
Introduction Public Key Compression Approximate-GCD Conclusion

Public Key Compression and Modulus Switching
for Fully Homomorphic Encryption over the

Integers

Jean-Sébastien Coron, David Naccache and Mehdi Tibouchi

University of Luxembourg & ENS & NTT

EUROCRYPT, 2012-04-18



Introduction Public Key Compression Approximate-GCD Conclusion

Fully homomorphic encryption

• Multiplicatively homomorphic: RSA.

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c1 · c2 = (m1 ·m2)e mod N

• Additively homomorphic: Paillier

c1 = gm1 mod N2

c2 = gm2 mod N2
⇒ c1 · c2 = gm1+m2 [N] mod N2

• Fully homomorphic: homomorphic for both addition and
multiplication

• Open problem until Gentry’s breakthrough in 2009.



Introduction Public Key Compression Approximate-GCD Conclusion

Fully homomorphic encryption

• Multiplicatively homomorphic: RSA.

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c1 · c2 = (m1 ·m2)e mod N

• Additively homomorphic: Paillier

c1 = gm1 mod N2

c2 = gm2 mod N2
⇒ c1 · c2 = gm1+m2 [N] mod N2

• Fully homomorphic: homomorphic for both addition and
multiplication

• Open problem until Gentry’s breakthrough in 2009.



Introduction Public Key Compression Approximate-GCD Conclusion

Fully homomorphic encryption

• Multiplicatively homomorphic: RSA.

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c1 · c2 = (m1 ·m2)e mod N

• Additively homomorphic: Paillier

c1 = gm1 mod N2

c2 = gm2 mod N2
⇒ c1 · c2 = gm1+m2 [N] mod N2

• Fully homomorphic: homomorphic for both addition and
multiplication

• Open problem until Gentry’s breakthrough in 2009.



Introduction Public Key Compression Approximate-GCD Conclusion

Fully Homomorphic Encryption Schemes

• 1. Breakthrough scheme of Gentry [G09], based on ideal
lattices. Some optimizations by [SV10].

• Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.

• 2. van Dijk, Gentry, Halevi and Vaikuntanathan’s scheme over
the integers [DGHV10].

• Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.

• 3. RLWE schemes [BV11a,BV11b].
• FHE without bootstrapping [BGV11]
• Batch FHE (next talk !)
• Implementation with homomorphic evaluation of AES [GHS12]

• This talk: smaller PK for DGHV (10 MB) and improved
attack against DGHV.



Introduction Public Key Compression Approximate-GCD Conclusion

Fully Homomorphic Encryption Schemes

• 1. Breakthrough scheme of Gentry [G09], based on ideal
lattices. Some optimizations by [SV10].

• Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.

• 2. van Dijk, Gentry, Halevi and Vaikuntanathan’s scheme over
the integers [DGHV10].

• Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.

• 3. RLWE schemes [BV11a,BV11b].
• FHE without bootstrapping [BGV11]
• Batch FHE (next talk !)
• Implementation with homomorphic evaluation of AES [GHS12]

• This talk: smaller PK for DGHV (10 MB) and improved
attack against DGHV.



Introduction Public Key Compression Approximate-GCD Conclusion

Fully Homomorphic Encryption Schemes

• 1. Breakthrough scheme of Gentry [G09], based on ideal
lattices. Some optimizations by [SV10].

• Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.

• 2. van Dijk, Gentry, Halevi and Vaikuntanathan’s scheme over
the integers [DGHV10].

• Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.

• 3. RLWE schemes [BV11a,BV11b].
• FHE without bootstrapping [BGV11]
• Batch FHE (next talk !)
• Implementation with homomorphic evaluation of AES [GHS12]

• This talk: smaller PK for DGHV (10 MB) and improved
attack against DGHV.



Introduction Public Key Compression Approximate-GCD Conclusion

Fully Homomorphic Encryption Schemes

• 1. Breakthrough scheme of Gentry [G09], based on ideal
lattices. Some optimizations by [SV10].

• Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.

• 2. van Dijk, Gentry, Halevi and Vaikuntanathan’s scheme over
the integers [DGHV10].

• Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.

• 3. RLWE schemes [BV11a,BV11b].
• FHE without bootstrapping [BGV11]
• Batch FHE (next talk !)
• Implementation with homomorphic evaluation of AES [GHS12]

• This talk: smaller PK for DGHV (10 MB) and improved
attack against DGHV.



Introduction Public Key Compression Approximate-GCD Conclusion

The DGHV Scheme

• Ciphertext for m ∈ {0, 1}:

c = q · p + 2r + m

where p is the secret-key, q and r are randoms.

• Decryption:
(c mod p) mod 2 = m

• Parameters:

c =

γ ' 2 · 107 bits

p : η ' 2700 bits

r : ρ ' 71 bits



Introduction Public Key Compression Approximate-GCD Conclusion

The DGHV Scheme

• Ciphertext for m ∈ {0, 1}:

c = q · p + 2r + m

where p is the secret-key, q and r are randoms.

• Decryption:
(c mod p) mod 2 = m

• Parameters:

c =

γ ' 2 · 107 bits

p : η ' 2700 bits

r : ρ ' 71 bits



Introduction Public Key Compression Approximate-GCD Conclusion

The DGHV Scheme

• Ciphertext for m ∈ {0, 1}:

c = q · p + 2r + m

where p is the secret-key, q and r are randoms.

• Decryption:
(c mod p) mod 2 = m

• Parameters:

c =

γ ' 2 · 107 bits

p : η ' 2700 bits

r : ρ ' 71 bits



Introduction Public Key Compression Approximate-GCD Conclusion

Homomorphic Properties of DGHV

• Addition:

c1 = q1 · p + 2r1 + m1

c2 = q2 · p + 2r2 + m2
⇒ c1 + c2 = q′ · p + 2r ′ + m1 + m2

• Multiplication:

c1 = q1 · p + 2r1 + m1

c2 = q2 · p + 2r2 + m2
⇒ c1 · c2 = q′′ · p + 2r ′′ + m1 ·m2

with
r ′′ = 2r1r2 + r1m2 + r2m1

• Noise becomes twice larger.



Introduction Public Key Compression Approximate-GCD Conclusion

Homomorphic Properties of DGHV

• Addition:

c1 = q1 · p + 2r1 + m1

c2 = q2 · p + 2r2 + m2
⇒ c1 + c2 = q′ · p + 2r ′ + m1 + m2

• Multiplication:

c1 = q1 · p + 2r1 + m1

c2 = q2 · p + 2r2 + m2
⇒ c1 · c2 = q′′ · p + 2r ′′ + m1 ·m2

with
r ′′ = 2r1r2 + r1m2 + r2m1

• Noise becomes twice larger.



Introduction Public Key Compression Approximate-GCD Conclusion

Somewhat homomorphic scheme

• The number of multiplications is limited.
• Noise grows with the number of multiplications.
• Noise must remain < p for correct decryption.

p

×

ρ

×

p

2ρ

×

p

4ρ



Introduction Public Key Compression Approximate-GCD Conclusion

Fully Homomorphic Encryption
• Gentry’s breakthrough idea: refresh the ciphertext by

evaluating the decryption circuit homomorphically:
bootstrapping.

Decryption
circuit

× +

+

Ciphertext bits Secret key bits
0 1 11 0 1 01

1

Plaintext bit

⇒
Decryption
circuit

× +

+

Ciphertext bits

Encryption of

secret key bits
0 1 11 ? ? ??

?

Encryption of plaintext bit

= refreshed ciphertext



Introduction Public Key Compression Approximate-GCD Conclusion

Public-key Encryption with DGHV

• Ciphertext
c = q · p + 2r + m

• Public-key: a set of τ encryptions of 0’s.

xi = qi · p + 2ri

• Public-key encryption:

c = m + 2r +
τ∑

i=1

εi · xi

for random εi ∈ {0, 1}.



Introduction Public Key Compression Approximate-GCD Conclusion

Public-key Encryption with DGHV

• Ciphertext
c = q · p + 2r + m

• Public-key: a set of τ encryptions of 0’s.

xi = qi · p + 2ri

• Public-key encryption:

c = m + 2r +
τ∑

i=1

εi · xi

for random εi ∈ {0, 1}.



Introduction Public Key Compression Approximate-GCD Conclusion

Public-key Encryption with DGHV

• Ciphertext
c = q · p + 2r + m

• Public-key: a set of τ encryptions of 0’s.

xi = qi · p + 2ri

• Public-key encryption:

c = m + 2r +
τ∑

i=1

εi · xi

for random εi ∈ {0, 1}.



Introduction Public Key Compression Approximate-GCD Conclusion

Public Key Size

x1 =

γ ' 2 · 107 bits

x2 =

xi =

xτ =

τ ' 104

• Public-key size: τ · γ = 2 · 1011 bits = 25 GB !
• In [CMNT11], with quadratic encryption, PK size of 1 GB.



Introduction Public Key Compression Approximate-GCD Conclusion

New: DGHV Ciphertext Compression

• Ciphertext: c = q · p + 2r + m

c =

γ ' 2 · 107 bits

p : η ' 2700 bits

r : ρ ' 71 bits

• Compute a pseudo-random χ = f (seed) of γ bits.

χ =

δ = χ− 2r −m mod p

c = χ− δ

• Only store seed and the small correction δ.
• Storage: ' 2 700 bits instead of 2 · 107 bits !



Introduction Public Key Compression Approximate-GCD Conclusion

New: DGHV Ciphertext Compression

• Ciphertext: c = q · p + 2r + m

c =

γ ' 2 · 107 bits

p : η ' 2700 bits

r : ρ ' 71 bits

• Compute a pseudo-random χ = f (seed) of γ bits.

χ =

δ = χ− 2r −m mod p

c = χ− δ

• Only store seed and the small correction δ.
• Storage: ' 2 700 bits instead of 2 · 107 bits !



Introduction Public Key Compression Approximate-GCD Conclusion

New: DGHV Ciphertext Compression

• Ciphertext: c = q · p + 2r + m

c =

γ ' 2 · 107 bits

p : η ' 2700 bits

r : ρ ' 71 bits

• Compute a pseudo-random χ = f (seed) of γ bits.

χ =

δ = χ− 2r −m mod p

c = χ− δ

• Only store seed and the small correction δ.
• Storage: ' 2 700 bits instead of 2 · 107 bits !



Introduction Public Key Compression Approximate-GCD Conclusion

New: DGHV Ciphertext Compression

• Ciphertext: c = q · p + 2r + m

c =

γ ' 2 · 107 bits

p : η ' 2700 bits

r : ρ ' 71 bits

• Compute a pseudo-random χ = f (seed) of γ bits.

χ =

δ = χ− 2r −m mod p

c = χ− δ

• Only store seed and the small correction δ.
• Storage: ' 2 700 bits instead of 2 · 107 bits !



Introduction Public Key Compression Approximate-GCD Conclusion

Compressed Public Key

x1 =

γ ' 2 · 107 bits

x2 =

xi =

xτ =

τ ' 104

η ' 2 700 bits

δ1 =

δ2 =

δi =

δτ =



Introduction Public Key Compression Approximate-GCD Conclusion

Compressed Public Key

x1 =

γ ' 2 · 107 bits

x2 =

xi =

xτ =

τ ' 104

Old PK: 25 GB

η ' 2 700 bits

δ1 =

δ2 =

δi =

δτ =

New PK: 3.4 MB !



Introduction Public Key Compression Approximate-GCD Conclusion

Security of Compressed PK

• Original DGHV scheme is semantically secure, under the
approximate-gcd assumption.

• Approximate-gcd problem: given a set of xi = qi · p + ri ,
recover p.

• Compressed public key
• seed is part of the public-key, to recover the xi ’s, so we cannot

argue that f (seed) is pseudo-random.
• Security in the random oracle model only, still based on

approximate-gcd.



Introduction Public Key Compression Approximate-GCD Conclusion

Security of Compressed PK

• Original DGHV scheme is semantically secure, under the
approximate-gcd assumption.

• Approximate-gcd problem: given a set of xi = qi · p + ri ,
recover p.

• Compressed public key
• seed is part of the public-key, to recover the xi ’s, so we cannot

argue that f (seed) is pseudo-random.
• Security in the random oracle model only, still based on

approximate-gcd.



Introduction Public Key Compression Approximate-GCD Conclusion

Security of Compressed PK

• Original DGHV scheme is semantically secure, under the
approximate-gcd assumption.

• Approximate-gcd problem: given a set of xi = qi · p + ri ,
recover p.

• Compressed public key
• seed is part of the public-key, to recover the xi ’s, so we cannot

argue that f (seed) is pseudo-random.
• Security in the random oracle model only, still based on

approximate-gcd.

PK Generation
χi = H(seed , i)
δi = [χi ]p + λi · p − ri
xi = χi − δi



Introduction Public Key Compression Approximate-GCD Conclusion

Security of Compressed PK

• Original DGHV scheme is semantically secure, under the
approximate-gcd assumption.

• Approximate-gcd problem: given a set of xi = qi · p + ri ,
recover p.

• Compressed public key
• seed is part of the public-key, to recover the xi ’s, so we cannot

argue that f (seed) is pseudo-random.
• Security in the random oracle model only, still based on

approximate-gcd.

PK Generation
χi = H(seed , i)
δi = [χi ]p + λi · p − ri
xi = χi − δi

Simulation in ROM
H(seed , i)← xi + δi
δi ← {0, 1}η+λ
xi = qi · p + ri



Introduction Public Key Compression Approximate-GCD Conclusion

PK size and timings

Instance λ ρ η γ pk size Recrypt

Toy 42 27 1026 150 ·103 77 KB 0.41 s

Small 52 41 1558 830 ·103 437 KB 4.5 s

Medium 62 56 2128 4.2 ·106 2.2 MB 51 s

Large 72 71 2698 19 ·106 10.3 MB 11 min

• Updated parameters to take into account the Chen-Nguyen
attack.

• PK size: 10.3 MB instead of 1 GB in [CMNT11].



Introduction Public Key Compression Approximate-GCD Conclusion

Hardness assumption for semantic security

• Original DGHV scheme: secure under the General
Approximate Common Divisor (GACD) assumption.

• Given polynomially many xi = p · qi + ri , find p.

• Efficient DGHV variant: secure under the Partial Approximate
Common Divisor (PACD) assumption.

• Given x0 = p · q0 and polynomially many xi = p · qi + ri , find p.

• PACD is clearly easier than GACD.
• How much easier ?



Introduction Public Key Compression Approximate-GCD Conclusion

Hardness assumption for semantic security

• Original DGHV scheme: secure under the General
Approximate Common Divisor (GACD) assumption.

• Given polynomially many xi = p · qi + ri , find p.

• Efficient DGHV variant: secure under the Partial Approximate
Common Divisor (PACD) assumption.

• Given x0 = p · q0 and polynomially many xi = p · qi + ri , find p.

• PACD is clearly easier than GACD.
• How much easier ?



Introduction Public Key Compression Approximate-GCD Conclusion

Hardness assumption for semantic security

• Original DGHV scheme: secure under the General
Approximate Common Divisor (GACD) assumption.

• Given polynomially many xi = p · qi + ri , find p.

• Efficient DGHV variant: secure under the Partial Approximate
Common Divisor (PACD) assumption.

• Given x0 = p · q0 and polynomially many xi = p · qi + ri , find p.

• PACD is clearly easier than GACD.
• How much easier ?



Introduction Public Key Compression Approximate-GCD Conclusion

Solving PACD

• Given x0 = p · q0 and polynomially many xi = p · qi + ri , find
p.

• Brute force attack: 2ρ GCD computations.
• with x0 = q0 · p and x1 = q1 · p + r1 and 0 ≤ r1 < 2ρ.

• Variant suggested by Phong Nguyen, still in O(2ρ):

p = gcd

(
x0,

2ρ−1∏
i=0

(x1 − i) mod x0

)

• Improved attack in Õ(2ρ/2) time and memory by Chen and
Nguyen at Eurocrypt 2012.



Introduction Public Key Compression Approximate-GCD Conclusion

Solving PACD

• Given x0 = p · q0 and polynomially many xi = p · qi + ri , find
p.

• Brute force attack: 2ρ GCD computations.
• with x0 = q0 · p and x1 = q1 · p + r1 and 0 ≤ r1 < 2ρ.

• Variant suggested by Phong Nguyen, still in O(2ρ):

p = gcd

(
x0,

2ρ−1∏
i=0

(x1 − i) mod x0

)

• Improved attack in Õ(2ρ/2) time and memory by Chen and
Nguyen at Eurocrypt 2012.



Introduction Public Key Compression Approximate-GCD Conclusion

Solving PACD

• Given x0 = p · q0 and polynomially many xi = p · qi + ri , find
p.

• Brute force attack: 2ρ GCD computations.
• with x0 = q0 · p and x1 = q1 · p + r1 and 0 ≤ r1 < 2ρ.

• Variant suggested by Phong Nguyen, still in O(2ρ):

p = gcd

(
x0,

2ρ−1∏
i=0

(x1 − i) mod x0

)

• Improved attack in Õ(2ρ/2) time and memory by Chen and
Nguyen at Eurocrypt 2012.



Introduction Public Key Compression Approximate-GCD Conclusion

Solving PACD

• Given x0 = p · q0 and polynomially many xi = p · qi + ri , find
p.

• Brute force attack: 2ρ GCD computations.
• with x0 = q0 · p and x1 = q1 · p + r1 and 0 ≤ r1 < 2ρ.

• Variant suggested by Phong Nguyen, still in O(2ρ):

p = gcd

(
x0,

2ρ−1∏
i=0

(x1 − i) mod x0

)

• Improved attack in Õ(2ρ/2) time and memory by Chen and
Nguyen at Eurocrypt 2012.



Introduction Public Key Compression Approximate-GCD Conclusion

Solving GACD

• Given polynomially many xi = p · qi + ri , find p.
• Variant without x0 = q0 · p.

• Brute force attack: 22ρ GCD computations.
• From x1 = p · q1 + r1 and x2 = p · q2 + r2

• Using Chen-Nguyen attack: Õ(23ρ/2) time.
• Guess r1 and apply Chen-Nguyen on r2
• O(2ρ) · Õ(2ρ/2) = Õ(23ρ/2) time and Õ(2ρ/2) memory.

• New attack: Õ(2ρ) time and memory.



Introduction Public Key Compression Approximate-GCD Conclusion

Solving GACD

• Given polynomially many xi = p · qi + ri , find p.
• Variant without x0 = q0 · p.

• Brute force attack: 22ρ GCD computations.
• From x1 = p · q1 + r1 and x2 = p · q2 + r2

• Using Chen-Nguyen attack: Õ(23ρ/2) time.
• Guess r1 and apply Chen-Nguyen on r2
• O(2ρ) · Õ(2ρ/2) = Õ(23ρ/2) time and Õ(2ρ/2) memory.

• New attack: Õ(2ρ) time and memory.



Introduction Public Key Compression Approximate-GCD Conclusion

Solving GACD

• Given polynomially many xi = p · qi + ri , find p.
• Variant without x0 = q0 · p.

• Brute force attack: 22ρ GCD computations.
• From x1 = p · q1 + r1 and x2 = p · q2 + r2

• Using Chen-Nguyen attack: Õ(23ρ/2) time.
• Guess r1 and apply Chen-Nguyen on r2
• O(2ρ) · Õ(2ρ/2) = Õ(23ρ/2) time and Õ(2ρ/2) memory.

• New attack: Õ(2ρ) time and memory.



Introduction Public Key Compression Approximate-GCD Conclusion

Solving GACD

• Given polynomially many xi = p · qi + ri , find p.
• Variant without x0 = q0 · p.

• Brute force attack: 22ρ GCD computations.
• From x1 = p · q1 + r1 and x2 = p · q2 + r2

• Using Chen-Nguyen attack: Õ(23ρ/2) time.
• Guess r1 and apply Chen-Nguyen on r2
• O(2ρ) · Õ(2ρ/2) = Õ(23ρ/2) time and Õ(2ρ/2) memory.

• New attack: Õ(2ρ) time and memory.



Introduction Public Key Compression Approximate-GCD Conclusion

New Attack against GACD

• Given polynomially many xi = p · qi + ri , find p.

• Variant of the previous equation with x1 = p · q1 + r1 and
x2 = p · q2 + r2

p| gcd

(
2ρ−1∏
i=0

(x1 − i),
2ρ−1∏
i=0

(x2 − i)

)

• Product over Z can be computed in Õ(2ρ) time using a
product tree.

• Õ(2ρ) time and memory

• Problem: many parasitic factors.
• Can be eliminated by taking the gcd with more products,
• and by dividing by B! for B ' 2ρ.



Introduction Public Key Compression Approximate-GCD Conclusion

New Attack against GACD

• Given polynomially many xi = p · qi + ri , find p.

• Variant of the previous equation with x1 = p · q1 + r1 and
x2 = p · q2 + r2

p| gcd

(
2ρ−1∏
i=0

(x1 − i),
2ρ−1∏
i=0

(x2 − i)

)

• Product over Z can be computed in Õ(2ρ) time using a
product tree.

• Õ(2ρ) time and memory

• Problem: many parasitic factors.
• Can be eliminated by taking the gcd with more products,
• and by dividing by B! for B ' 2ρ.



Introduction Public Key Compression Approximate-GCD Conclusion

New Attack against GACD

• Given polynomially many xi = p · qi + ri , find p.

• Variant of the previous equation with x1 = p · q1 + r1 and
x2 = p · q2 + r2

p| gcd

(
2ρ−1∏
i=0

(x1 − i),
2ρ−1∏
i=0

(x2 − i)

)

• Product over Z can be computed in Õ(2ρ) time using a
product tree.

• Õ(2ρ) time and memory

• Problem: many parasitic factors.
• Can be eliminated by taking the gcd with more products,
• and by dividing by B! for B ' 2ρ.



Introduction Public Key Compression Approximate-GCD Conclusion

New Attack against GACD

• Given polynomially many xi = p · qi + ri , find p.

• Variant of the previous equation with x1 = p · q1 + r1 and
x2 = p · q2 + r2

p| gcd

(
2ρ−1∏
i=0

(x1 − i),
2ρ−1∏
i=0

(x2 − i)

)

• Product over Z can be computed in Õ(2ρ) time using a
product tree.

• Õ(2ρ) time and memory

• Problem: many parasitic factors.
• Can be eliminated by taking the gcd with more products,
• and by dividing by B! for B ' 2ρ.



Introduction Public Key Compression Approximate-GCD Conclusion

New Attack against GACD

• Given polynomially many xi = p · qi + ri , find p.

• Variant of the previous equation with x1 = p · q1 + r1 and
x2 = p · q2 + r2

p| gcd

(
2ρ−1∏
i=0

(x1 − i),
2ρ−1∏
i=0

(x2 − i)

)

• Product over Z can be computed in Õ(2ρ) time using a
product tree.

• Õ(2ρ) time and memory

• Problem: many parasitic factors.
• Can be eliminated by taking the gcd with more products,
• and by dividing by B! for B ' 2ρ.



Introduction Public Key Compression Approximate-GCD Conclusion

Source Code in SAGE

def attackGACD(rho=12,gam=1000,eta=100):

p=random_prime(2^eta)

s=rho

B=floor(2^(1.*rho*(s+1)/(s-1)))

fa=factorial(B)

for j in range(1,s):

x=p*ZZ.random_element(2^(gam-eta))+ \

ZZ.random_element(2^rho)

z=prod([x-i for i in range(2^rho)])

if j==1: g=z; continue

g=gcd(g,z)

g=prime_to_m_part(g,fa)

if g.nbits()==p.nbits(): break



Introduction Public Key Compression Approximate-GCD Conclusion

GACD Attack Running Time

Instance ρ γ time time [CN12]

Micro 12 104 40 s

Toy (Section 8) 13 61 · 103 13 min

Toy’ ([CN12]) 17 1.6 · 105 17 h 3495 h (est.)

• Chen-Nguyen attack: O(23ρ/2) time and O(2ρ/2) memory.

• Our attack: O(2ρ) time and memory

• Time-memory tradeoffs are possible.



Introduction Public Key Compression Approximate-GCD Conclusion

Conclusion

• Smaller public key size for the DGHV fully homomorphic
encryption scheme.

• 10 MB instead of 1 GB

• Better attack against approximate-gcd without x0 = q0 · p
• Õ(2ρ) complexity instead of Õ(23ρ/2)

• In the proceedings:
• Generalization of [CMNT11] quadratic encryption technique to

higher degrees.
• DGHV without bootstrapping: analogous to RLWE without

bootstrapping [BGV11].



Introduction Public Key Compression Approximate-GCD Conclusion

Conclusion

• Smaller public key size for the DGHV fully homomorphic
encryption scheme.

• 10 MB instead of 1 GB

• Better attack against approximate-gcd without x0 = q0 · p
• Õ(2ρ) complexity instead of Õ(23ρ/2)

• In the proceedings:
• Generalization of [CMNT11] quadratic encryption technique to

higher degrees.
• DGHV without bootstrapping: analogous to RLWE without

bootstrapping [BGV11].



Introduction Public Key Compression Approximate-GCD Conclusion

Conclusion

• Smaller public key size for the DGHV fully homomorphic
encryption scheme.

• 10 MB instead of 1 GB

• Better attack against approximate-gcd without x0 = q0 · p
• Õ(2ρ) complexity instead of Õ(23ρ/2)

• In the proceedings:
• Generalization of [CMNT11] quadratic encryption technique to

higher degrees.
• DGHV without bootstrapping: analogous to RLWE without

bootstrapping [BGV11].


	Introduction
	Fully homomorphic encryption

	Public Key Compression
	Approximate-GCD
	Conclusion

