X)mod(X — a;)
f(X)
' - a 250 (x - a)
(X = a0)(X — a1) (X — aps_)(X — aps_1)

(X —a) (X —ay) (X = aps_») (X = as_1)

The Trick
oooe

Our Approach

Tool (2): Evaluation

Evaluate f(X) on {ao, ..., ass_1}, deg(f) < 25 in time O(29).

251
Step 1 Construct product tree H (X —a). T = O(2%)
i=0
Step 2 Calculate f(a;) «+ f(X)mod(X — a;)
f(X)
s—1 s 2 : é 25_1
Mio T —Nd 250 (x - a))
f mod HI(':/OZA(Xfa,-) f mod TIL, »(X — a)
(X = a0)(X — a1) (X — aps_)(X — aps_1)

(X —a) (X —ay) (X = aps_») (X = as_1)

The Trick
oooe

Our Approach

Tool (2): Evaluation

Evaluate f(X) on {ao, ..., ass_1}, deg(f) < 25 in time O(29).

251
Step 1 Construct product tree H (X —a). T = O(2%)
i=0

Step 2 Calculate f(a;) «+ f(X)mod(X — a;)

f(X) 3
~__ 2. 02)
f mod HL/OZA(X — a) f mod TIL, »(X — a) L)
mc;yf moa\ mod/ \r‘nod 2. 0(25_1)
(X — ap)(X — ay) (X — aps_o)(X — aps_4)

(X —a) (X —ay) (X = aps_») (X = as_1)

The Trick
oooe

Our Approach

Tool (2): Evaluation

Evaluate f(X) on {ao, ..., ass_1}, deg(f) < 25 in time O(29).

251
Step 1 Construct product tree H (X —a). T = O(2%)
i=0

Step 2 Calculate f(a;) «+ f(X)mod(X — a;)

f(X)
\ 2. 0(25_1)
f mod HI(':/OZA(Xfa,-) f mod HL,,/Q(X*ai) L)
/ \ /N 202"
mod (X — ag)(X — a) mod (X — s _5)(X — as_1)
f mod (X — ay)(X — ap) f mod (X — a,_1)(X — an)

(X —a) (X —ay) (X = aps_») (X = as_1)

The Trick
oooe

Our Approach

Tool (2): Evaluation

Evaluate f(X) on {ao, ..., ass_1}, deg(f) < 25 in time O(29).

251
Step 1 Construct product tree H (X —a). T = O(2%)
i=0

Step 2 Calculate f(a;) «+ f(X)mod(X — a;)

f(X))
\ 2. 025"
f mod H"/2 (X - a) f mod TIL, »(X — a) L)
/ \ /N 202
f mod (X — ay)(X — ap) f mod (X — a,_1)(X — an)
mofl (X — ap) rr\)gd (X —ay) mod (X — ags}ZZ) m}%c\i — aps 3 O()

f mod (X — ap) f mod (X — ay) ... f mod (X —ays_5) f mod (X —ays_4q)

The Trick
oooe

Our Approach

Tool (2): Evaluation

Evaluate f(X) on {ao, ..., ass_1}, deg(f) < 25 in time O(29).

251
Step 1 Construct product tree H (X —a). T = O(2%)
i=0

Step 2 Calculate f(a;) «+ f(X)mod(X — a;)

f(X)
\ 2. 0(25_1)
f mod HI(':/OZA(Xfa,-) f mod HL,,/Q(X*ai) L)
/ \ /N 20
f mod (X — ay)(X — ap) f mod (X — a,_1)(X — an) ~
N ‘ 2. 0(1)
f mod (X — ap) f mod (X — ay) ... f mod (X —ays_5) f mod (X —ays_4q)

Total Time Complexity: O(25)

The Trick
°

Our Result

Result

@ Claimed security

N 072
70
6
60+
25

50+

o4
40+

Toy Small Medium LargeV

[CMNT11] Challenges

Our Result

Result

60

50

40-

The Trick
°

@ Claimed security
@ New security level (Attack in practice)

in the paper.

More additional implementation tricks

>

Toy Small Medium LargeV

[CMNT11] Challenges

The Trick
°

Our Result

Result

@ Claimed security r- _I\7I ---- _<_7_O_G_b_ -1
@ New security level (Attack in practice) :. - _e_rT_]o_r)_/ I JI
40O 272
701 .
60+
O
25 259-9 years(25Th)
50 254-76 days (240Gb)
40- More additional implementation tricks
in the paper.

Toy Small Medium LargeV
[CMNT11] Challenges

The Trick
°

Our Result

Result

@ Claimed security r- _I\7I --—- _<_7_0_G_b_ -
@ New security level (Attack in practice) :. - _e_rT_]o_r)_/ I JI
72
AO 02

70 © Cohn-Heninger Attack

267

60
O o
259-9 years(25Th)
501 o 254_76 days (240Gb)
40- More additional implementation tricks

in the paper.

>

Toy Small Medium LargeV
[CMNT11] Challenges

Other Applications

Q Other Applications
@ Noisy Factoring
@ Low-Exponent RSA

Other Applications

More than Approx-GCD

In general, if S is the direct sum of equal sized sets U and V,

S = {si?j} ={uj + v]} [xxxxxxxxxxxxxxxxxxxxxxxxx;xxxxxxxxxxxxxxxxxxxxxxxx]
U={u} 0. %xxxxxxxxxxxxxxxxxxxxxxx]
V = {v} [xxxxxxxxxxxxxxxxxxxxxxxxxi ..0...]
J T
[1sf(si)

time/memory trade-off

F(X) = IL (X + u) [T F(v)-

Other Applications

More than Approx-GCD

In general, if S is the direct sum of equal sized sets U and V,

S = {si?j} ={uj + v]} [xxxxxxxxxxxxxxxxxxxxxxxxx;xxxxxxxxxxxxxxxxxxxxxxxx]
U={u} 0. %xxxxxxxxxxxxxxxxxxxxxxx]
|
V = {Vj} [xxxxxxxxxxxxxxxxxxxxxxxxx;]
[1sf(si)

time/memory trade-off

F(X) = IL (X + u) [T F(v)-

In particular, S doesn’t have to be just consecutive numbers.

Other Applications
e0

Noisy Factoring

Noisy Factoring Problem: Key Recovery Attack

Consider N = pq, p is known except k bits.

by bty
TTEooood TR oo T oo |

p with k unknown bits

Other Applications
e0

Noisy Factoring

Noisy Factoring Problem: Key Recovery Attack

Consider N = pq, p is known except k bits.

. by < bpyq by bty

p with k unknown bits [Tk MR xooooogooocd I oo]
yW g 2k/? [...0... }XXXXI\\H\H\HHHHHHXXXXXXXl
xU) . jg2k/? HHHHWXXXXI\\\\\H\HHIHHHHIXXXXXX{ 0.

Evaluate f(X) = [],(X + y)) on all x), Complexity: O(2k/2)

Other Applications
e0

Noisy Factoring

Noisy Factoring Problem: Key Recovery Attack

Consider N = pq, p is known except k bits.

b by b
p with k unknown bits [IIEoo TR T]
Yy g ok/2 [...0... FXXXXIHHHHHHHHHHxxxxxxxl
XU j g 2k/2 HHHHHXXXXXI\\\\\H\HHIHHHHIxxxxxxxi .0
Evaluate f(X) = [],(X + y)) on all x), Complexity: O(2k/2)

Compared to Coppersmith’s method, unknown bits do not have to be
consecutive.

Other Applications
oe

Noisy Factoring

Noisy Factoring On Unknown Positions: Key Recovery Attack

Consider N = pq, we know p’ which differs from p by k bits,
whose positions are unknown.

Other Applications
oe

Noisy Factoring

Noisy Factoring On Unknown Positions: Key Recovery Attack

Consider N = pq, we know p’ which differs from p by k bits,
whose positions are unknown.

split p’ in 2 halves of n/2 bits. [J

select k /2 among n/2 bits

(V3) o fooccoo IIIIITRoooos]

y(i) i

N

select k /2 among n/2 bits

HHHHIXXXXXI\\HHHHHHHHIHIXXXXi 0. l

=
<
N
N
x>
~
NN
~—

Evaluate f(X) = [T,(X +y")onall x?. Complexity: O < o (Z))

Other Applications
[Je]

Low-Exponent RSA

RSA-CRT With Noisy Message: Key Recovery Attack

RSA-CRT signature: given a message m, and s its faulty RSA
signature.
Key recovery attack: p <— gcd(s® — m, N).

Now, our time/memory trade-off applies when m has k noisy
bits (e.g. signature padding).

b < bpyq by by
m with k unknown bits [T oo T XX xxx
y W g 2k/? [...0... }XXXXHHH\HHHHHHIkXXXXXXI

XU) . j < 2k/2

HHHHPXXXXHHHHHHHHHHHkXXXXXXi 0.

Other Applications
oe

Low-Exponent RSA

Low-Exponent RSA problem: Message Recovery Attack

c= m° with e small.
After a , mis known except k bits,
whose positions maybe unknown.

by <+ bopy
m with k unknown bits [T oo T)

Other Applications
oe

Low-Exponent RSA

Low-Exponent RSA problem: Message Recovery Attack

c= m° with e small.
After a , mis known except k bits,
whose positions maybe unknown.

o ooy o
m with k unknown bits [TTEcoxIEGo o oo om0
yO L icoie [oA s)
0.j<ow/z (MR o
Evaluate f(X) = [12 (X + y)¢ - ¢) on all x0.

Complexity: c")(z 2)

Conclusion

Conclusion

We can "square-root" the running time for "algebraic"
exhaustive search.
@ Faster attacks on [vDGHV10] and [CMNT11] FHE
schemes.

© Other applications to cryptanalysis: noisy factoring and
low-exponent RSA.

Conclusion

Conclusion

We can "square-root" the running time for "algebraic"
exhaustive search.

@ Faster attacks on [vDGHV10] and [CMNT11] FHE
schemes.

© Other applications to cryptanalysis: noisy factoring and
low-exponent RSA.

Qs O(23/2) the best running time

forH n+i)?

Conclusion

Conclusion

We can "square-root" the running time for "algebraic"
exhaustive search.

@ Faster attacks on [vDGHV10] and [CMNT11] FHE
schemes.

© Other applications to cryptanalysis: noisy factoring and
low-exponent RSA.

Qs O(23/2) the best running time

forH n+i)?

Qs there a more efficient attack on
Approx-GCD?

Conclusion

Conclusion

We can "square-root" the running time for "algebraic"
exhaustive search.

@ Faster attacks on [vDGHV10] and [CMNT11] FHE
schemes.

© Other applications to cryptanalysis: noisy factoring and
low-exponent RSA.

Qs O(23/2) the best running time

for [[(n+1)? = PP
H Xy = pgi+n
X2 = PG+

Qs there a more efficient attack on
Approx-GCD?

© Can we use more x; to speed up
the attack?

Conclusion

Analysis Of FHE Schemes

There are a lot of works on FHE schemes but very few on
attacks.

If one wants to know how practical and secure is FHE, we need
more work on attacks and concrete parameters.

Conclusion

Bibliography |

@ Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi.

Fully homomorphic encryption over the integers with shorter public keys.
In CRYPTO, pages 487-504, 2011

@ Craig Gentry.
Fully homomorphic encryption using ideal lattices.
In STOC, pages 169-178, 2009.

@ Craig Gentry and Shai Halevi.

Implementing gentry’s fully-homomorphic encryption scheme.
Cryptology ePrint Archive, Report 2010/520, 2010.
http:)

eprint.iacr.org/.

@ Nick Howgrave-Graham.

Approximate integer common divisors.
In Joseph Silverman, editor, Cryptography and Lattices, volume 2146 of Lecture Notes in Computer Science,
pages 51-66. Springer Berlin / Heidelberg, 2001.

@ Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan.

Fully homomorphic encryption over the integers.
In EUROCRYPT, pages 24—43, 2010

http://eprint.iacr.org/

	Motivation
	The Trick
	Approximate Common-Divisor Problem
	Our Approach
	Our Result

	Other Applications
	Noisy Factoring
	Low-Exponent RSA

	Conclusion

