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Motivation

Motivation: Security of FHE schemes

Fully Homomorphic Encryption: Perform calculation on
encrypted data!

There are many FHE schemes now, but very few come with
concrete parameters:

@ Ideal lattices: [Gen09] —[GH10].
© Approximate GCD: [vDGHV10] —[CMNT11].
Q ..

Question: How secure are the systems?



Motivation

FHE based on Approx-GCD

We studies [vDGHV10] and [CMNT11] schemes, which are
based on Approx-GCD problem, introduced in [HGO1].

[CMNT11] schemes proposed unusual parameters, e.g. huge
numbers.

It is not clear what is the best attack.



Motivation

Our work

@ A time/memory trade-off for "algebraic" exhaustive search:

Improved attack on the FHE scheme of [CMNT11].

© Several applications to cryptanalysis:

RSA, Factoring.

Note: a similar trade-off already appeared in Strassen factoring algorithm, but we show
new uses.
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Approximate Common-Divisor Problem

Approximate Common-Divisor Problem

Problem:
Xo = PQo
X1 = P+
Xo = pPQ2+1I2

where p is a secret big prime. We are given x;’s which are near
multiples of p, except xp.

Question: Given x;, recover p?
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If there were no noise, the problem would be easy:
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where p is a secret big prime. We are given x;’s which are exact
multiples of p.

Question: Given xg, x1, recover p?
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Approximate Common-Divisor Problem

Greatest Common-Divisor Problem

If there were no noise, the problem would be easy:

Xo = PGo
X1 = Pa

where p is a secret big prime. We are given x;’s which are exact
multiples of p.

Question: Given xg, x1, recover p?

Answer: p < gcd(xo, X1).
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multiples of p, except xg

Question: Given x;, and suppose r; < 27, recover p?
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Approximate Common-Divisor Problem

Approximate Common-Divisor Problem

Problem:

Xo = PQo
Xy = P+

where p is a secret big prime. We are given x;’s which are near
multiples of p, except xg

Question: Given x;, and suppose r; < 27, recover p?

Enumerate over all possible r.
p < gcd (xo, (xy — i) mod xp) VO <i<2F—1
27 GCD operations.
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Approximate Common-Divisor Problem

Approximate Common-Divisor Problem

Problem:

Xo = PQo
X1 = pPgi+n

where p is a secret big prime. We are given x;’s which are near
multiples of p, except xg

Question: Given x;, and suppose r; < 27, recover p?

Enumerate over all possible r.
p + gcd (xo, 125" (x4 — i) mod x0>

2° multiplications. : ~_5_fimes faster than GCD :
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Our Algorithm

Goal: [T, (x1 — i) mod xg

Observation: The set S = {0,...,2° — 1} is structured:

[ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX]
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Our Algorithm

Goal: [T, (x1 — i) mod xg

Observation: The set S = {0,...,2° — 1} is structured:

S = {Si, /-} = { uj + Vj} [><xx><x><xx><><><xxx><x><xx><x><xx><¥><xxxxxxxxxxxxxxxxxxxxxxx]
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U= {Ui} C0... kxxxxxxxxxxxxxxxxxxxxxxx]

|
V = {vl} [XRRKXXXRKKKXXKKKKXXIKKXXA - .. 0. .. ]
T
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forall s;;
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Our Algorithm
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Our Algorithm
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Our Approach

Our Algorithm

Goal: [T, (x1 — i) mod xg

Observation: The set S = {0,...,2° — 1} is structured:

S = {Si, j} ={u+ V/} [><xx><><><xx><><xxxx><><><xx><><><xx><£><xxxxxxxxxxxxxxxxxxxxxxx]
U= {Ui} C0... ?xxxxxxxxxxxxxxxxxxxxxxx]
V = {vl} [xxxxxxxxxxxxxxxxxxxxxxxxxi ..0... ]
T
p+1
forall u;

| Calculate in time O(2°/2) |

F(x) < I;(x1 —x —v)) l

|
|
L e e e e e e e e e e - - - - J
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Our Approach

Our Algorithm

Goal: [T, (x1 — i) mod xg

Observation: The set S = {0,...,2° — 1} is structured:

S={sij} ={u+v} XXX XK
U={u} [ ixxxxxxxxxxxxxxxxxxxxxxxx]
V={v} [xxxxxxxxxxxxxxxxxxxxxxxxxi — 0 ]
p <1
F(x) < II;(x1 —x—v) polynomial degree 2/2
forall u; 2r/2 points

p <« p-F(uj)
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Our Approach

Our Algorithm

Goal: [T, (x1 — i) mod xg

Observation: The set S = {0,...,2° — 1} is structured:

S={si;} ={u+v} XXX XK
U={u} [ ixxxxxxxxxxxxxxxxxxxxxxxx]
V={v} [xxxxxxxxxxxxxxxxxxxxxxxxxi — 0 ]
p <1
F(x) « Hj(x1 —X—V) polynomial degree 2¢/2
forall u; 2r/2 points
pp-F(u)

Classical algorithms for fast evaluation of a 2°/2-degree polynomial at 2#/2 points
in O(27/2) time and space
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Classical Tools

One knows how to:
251
@ Construct the polynomial H (X — aj) using product tree
i=0
in time O(29).
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The Trick
0®00

Our Approach

Classical Tools

One knows how to:
25_1
@ Construct the polynomial H (X — aj) using product tree
i=0
in time O(29).
@ Evaluate f(X) on {ap,...,a_1}, deg(f) < 2°
in time O(29%).
251 y
Step 1 Construct product tree H (X —aj). O(2%)
i=0
Step 2 Calculate f(a;) < f(X)mod(X — a;),Vi. O(2°)
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Tool (1): Product Tree
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Calculate J] (X — &) in time O(2%).
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X —a X — a4 X — ap X —ag X —aps_o X — aps _4
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Our Approach

Tool (1): Product Tree

251
Calculate J] (X — &) in time O(2%).

i=0
(X — ap)(X — ay) X — ap)(X — a3) (X — axs _o)(X — axs_4)

/ \ / \ / \ 25—1.0(1)

X —a X — a4 X — ap X —ag X —aps_o X — aps _4
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Our Approach

Tool (1): Product Tree

25—1
Calculate J] (X — &) in time O(2%).

i=0

2s—1_4 21:[‘ (X
—a)
11_!:) X = a) j=25—1
/ \ / \ 25— . o2l

(X — ap)(X — ay) X — ap)(X — a3) (X — axs _o)(X — axs_4)

/ \ / \ / \ 25—1.0(1)

X —a X — a4 X — ap X —ag X —aps_o X — aps _4
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Our Approach

Tool (1): Product Tree

25—1
Calculate J] (X — &) in time O(2%).
i=0
25
TIx - a)
=0 B
\\ 0(2571)
2s—1_4 / Zi—[ (X :
- a) :
11_!:) X = a) j=25—1
/ \ / \ 25— . o2l
(X — ap)(X — ay) X — ap)(X — a3) (X — axs _o)(X — axs_4)

/ \ / \ / \ 25—1.0(1)

X —a X — a4 X — ap X —ag X —aps_o X — aps _4
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Our Approach

Tool (1): Product Tree

25—1
Calculate J] (X — &) in time O(2%).
i=0
25
TIx - a)
=0 N
/ \\ 0(25—1)
2s—1 1 28 .
X — a) :
/ \ / \ 25— . B2
(X — ap)(X — ay) X — ap)(X — a3) (X — axs _o)(X — axs_4)
/ \ / \ / \ 25=1.0(1)
X —a X — a4 X — a X —ag X —aps_o X — aps _4

Total Time Complexity: O(2°)
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Evaluate f(X) on {ao, ..., ass_1}, deg(f) < 25 in time O(29).

251
Step 1 Construct product tree H (X —a). T = O(2%)
i=0
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Evaluate f(X) on {ao, ..., ass_1}, deg(f) < 25 in time O(29).

251
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Evaluate f(X) on {ao, ..., ass_1}, deg(f) < 25 in time O(29).
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Our Approach

Tool (2): Evaluation

Evaluate f(X) on {ao, ..., ass_1}, deg(f) < 25 in time O(29).

251
Step 1 Construct product tree H (X —a). T = O(2%)
i=0

Step 2 Calculate f(a;) «+ f(X)mod(X — a;)

f(X) )
\ 2. 025"
f mod H"/2 (X - a) f mod TIL, »(X — a) L )
/ \ /N 202
f mod (X — ay)(X — ap) f mod (X — a,_1)(X — an)
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Our Approach

Tool (2): Evaluation

Evaluate f(X) on {ao, ..., ass_1}, deg(f) < 25 in time O(29).

251
Step 1 Construct product tree H (X —a). T = O(2%)
i=0

Step 2 Calculate f(a;) «+ f(X)mod(X — a;)

f(X)
\ 2. 0(25_1)
f mod HI(':/OZA(Xfa,-) f mod HL,,/Q(X*ai) L )
/ \ /N 20
f mod (X — ay)(X — ap) f mod (X — a,_1)(X — an) ~
N ‘ 2. 0(1)
f mod (X — ap) f mod (X — ay) ... f mod (X —ays_5) f mod (X —ays_4q)

Total Time Complexity: O(25)
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More than Approx-GCD

In general, if S is the direct sum of equal sized sets U and V,

S = {si?j} ={uj + v]} [xxxxxxxxxxxxxxxxxxxxxxxxx;xxxxxxxxxxxxxxxxxxxxxxxx]
U={u} 0. %xxxxxxxxxxxxxxxxxxxxxxx]
V = {v} [xxxxxxxxxxxxxxxxxxxxxxxxxi ..0... ]
J T
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time/memory trade-off

F(X) = IL (X + u) [T F(v)-




Other Applications

More than Approx-GCD

In general, if S is the direct sum of equal sized sets U and V,

S = {si?j} ={uj + v]} [xxxxxxxxxxxxxxxxxxxxxxxxx;xxxxxxxxxxxxxxxxxxxxxxxx]
U={u} 0. %xxxxxxxxxxxxxxxxxxxxxxx]
|
V = {Vj} [xxxxxxxxxxxxxxxxxxxxxxxxx; ]
[1sf(si)

time/memory trade-off

F(X) = IL (X + u) [T F(v)-

In particular, S doesn’t have to be just consecutive numbers.
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Evaluate f(X) = [],(X + y)) on all x), Complexity: O(2k/2)



Other Applications
e0

Noisy Factoring

Noisy Factoring Problem: Key Recovery Attack

Consider N = pq, p is known except k bits.

b by b
p with k unknown bits  [IIEoo TR T ]
Yy g ok/2 [ ...0... FXXXXIHHHHHHHHHHxxxxxxxl
XU j g 2k/2 HHHHHXXXXXI\\\\\H\HHIHHHHIxxxxxxxi .0
Evaluate f(X) = [],(X + y)) on all x), Complexity: O(2k/2)

Compared to Coppersmith’s method, unknown bits do not have to be
consecutive.
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Noisy Factoring On Unknown Positions: Key Recovery Attack

Consider N = pq, we know p’ which differs from p by k bits,
whose positions are unknown.
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Noisy Factoring

Noisy Factoring On Unknown Positions: Key Recovery Attack

Consider N = pq, we know p’ which differs from p by k bits,
whose positions are unknown.

split p’ in 2 halves of n/2 bits. [ J

select k /2 among n/2 bits

(V3) o fooccoo IIIIITRoooos]

y(i) i

N

select k /2 among n/2 bits

HHHHIXXXXXI\\HHHHHHHHIHIXXXXi 0. l

=
<
N
N
x>
~
NN
~—

Evaluate f(X) = [T,(X +y")onall x?.  Complexity: O < o (Z))
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Low-Exponent RSA

RSA-CRT With Noisy Message: Key Recovery Attack

RSA-CRT signature: given a message m, and s its faulty RSA
signature.
Key recovery attack: p <— gcd(s® — m, N).

Now, our time/memory trade-off applies when m has k noisy
bits (e.g. signature padding).

b < bpyq by by
m with k unknown bits [T oo T XX xxx
y W g 2k/? [ ...0... }XXXXHHH\HHHHHHIkXXXXXXI

XU) . j < 2k/2

HHHHPXXXXHHHHHHHHHHHkXXXXXXi 0.
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Low-Exponent RSA problem: Message Recovery Attack

c= m° with e small.
After a , mis known except k bits,
whose positions maybe unknown.

by <+ bopy
m with k unknown bits [T oo T )
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Low-Exponent RSA

Low-Exponent RSA problem: Message Recovery Attack

c= m° with e small.
After a , mis known except k bits,
whose positions maybe unknown.

o ooy o
m with k unknown bits [TTEcoxIEGo o oo om0
yO L icoie [ oA s)
0.j<ow/z (MR o
Evaluate f(X) = [12 (X + y)¢ - ¢) on all x0.

Complexity: c")(z 2 )
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schemes.

© Other applications to cryptanalysis: noisy factoring and
low-exponent RSA.
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Conclusion

Conclusion

We can "square-root" the running time for "algebraic"
exhaustive search.

@ Faster attacks on [vDGHV10] and [CMNT11] FHE
schemes.

© Other applications to cryptanalysis: noisy factoring and
low-exponent RSA.

Qs O(23/2) the best running time

for [ [(n+1)? = PP
H Xy = pgi+n
X2 = PG+

Qs there a more efficient attack on
Approx-GCD?

© Can we use more x; to speed up
the attack?



Conclusion

Analysis Of FHE Schemes

There are a lot of works on FHE schemes but very few on
attacks.

If one wants to know how practical and secure is FHE, we need
more work on attacks and concrete parameters.
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