Lattice Signatures Without Trapdoors

Vadim Lyubashevsky INRIA / ENS, Paris

Signature Schemes

• Hash-and-Sign

Requires a trap-door function

- Fiat-Shamir transformation
 - Conversion from an identification scheme
 - No trap-door function needed

Lattice Signature Schemes

- Hash-and-Sign
 - [GPV '08] + [A '99]
 - [GPV '08] + [AP '09]
 - [P '10]
 - [MP '12]

Fiat-Shamir
 – [L '08, '09]

The Knapsack Problem

The Knapsack Problem

A is random in $Z_q^{n \times m}$

Given (A,t), find small s' such that As'=t mod q

Hardness of the Knapsack Problem

Hardness of the Knapsack Problem

Hardness of the Knapsack Problem

Signature Based on SIS

Secret Key: **S** Public Key: **A**, **T**=**AS** mod q

```
Secret Key: S
Public Key: A, T=AS mod q
```

```
<u>Sign(μ)</u>
Pick a random y
Compute c=H(Ay mod q,μ)
```

```
Secret Key: S
Public Key: A, T=AS mod q
```

```
Sign(μ)
Pick a random y
Compute c=H(Ay mod q,μ)
z=Sc+y
```

```
Secret Key: S
Public Key: A, T=AS mod q
```

```
Sign(μ)
Pick a random y
Compute c=H(Ay mod q,μ)
z=Sc+y
Output(z,c)
```

```
Secret Key: S
Public Key: A, T=AS mod q
```

```
Sign(μ)
Pick a random y
Compute c=H(Ay mod q,μ)
z=Sc+y
Output(z,c)
```

```
Secret Key: S
Public Key: A, T=AS mod q
```

Sign(μ)
Pick a random y
Compute c=H(Ay mod q,μ)
z=Sc+y
Output(z,c)

<u>Verify</u>(z,c) Check that z is "small" and c = H(Az – Tc mod q, μ)

Security Reduction Requirements

Simulator

Adversary

Simulator

Adversary

Simulator

Adversary

Simulator

<u>Simulator</u>

<u>Adversary</u>

 $(\mathbf{z}_i, \mathbf{c}_i) = \operatorname{Sign}(\mu_i)$

Pick random S

. . .

A,AS

<u>Simulator</u>

 $(\mathbf{z}_i, \mathbf{c}_i) = \operatorname{Sign}(\mu_i)$

Adversary

. . .

Important for adversary to not know S.

A(z-z'+Sc'-Sc)=0 Solution to SIS

We Want:

We Want:

1. Signature (z,c) to be independent of **S** so that z-z'+Sc'-Sc is not 0

We Want:

1. Signature (z,c) to be independent of **S** so that z-z'+Sc'-Sc is not 0

2. z-z'+Sc'-Sc to be small so that SIS is hard
```
Secret Key: S
Public Key: A, T=AS mod q
```

```
Sign(μ)
Pick a random y
Compute c=H(Ay mod q,μ)
z=Sc+y
Output(z,c)
```

```
Secret Key: S
Public Key: A, T=AS mod q
```

```
Sign(μ)

Pick a random y make y uniformly random mod q?

Compute c=H(Ay mod q,μ)

z=Sc+y

Output(z,c)
```

```
Secret Key: S
Public Key: A, T=AS mod q
```

```
Sign(μ)

Pick a random y make y uniformly random mod q?

Compute c=H(Ay mod q,μ)

z=Sc+y

Output(z,c) then z is too big and SIS (and forging) is easy 🔅
```

```
Secret Key: S
Public Key: A, T=AS mod q
```

```
Sign(μ)

Pick a random y make y small?

Compute c=H(Ay mod q,μ)

z=Sc+y

Output(z,c)
```

```
Secret Key: S
Public Key: A, T=AS mod q
```


Rejection Sampling

```
Secret Key: S
Public Key: A, T=AS mod q
```

```
Sign(μ)
Pick a random y
Compute c=H(Ay mod q,μ)
z=Sc+y
```

Rejection Sampling

```
Secret Key: S
Public Key: A, T=AS mod q
```

```
Sign(μ)
Pick a random y make y small
Compute c=H(Ay mod q,μ)
z=Sc+y
```

Rejection Sampling

```
Secret Key: S
Public Key: A, T=AS mod q
```

```
Sign(μ)
Pick a random y make y small
Compute c=H(Ay mod q,μ)
z=Sc+y
Output(z,c) if z meets certain criteria, else repeat
```


Possible distribution of the coefficients of **z**

Distribution of the coefficients of y

Range of coefficients of Sc

Possible distribution of the coefficients of **z**

Possible distribution of the coefficients of **z**

Distribution of the coefficients of y

Range of coefficients of Sc

Target distribution of the coefficients of z

Possible distribution of the coefficients of z

Possible distribution of the coefficients of **z**

Distribution of the coefficients of y

Range of coefficients of Sc

Target distribution of the coefficients of z

Possible distribution of the coefficients of z

Possible distribution of the coefficients of **z**

Distribution of the coefficients of y

Range of coefficients of Sc

Probability each coefficient of z is in the target range = p Want $p^m \approx constant$

Target distribution of the coefficients of z

Possible distribution of the coefficients of z

Possible distribution of the coefficients of **z**

Distribution of the coefficients of y

Range of coefficients of Sc

Probability each coefficient of z is in the target range = p Want $p^m \approx constant$

So $p \approx 1-1/m$

So coefficients of Sc must be m times smaller than coefficients of y

Coefficients of Sc = O(1)

Coefficients of Sc = O(1)Coefficients of y = O(m)

Coefficients of Sc = O(1) Coefficients of y = O(m) $||z|| \approx ||y|| = O(m^{1.5})$

Coefficients of Sc = O(1) Coefficients of y = O(m) $||z|| \approx ||y|| = O(m^{1.5})$

Can we do better??

Coefficients of Sc = O(1) Coefficients of y = O(m) $||z|| \approx ||y|| = O(m^{1.5})$

Can we do better??

This work: Can get $||\mathbf{z}|| = O(m)$

- Previous rejection sampling constructed a uniform distribution in a box (or a ball)
- New rejection sampling constructs a discrete
 Normal distribution

m-dimensional Normal distribution:

$$\rho_{\sigma,v}^{m}(\mathbf{x}) = (1/\sqrt{2\pi\sigma^{2}})^{m} e^{-\|\mathbf{x}-\mathbf{v}\|^{2}/2\sigma^{2}}$$

m-dimensional discrete normal distribution

$$\mathsf{D}_{\sigma,\mathbf{v}}^{\mathbf{m}}\left(\mathbf{x}\right) = \rho_{\sigma,\mathbf{v}}^{\mathbf{m}}\left(\mathbf{x}\right) / \rho_{\sigma,\mathbf{0}}^{\mathbf{m}}\left(\mathbf{Z}^{\mathbf{m}}\right)$$

```
Secret Key: S
Public Key: A, T=AS mod q
```

```
Sign(μ)
Pick a random y
Compute c=H(Ay mod q,μ)
z=Sc+y
Output(z,c)
```

```
Secret Key: S
Public Key: A, T=AS mod q
```

```
Sign(μ)
Pick a random y ~ D<sup>m</sup><sub>σ,0</sub>
Compute c=H(Ay mod q,μ)
z=Sc+y
Output(z,c)
```

```
Secret Key: S
Public Key: A, T=AS mod q
```

```
Sign(μ)
Pick a random y ~ D<sup>m</sup><sub>σ,0</sub>
Compute c=H(Ay mod q,μ)
z=Sc+y (has distribution D<sup>m</sup><sub>σ,Sc</sub>(z))
Output(z,c)
```

```
Secret Key: S
Public Key: A, T=AS mod q
```

```
Secret Key: S
Public Key: A, T=AS mod q
```

Sign(µ) Pick a random y ~ $D_{\sigma,0}^{m}$ Compute $c=H(Ay \mod q,\mu)$ z=Sc+y (has distribution $D_{\sigma,Sc}^{m}(z)$) Output(z,c) with probability $D_{\sigma,0}^{m}(z)/kD_{\sigma,Sc}^{m}(z)$ Pick $\sigma = O(\sqrt{m}), k = O(1) \rightarrow ||\mathbf{z}|| = O(m)$

Signature Based on LWE

Security Reduction Requirements

 $\frac{\text{Sign}(\mu)}{\text{Pick a random y}}$ $\text{Compute c=H(Ay mod q, \mu)}$ z=Sc+y Output(z,c) (or reject) $\frac{\text{Verify}(z,c)}{\text{Check that z is "small"}}$ and $c = H(Az - Tc mod q, \mu)$

Signature is independent of the secret key

Security Reduction Requirements

Secret Key: S
Public Key: A, T=AS mod q
Sign(
$$\mu$$
)
Pick a random y
Compute c=H(Ay mod q, μ)
z=Sc+y
Output(z,c) for reject)
Given the public key, it's computationally
indistinguishable whether the secret key is unique
Verify(z,c)
Check that z is "small"
and
c = H(Az - Tc mod q, μ)

Signature is independent of the secret key

Secret Key: **S** Public Key: **A**, **T**=**AS** mod q

- <u>Sign</u>(μ)
- Pick a random y
- Compute **c**=H(**Ay** mod q,μ)
- z=Sc+y
- Output(z,c) (or reject)

Signature is independent of the secret key

Secret Key: **S** Public Key: **A**, **T**=**AS** mod q

- <u>Sign</u>(μ)
- Pick a random y
- Compute **c**=H(**Ay** mod q,μ)
- z=Sc+y
- Output(z,c) (or reject)

Signature is independent of the secret key

Secret Key: **S** Public Key: **A**, **T=AS** mod q

Secret Key: **S** Public Key: **A**, **T**=**AS** mod q

- <u>Sign</u>(μ)
- Pick a random y
- Compute **c**=H(**Ay** mod q,μ)
- z=Sc+y
- Output(z,c) (or reject)

Signature is independent of the secret key

Secret Key: **S** Public Key: **A**, **T=AS** mod q

The secret key is not unique

Secret Key: **S** Public Key: **A**, **T**=**AS** mod q

- <u>Sign</u>(μ)
- Pick a random y
- Compute $c=H(Ay \mod q,\mu)$
- z=Sc+y
- Output(z,c) (or reject)

Signature is independent of the secret key

Secret Key: **S** Public Key: **A**, **T=AS** mod q

The secret key is not unique

<u>Sign(</u>μ) Pick a random c

Pick a random z

Secret Key: S Secret Key: S Public Key: **A**, **T=AS** mod q Public Key: A, T=AS mod q The secret key is not unique <u>Sign(µ)</u> Sign(µ) Pick a random y Pick a random c Same Distribution Compute $c=H(Ay \mod q,\mu)$ **Pick** a rand z=Sc+y Outpu(t(z,c)) or reject) Signature is independent of the secret key

Secret Key: S Secret Key: S Public Key: **A**, **T=AS** mod q Public Key: A, T=AS mod g The secret key is not unique <u>Sign(µ)</u> Sign(µ) Pick a random y Pick a random c ne Distribution Compute $c=H(Ay \mod q,\mu)$ Pick a rand z=Sc+y With some probability Output(z,c) or reject) Program $H(Az-Tc,\mu)=c$ Signature is independent of the secret key Output(z,c)

Security Reduction

Important for adversary to not know S.
Hardness of the Knapsack Problem

Signature Hardness

Construction based on SIS

Signature Hardness

Construction based on LWE

Signature Hardness

Construction based on LWE

Parameters (Using Rings)

	\bigcirc		[GLP '12]
sk size (bits)	12,000	2000	2000
pk size (bits)	12,000	12,000	12,000
sig size (bits)	140,000	17,000	9000

≈ 100-bit security level [GN '08, CN '11]

Parameters (Using Rings)

	\bigcirc		[GLP '12]
sk size (bits)	12,000	2000	2000
pk size (bits)	12,000	12,000	12,000
sig size (bits)	140,000	17,000	9000

≈ 100-bit security level [GN '08, CN '11]

