#### EUROCRYPT 2012

#### « Tightly-Secure Signatures from Lossy Identification Schemes »

#### 18 April 2012

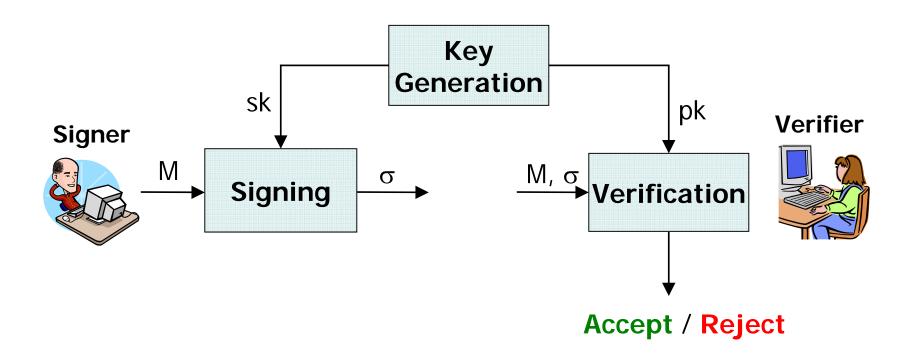
#### Michel Abdalla

École normale supérieure & CNRS

Joint work with

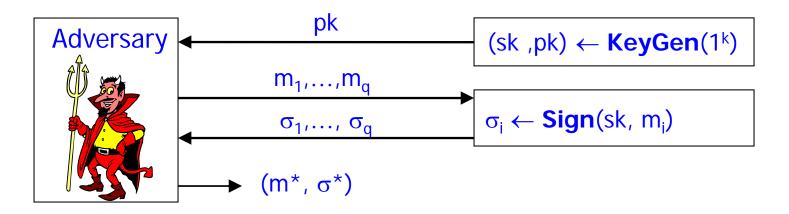
Pierre-Alain Fouque, Vadim Lyubashevsky and Mehdi Tibouchi

### Signature schemes



# Security of signature schemes

 Strong Existential unforgeability under chosen-message attacks [GMR88]



 Adversary wins if Verify(pk,m\*,σ\*)=Accept and (m\*, σ\*) was not previously queried

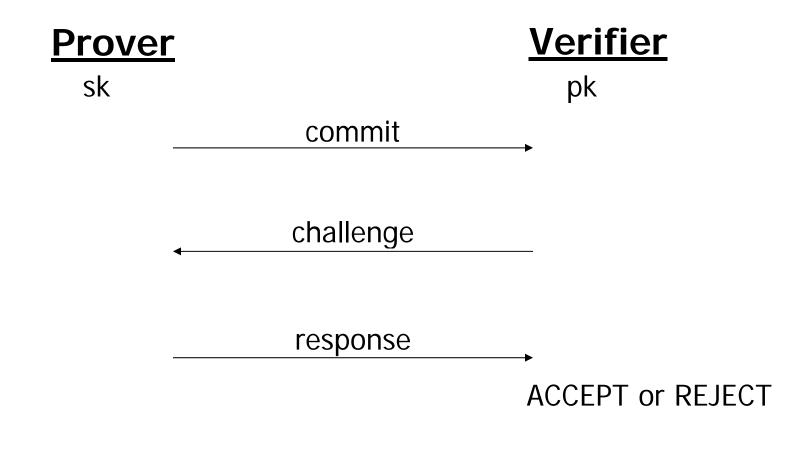
# Common methods for obtaining signature schemes

- Full Domain Hash
  - Let (f,f<sup>-1</sup>) be a trapdoor one-way permutation
  - Let H be a random oracle

•  $\sigma = f^{-1}(H(m))$ 

- Identification-based signatures
  - Start with a "secure" identification scheme
  - Make it non-interactive with the help of a random oracle

### **Canonical identification scheme**







# **Tightness of security reductions**

- What do we mean by tightness?
  - [BR96]: Adversary against scheme can be transformed into an adversary against underlying assumption with similar success probability and time complexity
- Can help set parameters for the scheme

# FDH and alternatives with tight security

- PSS probabilistic signature scheme [BR96]
- Magic bit by Katz and Wang [KW03]
- Goh and Jarecki CDH-based scheme [GJ03]
- Kakvi and Kiltz [KK12]

# On the exact security of identification-based signatures

- If the ID scheme is secure against passive adversaries, then the signature scheme is existentially unforgeable [AABN02]
  - $\varepsilon_{sig}(k) \approx \mathbf{q}_{H} \times \varepsilon_{id}(k) + negl(k)$
  - Proof of passive security of the ID scheme is usually based on rewinding
- Direct proofs based on the forking lemma also lose a q<sub>H</sub> factor [PS96]

# Fiat-Shamir alternatives with tight security

- Katz-Wang DDH-based signature scheme [KW03]
  - Uses the Fiat-Shamir heuristic based on a proof of membership for the language {g,h,g<sup>r</sup>,h<sup>r</sup>} instead of a proof of knowledge
  - Has a tight reduction to a decisional Diffie-Hellman problem

## **Our results**

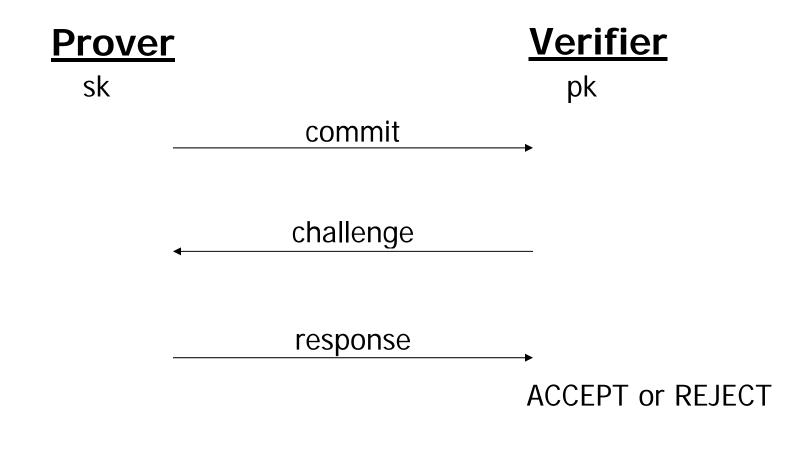
#### We extend the results by Katz and Wang to other settings

- New schemes based on the decisional shortdiscrete-log problem, Ring-LWE, and subset sum
- A generic proof of security based on lossy identification schemes
  - Refines the results in [AABN]: No q<sub>H</sub> factor
  - Formalizes the intuition behind the Katz-Wang signature scheme

## Plan

- Introduction
- Identification schemes
- Lossy identification schemes
- Instantiations of lossy ID schemes
- Concluding remarks

### **Canonical identification scheme**



## Passive security for ID schemes

- Let Tr<sub>pk,sk,k</sub>() be a transcript generation oracle
- Passive security experiment Exp(A,KG,Tr)
  - (pk,sk)  $\leftarrow$  KG(1<sup>k</sup>)
  - (cmt,st)  $\leftarrow A^{Tr()}(pk)$
  - ch  $\leftarrow \{0,1\}^{C(k)}$
  - rsp  $\leftarrow$  A(st,ch)
  - Return Ver(cmt,ch,rsp)
- Exp(A,KG,Tr) outputs 1 with negl. probability

# Security of the Fiat-Shamir transform

• Theorem [AABN02]: If ID is  $\varepsilon_{id}$ -secure against passive impersonations, then SIG=FS[ID] is  $\varepsilon_{sig}$ -existentially unforgeable

 $\boldsymbol{\epsilon}_{sig} \leq \boldsymbol{q}_{h} \times \boldsymbol{\epsilon}_{id} + negl(k)$ 

# Lossy identification schemes

- ∃ an alternate (lossy) key generation
- Properties:
  - p-completeness: a valid proof gets accepted
  - ε<sub>s</sub>-simulatable: transcript can be efficiently simulated without the secret key
  - ε<sub>k</sub>- key indistinguishable: cannot distinguish lossy keys from normal keys
  - ε<sub>I</sub>- lossy: an unbounded adversary cannot succeed in breaking the ID scheme when pk is lossy

# Security of the Fiat-Shamir transform

• Theorem: If ID is a  $(\rho, \epsilon_s, \epsilon_k, \epsilon_l)$ -lossy identification scheme, then SIG= FS[ID] is  $\epsilon_{sig}$ -existentially unforgeable  $\epsilon_{sig} \leq \epsilon_k + q_{sig} \epsilon_s + q_h \epsilon_l + negl(k)$ 

# Security of the Fiat-Shamir transform

- Theorem: If ID is a  $(\rho, \varepsilon_s, \varepsilon_k, \varepsilon_l)$ -lossy identification scheme, then **SIG**= FS[ID] is  $\varepsilon_{sig}$ -existentially unforgeable  $\varepsilon_{sig} \leq \varepsilon_k + q_{sig} \varepsilon_s + q_h \varepsilon_l + negl(k)$
- Theorem [AABN02]: If ID is  $\varepsilon_{id}$ -secure against passive impersonations, then SIG= FS[ID] is  $\varepsilon_{sig}$ -existentially unforgeable  $\varepsilon_{sig} \leq q_h \times \varepsilon_{id} + negl(k)$

#### **Proof idea**

#### • Use transcripts to simulate signing oracle

- Let m be in the sign query
- Given (cmt,ch,rsp)  $\neq (\perp, \perp, \perp)$ , set H(cmt,m)=ch
- Collision probability is negligible due to cmt min-entropy
- Return  $\sigma$ =(cmt,rsp) as the signature

#### Replace pk with lossy public key lpk

- Probability of success changes by at most  $\varepsilon_k + q_s \varepsilon_s$
- Success probability is at most  $q_h \epsilon_l$  when key is lossy
- q<sub>h</sub> factor is due to guess of hash query used in the forgery

## Plan

- Introduction
- Identification schemes
- Lossy identification schemes
- Instantiations of lossy ID schemes
- Concluding remarks

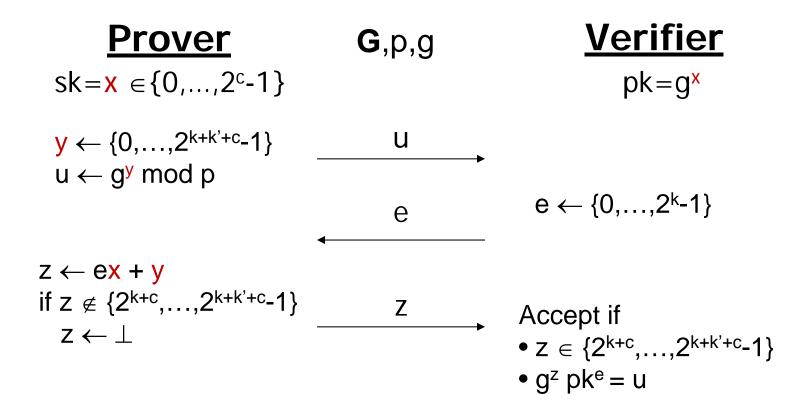
### **DDH-based ID scheme [KW03]**

| <u>Prover</u>                           | $\mathbf{G} = \langle g \rangle$ , $ G  = q$ | <u>Verifier</u>                        |
|-----------------------------------------|----------------------------------------------|----------------------------------------|
| $sk = \mathbf{X} \in Z_q$               |                                              | $pk=(g,h,y_1=g^x,y_2=h^x)$             |
| $\mathbf{r} \leftarrow \mathbf{Z}_{q}$  | A, B►                                        |                                        |
| A ← g <sup>r</sup> ; B ← h <sup>r</sup> | C                                            | $c \leftarrow Z_q$                     |
| S ← C <mark>X</mark> + ľ                | <b>S</b>                                     | Accept if                              |
|                                         |                                              | • A $y_1^c = g^s$<br>• B $y_2^c = h^s$ |

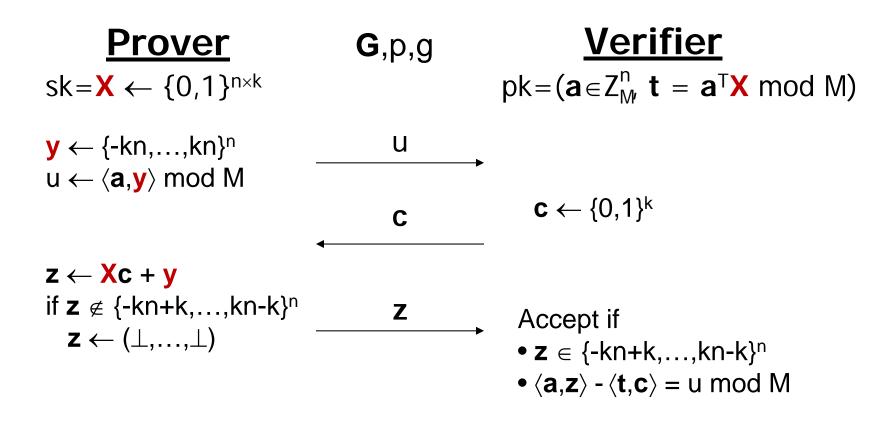
# Security of DDH-based ID scheme

- 1-complete since ID scheme never aborts
- Simulatability follows from ZK property
  - Choose  $c \in Z_a$  and  $s \in Z_a$
  - Set A=g<sup>s</sup>y<sub>1</sub>-c and B=h<sup>s</sup>y<sub>2</sub>-c
- Key indistinguishability follows from DDH assumption
- Lossiness
  - pk is not a DH tuple
  - Given A and B, there exists at most one c for which there exists a response s s.t. Ay<sub>1</sub><sup>c</sup>=g<sup>s</sup> and By<sub>2</sub><sup>c</sup>=h<sup>s</sup>

# Short-discrete-log based ID scheme



#### Subset-sum-based ID scheme



### Plan

- Introduction
- Lossy identification schemes
- Security of Fiat-Shamir transform
- Instantiations of lossy ID schemes

### Concluding remarks

## **Concluding remarks**

- We extended results by Katz and Wang to other settings
  - New schemes based on the decisional short-discretelog problem, Ring-LWE, and subset sum
- Provided a tight and generic security proof based on *lossy identification schemes*

 Security holds in the quantum-accessible random oracle model

Our reductions are history-free [

