Introduction Public Key Compression Approximate-GCD Conclusion
0000000 00000 000000 o]

Public Key Compression and Modulus Switching
for Fully Homomorphic Encryption over the
Integers

Jean-Sébastien Coron, David Naccache and Mehdi Tibouchi

University of Luxembourg & ENS & NTT

EUROCRYPT, 2012-04-18

Introduction Public Key Compression Approximate-GCD Conclusion
0000000 00000 000000 o]

Fully homomorphic encryption

e Multiplicatively homomorphic: RSA.

cg = m® mod N
= C1-C = (m1 . m2)e mod N
¢ = my®* mod N

Introduction
0000000

Fully homomorphic encryption

e Multiplicatively homomorphic: RSA.

cg = m® mod N
= C1-C = (m1 . m2)e mod N
¢ = my®* mod N

o Additively homomorphic: Paillier

= g™ mod N?
1 =8 "~ mo S = gm1+m2 (V] mod N2
o = g™ mod N?

Introduction
0000000

Fully homomorphic encryption

e Multiplicatively homomorphic: RSA.

cg = m® mod N
= C1-C = (m1 . m2)e mod N
¢ = my®* mod N

o Additively homomorphic: Paillier

= g™ mod N?
¢t =g " mo S = gm1+m2 (M mod N2
o = g™ mod N?

e Fully homomorphic: homomorphic for both addition and
multiplication
e Open problem until Gentry's breakthrough in 2009.

Introduction Public Key Compression Approximate-GCD Conclusion
0e00000 00000 000000 o]

Fully Homomorphic Encryption Schemes

e 1. Breakthrough scheme of Gentry [G09], based on ideal
lattices. Some optimizations by [SV10].

¢ Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.

Introduction
0e00000

Fully Homomorphic Encryption Schemes

e 1. Breakthrough scheme of Gentry [G09], based on ideal
lattices. Some optimizations by [SV10].
¢ Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.

e 2. van Dijk, Gentry, Halevi and Vaikuntanathan's scheme over
the integers [DGHV10].
e Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.

Introduction
0e00000

Fully Homomorphic Encryption Schemes

e 1. Breakthrough scheme of Gentry [G09], based on ideal
lattices. Some optimizations by [SV10].
¢ Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.

e 2. van Dijk, Gentry, Halevi and Vaikuntanathan's scheme over
the integers [DGHV10].
e Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.

¢ 3. RLWE schemes [BV11a,BV11b].

e FHE without bootstrapping [BGV11]
e Batch FHE (next talk !)
o Implementation with homomorphic evaluation of AES [GHS12]

Introduction
0e00000

Fully Homomorphic Encryption Schemes

1. Breakthrough scheme of Gentry [G09], based on ideal
lattices. Some optimizations by [SV10].
¢ Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.

2. van Dijk, Gentry, Halevi and Vaikuntanathan's scheme over
the integers [DGHV10].
e Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.

3. RLWE schemes [BV11a,BV11b].

e FHE without bootstrapping [BGV11]
e Batch FHE (next talk !)
o Implementation with homomorphic evaluation of AES [GHS12]

This talk: smaller PK for DGHV (10 MB) and improved
attack against DGHV.

Introduction Public Key Compression Approximate-GCD Conclusion
00@0000 00000 000000 o]

The DGHV Scheme

e Ciphertext for m € {0, 1}:
c=q-p+2r+m

where p is the secret-key, g and r are randoms.

Introduction Public Key Compression Approximate-GCD Conclusion
00@0000 00000 000000 o]

The DGHV Scheme

e Ciphertext for m € {0, 1}:
c=q-p+2r+m

where p is the secret-key, g and r are randoms.

e Decryption:
(c mod p) mod2=m

Introduction
00@0000

The DGHV Scheme

e Ciphertext for m € {0, 1}:
c=q-p+2r+m

where p is the secret-key, g and r are randoms.
e Decryption:
(c mod p) mod2=m
e Parameters:
7y ~2-107 bits
p: n=~2700 bits

c=[_J ||

r: p=>~T71 bits

Introduction Public Key Compression Approximate-GCD Conclusion
000e000 00000 000000 o]

Homomorphic Properties of DGHV

e Addition:

a=qi-p+2n+m

— /' 2/
CQ=q2-p+2rn+m Tate=q-prorstmtm

Introduction Public Key Compression Approximate-GCD Conclusion
000e000 00000 000000 o]

Homomorphic Properties of DGHV

e Addition:

a=q-pt2n+m / /
= c Cr = . 2r' +m m
C=q-p+2rn+m 1+ e=q-pt L m

e Multiplication:

a=q-pt2n+m

=c-o=4d"- 2" +my - m
Q=q p+2rn+m TGP A m

with
=21+ rnm + rnm

e Noise becomes twice larger.

Introduction
0000e00

Somewhat homomorphic scheme

e The number of multiplications is limited.

e Noise grows with the number of multiplications.
e Noise must remain < p for correct decryption.

p
CI T .
T ! P
i —
L/ L] >
]

Introduction
00000e0

Fully Homomorphic Encryption

e Gentry's breakthrough idea: refresh the ciphertext by
evaluating the decryption circuit homomorphically:
bootstrapping.

Encryption of

Ciphertext bits Secret key bits Ciphertext bits secret key bits
lo][x}------ Clft----[e) Codat---{a] [0z}

Decryption Decryption
circuit circuit

j
ITIITI ITIITI
! !

Plaintext bit Encryption of plaintext bit
= refreshed ciphertext

Introduction Public Key Compression Approximate-GCD Conclusion
000000e 00000 000000 o]

Public-key Encryption with DGHV

e Ciphertext
c=q-p+2r+m

Introduction Public Key Compression Approximate-GCD Conclusion
000000e 00000 000000 o]

Public-key Encryption with DGHV

e Ciphertext
c=q-p+2r+m

e Public-key: a set of 7 encryptions of 0's.

Xj =qj-p+2r

Introduction Public Key Compression Approximate-GCD Conclusion
000000e 00000 000000 o]

Public-key Encryption with DGHV

e Ciphertext
c=q-p+2r+m

e Public-key: a set of 7 encryptions of 0's.
Xj =qj-p+2r

e Public-key encryption:

c:m+2r+25,--x,-
i=1

for random ¢; € {0,1}.

T~ 10*

Public Key Compression
00000

Public Key Size

v~ 2107 bits
xi=[_J []
x=[_| []
xi = ' u
=" — n

e Public-key size: 7-v =210 bits = 25 GB !

e In [CMNTL11], with quadratic encryption, PK size of 1 GB.

Introduction Public Key Compression Approximate-GCD Conclusion
0000000 0e000 000000 o]

New: DGHV Ciphertext Compression

e Ciphertext: c=gq-p+2r+m

42107 bits

p: n=~2700 bits

-—

c=[_J | [|

-

r: p=~T71 bits

Public Key Compression
0e000

New: DGHV Ciphertext Compression

e Ciphertext: c=gq-p+2r+m

4~ 2107 bits

p: n~2700 bits

-—

c=[_J | [|

-

r: p=~T71 bits
e Compute a pseudo-random x = f(seed) of ~ bits.

x=[_/J |
0=x—2r—mmod p []

c=x-d_J | [|

Public Key Compression
0e000

New: DGHV Ciphertext Compression

e Ciphertext: c=gq-p+2r+m

4~ 2107 bits

p: n~2700 bits

-—

c=[_J | [|

-

r: p=~T71 bits
e Compute a pseudo-random x = f(seed) of ~ bits.

x=[_/J |
0=x—2r—mmod p []

c=x-d_J | [|

e Only store seed and the small correction §.

Public Key Compression
0e000

New: DGHV Ciphertext Compression

e Ciphertext: c=gq-p+2r+m

4~ 2107 bits

p: n~2700 bits

-—

c=[_J | [|

-

r: p=~T71 bits
e Compute a pseudo-random x = f(seed) of ~ bits.

x=[_/J |
0=x—2r—mmod p []

c=x-d_J | [|

e Only store seed and the small correction §.
e Storage: ~ 2700 bits instead of 2 - 107 bits !

Public Key Compression
00e00

Compressed Public Key

v ~2-107 bits nms
i =[_J |] an=[__"]
= [11 o= 1]

T~ 10*
x=[|] o=L__"1
X =] 5T::|

Public Key Compression
00e00

Compressed Public Key

",:2-107 bits 7 =~ 2700 bits
xa=[_] [] =]
xo=[_] [] =]

T~ 10* |
x=[_|] =1
x = ' [] 6T=I:I

Old PK: 25 GB New PK: 3.4 MB !

Public Key Compression

Conclusion
00080 o]

Security of Compressed PK

e Original DGHV scheme is semantically secure, under the
approximate-gcd assumption.
e Approximate-gcd problem: given a set of x; = g; - p + r;,
recover p.

Public Key Compression
00080

Security of Compressed PK

e Original DGHV scheme is semantically secure, under the
approximate-gcd assumption.
e Approximate-gcd problem: given a set of x; = q; - p+ 17,
recover p.
e Compressed public key
e seed is part of the public-key, to recover the x;'s, so we cannot
argue that f(seed) is pseudo-random.
e Security in the random oracle model only, still based on
approximate-gcd.

Public Key Compression
00080

Security of Compressed PK

e Original DGHV scheme is semantically secure, under the
approximate-gcd assumption.
e Approximate-gcd problem: given a set of x; = q; - p+ 17,
recover p.
e Compressed public key
e seed is part of the public-key, to recover the x;'s, so we cannot
argue that f(seed) is pseudo-random.
e Security in the random oracle model only, still based on
approximate-gcd.

PK Generation

xi = H(seed, i)
Si=I[Xilp+Ai-p—ri
Xj = Xi — 0i

Public Key Compression
00080

Security of Compressed PK

e Original DGHV scheme is semantically secure, under the
approximate-gcd assumption.
e Approximate-gcd problem: given a set of x; = q; - p + 17,
recover p.
e Compressed public key
e seed is part of the public-key, to recover the x;'s, so we cannot
argue that f(seed) is pseudo-random.
e Security in the random oracle model only, still based on
approximate-gcd.

PK Generation Simulation in ROM
Xi = H(seed, i) H(seed, i) « x; + 6;
6i=[ilptAi-p—r §; + {0,137+

Xj = Xi — 0i Xi=qi-p+r

Public Key Compression

[e]e]e]e] }

PK size and timings

] Instance \ A \ p] n 0% H pk size | Recrypt
Toy 42 | 27 | 1026 | 150 -103 || 77 KB | 0.41s
Small 52 | 41 | 1558 | 830 -10° || 437 KB | 455
Medium | 62 | 56 | 2128 | 4.2 -10° || 2.2 MB 51s
Large 72 | 71 | 2698 | 19 -10° || 10.3 MB | 11 min

e Updated parameters to take into account the Chen-Nguyen

attack.

e PK size: 10.3 MB instead of 1 GB in [CMNT11].

Introduction Public Key Compression Approximate-GCD Conclusion
0000000 00000 00000 o]

Hardness assumption for semantic security

e Original DGHV scheme: secure under the General
Approximate Common Divisor (GACD) assumption.

e Given polynomially many x; = p- g; + r;, find p.

Introduction Public Key Compression Approximate-GCD Conclusion
0000000 00000 00000 o]

Hardness assumption for semantic security

e Original DGHV scheme: secure under the General
Approximate Common Divisor (GACD) assumption.

e Given polynomially many x; = p- g; + r;, find p.

e Efficient DGHV variant: secure under the Partial Approximate
Common Divisor (PACD) assumption.

e Given xg = p- qg and polynomially many x; = p- q; + r;, find p.

Introduction Public Key Compression Approximate-GCD Conclusion
0000000 00000 00000 [e]

Hardness assumption for semantic security

e Original DGHV scheme: secure under the General
Approximate Common Divisor (GACD) assumption.

e Given polynomially many x; = p- g; + r;, find p.
e Efficient DGHV variant: secure under the Partial Approximate
Common Divisor (PACD) assumption.
e Given xg = p- qg and polynomially many x; = p- q; + r;, find p.
e PACD is clearly easier than GACD.

e How much easier ?

Introduction Public Key Compression Approximate-GCD Conclusion
0000000 00000 000000 o]

Solving PACD

e Given xp = p - qo and polynomially many x; = p- g; + r;, find
p.

Introduction Public Key Compression Approximate-GCD Conclusion
0000000 00000 000000

Solving PACD

e Given xp = p - qo and polynomially many x; = p- g; + r;, find
p.
e Brute force attack: 2 GCD computations.
e withxg=qo-pandxy;=q1-p+nand0<n <2°.

Approximate-GCD
000000

Solving PACD

e Given xp = p - qo and polynomially many x; = p- g; + r;, find
p.
e Brute force attack: 2 GCD computations.
e withxg=qo-pandxy;=q1-p+nand0<n <2°.

e Variant suggested by Phong Nguyen, still in O(2°):

201
p = gcd <x0, H (x1 — i) mod xo>

i=0

Approximate-GCD
000000

Solving PACD

Given xp = p - go and polynomially many x; = p - g; + r;, find
p.
Brute force attack: 2 GCD computations.

e withxg=qo-pandxy;=q1-p+nand0<n <2°.
Variant suggested by Phong Nguyen, still in O(27):

201
p = gcd <x0, H (x1 — i) mod xo>
i=0

Improved attack in O(2°/2) time and memory by Chen and
Nguyen at Eurocrypt 2012.

Introduction Public Key Compression Approximate-GCD Conclusion
0000000 00000 00e000 o]

Solving GACD

e Given polynomially many x; = p- q; + r;, find p.
e Variant without xp = qp - p.

Approximate-GCD
00e000

Solving GACD

e Given polynomially many x; = p- q; + r;, find p.
e Variant without xp = qp - p.

e Brute force attack: 227 GCD computations.
e Fromxy=p-g1+nandxx=p-g+n

Approximate-GCD
00e000

Solving GACD

e Given polynomially many x; = p- q; + r;, find p.
e Variant without xp = qp - p.
e Brute force attack: 227 GCD computations.
e Fromxy=p-g1+nandxx=p-g+n
e Using Chen-Nguyen attack: O(23%/2) time.
e Guess r; and apply Chen-Nguyen on r;
o O(2r) - O(2°/?) = O(2%/?) time and O(27/%) memory.

Approximate-GCD
00e000

Solving GACD

Given polynomially many x; = p - g; + r;, find p.
e Variant without xp = qp - p.
Brute force attack: 227 GCD computations.
e Fromxy=p-g1+nandxx=p-g+n
Using Chen-Nguyen attack: O(237/2) time.
e Guess r; and apply Chen-Nguyen on r;
o O(2r) - O(2°/?) = O(2%/?) time and O(27/%) memory.

New attack: O(2”) time and memory.

Introduction Public Key Compression Approximate-GCD Conclusion
0000000 00000 000000 o]

New Attack against GACD

e Given polynomially many x; = p- q; + r;, find p.

Public Key Compression Approximate-GCD Conclusion
00000 000000

New Attack against GACD

e Given polynomially many x; = p- q; + r;, find p.
e Variant of the previous equation with x; = p- g1 + r; and
Xx=Pp-q+nr

p| ged (1:1 (x1 — i), l:I (x2 — /))

i=0 i=0

Approximate-GCD
000000

New Attack against GACD

e Given polynomially many x; = p- q; + r;, find p.
e Variant of the previous equation with x; = p- g1 + r; and
Xx=Pp-q+nr

p| ged (1:1 (x1 — i), l:I (x2 — /))
i=0

i=0

e Product over Z can be computed in O(27) time using a
product tree.

Approximate-GCD
000000

New Attack against GACD

e Given polynomially many x; = p- q; + r;, find p.
e Variant of the previous equation with x; = p- g1 + r; and
Xx=Pp-q+nr

2r—1 2r—1

p| ged (H Ca—1), J] G- /))
i=0 i=0

e Product over Z can be computed in O(27) time using a

product tree.
e O(2”) time and memory

Approximate-GCD
000000

New Attack against GACD

e Given polynomially many x; = p- q; + r;, find p.
e Variant of the previous equation with x; = p- g1 + r; and
Xx=Pp-q+nr

p| ged (1:1 (x1 — i), l:I (x2 — /))
i=0

i=0

e Product over Z can be computed in O(27) time using a
product tree.
e O(2”) time and memory
e Problem: many parasitic factors.

e Can be eliminated by taking the gcd with more products,
e and by dividing by B! for B ~ 2°.

Approximate-GCD
0000e0

Source Code in SAGE

def attackGACD(rho=12,gam=1000,eta=100):
p=random_prime(2~eta)
s=rho

B=floor (2~ (1.*rhox(s+1)/(s-1)))
fa=factorial (B)

for j in range(1,s):

x=p*ZZ.random_element (2~ (gam-eta))+ \
ZZ.random_element (2 rho)

z=prod([x-i for i in range(2~°rho)])
if j==1: g=z; continue
g=gcd(g,z)
g=prime_to_m_part(g,fa)
if g.nbits()==p.nbits(): break

Approximate-GCD
00000e

GACD Attack Running Time

‘ Instance ‘ p ‘ ~ ‘ time H time [CN12] ‘
Micro 12 10| 40s
Toy (Section 8) | 13 | 61-103 | 13 min
Toy' ([CN12]) |17 | 1.6-10° 17 h || 3495 h (est.)

o Chen-Nguyen attack: O(23#/2) time and O(2°/2) memory.
e Our attack: O(2”) time and memory

e Time-memory tradeoffs are possible.

Conclusion
[]

Conclusion

e Smaller public key size for the DGHV fully homomorphic
encryption scheme.

e 10 MB instead of 1 GB

Conclusion
[]

Conclusion

e Smaller public key size for the DGHV fully homomorphic
encryption scheme.

e 10 MB instead of 1 GB
e Better attack against approximate-gcd without xp = qo - p
o O(2°) complexity instead of O(23/2)

Conclusion
[]

Conclusion

e Smaller public key size for the DGHV fully homomorphic
encryption scheme.

e 10 MB instead of 1 GB

e Better attack against approximate-gcd without xp = qo - p
o O(2°) complexity instead of O(23/2)

e In the proceedings:

e Generalization of [CMNT11] quadratic encryption technique to
higher degrees.

e DGHV without bootstrapping: analogous to RLWE without
bootstrapping [BGV11].

	Introduction
	Fully homomorphic encryption

	Public Key Compression
	Approximate-GCD
	Conclusion

