

Cryptanalysis on a Merkle-Damgård Based MAC

Almost Universal Forgery and Distinguishing-H Attacks

Yu Sasaki (NTT Corporation) 17.04.2012 @ Eurocrypt 2012

Research Summary

 Present two generic attacks against: LPMAC construction + narrow-pipe MD hash

Generic Distinguishing-H	Queries	Time	Mem.
Previous	2 ^N	-	-
This paper	3×2 ^{N/2}	2^{N/2}	-

Contents

- Background
- Generic distinguishing-*H* attack on LPMAC

• Almost universal forgery attack on LPMAC

Conclusion / future work

• Message Authentication Codes (MAC) provides the integrity and authenticity.

O NTT Hash Function Structure

- Merkle-Damgård Domain Extension:
 - Iteratively apply the fixed size compression function
- Narrow-pipe
 - Internal state size and the hash value size are identical

Secret-prefix MAC

- Forgery attack with complexity 1
 - Query a tag for M_1 , then a tag for $M_1 || M_2$ can be computed at offline.

Strengthening Secret-Prefix MAC

 Append the length of the input message before the message is computed.
 (Length-Prepended MAC LPMAC)

Security Proof for LPMAC

• LPMAC satisfies the *prefix-freeness*:

Any message is not a prefix of other messages

 Prefix-free MAC was proved to be a secure PRF up to 2^{N/2} queries [BCK96].

 Distinguishing-R (Generic attack with 2^{N/2}) [PO95]

• Distinguishing-*H* (Generic attack with 2^N?)

ידא 🕐 Previous Approach of Dist-*H*

- Tried to find a distinguisher which is faster than 2^N complexity.
- Combination of the generic birthday attack and dedicated differential cryptanalysis.
 - Due to the birthday attack, #queries is bigger than $2^{N/2}$.
 - Due to the differential cryptanalysis, attacking full rounds is hard.

Previous Distinguishing-*H* Attacks on LPMAC

Hash	Size(<i>N</i>)	Rounds	Queries	Reference
SHA-1	160	43/80	2 ^{124.5}	[WWJW09]
SHA-1	160	61/80	2 ^{154.5}	[WWJW09]
SHA-1	160	65/80	2 ^{80.9}	[QWJ09]
SHA-256	256	39/64	2 ^{184.5}	[YW09]
RIPEMD	128	48/48 Fu	²⁶⁶ ال	[W10]
RIPEMD256	256	58/64	2 ^{163.5}	[W10]
RIPEMD320	320	48/80	2 ^{208.5}	[W10]

All attacks require more than 2^{N/2} queries. 11

Our Results

• A generic distinguishing-*H* attack against LPMAC with a narrow-pipe MD hash.

Hash	Size	Rounds	Queries
Generic narrow-pipe MD	N	Full	3×2 ^{N/2}

The folklore was incorrect.

New Distinguishing-H attack on LPMAC

- Assume that an internal collision starting from different length-prepend strings are generated.
- Querying $M_1 || M_2$ reveals H_3 .
- Querying $M_1'||M_2'||M_3'$ reveals H_4 .
- All information for the last block is obtained.

• How to detect the internal collision only with queries of different lengths?

• How to detect the internal collision only with queries of different lengths?

Attack Procedure

- 1. Fix M_2 ' to a randomly chosen value.
- 2. Query $2^{N/2} M_1$ and get σ . Compute $h(\sigma, M_2)$ and store them.
- 3. Query $2^{N/2} M_1' || M_2'$ and get σ' . Check the match with Step 2.
- 4. For the matched (M_1, M_1') , check the match with different M_2' .

Evaluation of the Attack

- 1. Fix M_2 ' to a randomly chosen value.
- 2. Query $2^{N/2} M_1$ and get σ . Compute $h(\sigma, M_2)$ and store them.
- 3. Query $2^{N/2} M_1' || M_2'$ and get σ' . Check the match with Step 2.
- 4. For the matched (M_1, M_1') , check the match with different M_2' .
 - If Step 4 succeeds, *h* is the target hash function. Step 1: Negligible Step 2: Query= $2^{N/2}$, Time= $2^{N/2}$, Mem.= $2^{N/2}$ Step 3: Query= $2 \times 2^{N/2}$ Step 4: Negligible (Query=4, Time=2, Mem.=1) Total cost: Query= $3 \times 2^{N/2}$, Time= $2^{N/2}$, Mem.= $2^{N/2}$ (can be memoryless with the memoryless MitM)

18

More Cryptanalysis on LPMAC

Almost Universal Forgery Attack

אדד Almost Universal Forgery (AUF)

- Introduced by [DKS11]
 - 1. Do some pre-computation (and pre-query).
 - 2. A target message is randomly given.
 - 3. Attacker modifies 1-block of the given message.
 - 4. Perform the forgery on the modified target.
- In our attack, the first *log₂L* blocks are replaced (*L* is a size of the message).
- For LPMAC, precomputation must be done without knowing the target message length.

 Use a multi-collision starting from various length-prepend values.

- 1-block multi-collision is inefficient.
 - \rightarrow Use the diamond structure.

Potential Applications

• Find a message connecting a given internal state to multiple targets with various message length.

Conclusion / Future Work

Concluding Remarks

• Proposed a generic distinguishing-*H* attack on LPMAC.

	Queries	Time	Mem.
Our generic Dist-H	$3 \times 2^{N/2}$	2 ^{N/2}	-

- The "N-bit security folklore" is incorrect.
- Showed more cryptanalysis on LPMAC.
 Prefix-freeness is broken with 2^{N/2} queries.

- Finding a new problem on MAC in which a generic attack costs between $2^{N/2}$ and 2^{N}
- Finding a new application of a differential with $Pr. > 2^{-N}$

A differential with Pr. > 2^{-N} \longrightarrow Dist-*H* on LPMAC

A differential with Pr. > 2^{-N} \longrightarrow ???

Thank you for your attention !!